Drug resistance and population structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon | Scientific Reports – Nature.com

Posted: October 8, 2022 at 1:47 am

WHO. World malaria report 2021. Geneva: WHO (2021).

Recht, J. et al. Malaria in Brazil, Colombia, Peru and Venezuela: Current challenges in malaria control and elimination. Malar. J. 16, 273. https://doi.org/10.1186/s12936-017-1925-6 (2017).

Article PubMed PubMed Central Google Scholar

CDC-Peru. Numero de Casos de Malaria, Peru 20152020, https://www.dge.gob.pe/portal/ (2020).

Branch, O. et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar. J. 4, 27. https://doi.org/10.1186/1475-2875-4-27 (2005).

Article PubMed PubMed Central Google Scholar

Mejia Torres, R. E. et al. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am. J. Trop. Med. Hygiene 88, 850854. https://doi.org/10.4269/ajtmh.12-0671 (2013).

CAS Article Google Scholar

Feo Istriz, O. et al. Compartiendo lecciones aprendidas. Proyecto control de malaria en zonas fronterizas de la regin andina: un enfoque comunitario-PAMAFRO. (2009).

Rosas-Aguirre, A. et al. Epidemiology of Plasmodium vivax Malaria in Peru. Am. J. Trop. Med. Hyg. 95, 133144. https://doi.org/10.4269/ajtmh.16-0268 (2016).

Article PubMed PubMed Central Google Scholar

Pardo, K. Plan de Eliminacin de la Malaria en Loreto (Plan Malaria Cero 20172021). (Direccin de Prevencin y Control de Enfermedades Metaxenicas y Zoonosis, 2021).

Bacon, D. J. et al. Dynamics of malaria drug resistance patterns in the Amazon basin region following changes in Peruvian national treatment policy for uncomplicated malaria. Antimicrob. Agents Chemother. 53, 20422051. https://doi.org/10.1128/AAC.01677-08 (2009).

CAS Article PubMed PubMed Central Google Scholar

Griffing, S. M. et al. South American Plasmodium falciparum after the malaria eradication era: Clonal population expansion and survival of the fittest hybrids. PLoS ONE 6, e23486. https://doi.org/10.1371/journal.pone.0023486 (2011).

ADS CAS Article PubMed PubMed Central Google Scholar

Okoth, S. A. et al. Molecular investigation into a Malaria outbreak in Cusco, Peru: Plasmodium falciparum BV1 lineage is linked to a second outbreak in recent times. Am. J. Trop. Med. Hyg. 94, 128131. https://doi.org/10.4269/ajtmh.15-0442 (2016).

CAS Article PubMed PubMed Central Google Scholar

Baldeviano, G. C. et al. Molecular epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 20102012. Emerg. Infect. Dis. 21, 797803. https://doi.org/10.3201/eid2105.141427 (2015).

CAS Article PubMed PubMed Central Google Scholar

Sutton, P. L., Neyra, V., Hernandez, J. N. & Branch, O. H. Plasmodium falciparum and Plasmodium vivax infections in the Peruvian Amazon: Propagation of complex, multiple allele-type infections without super-infection. Am. J. Trop. Med. Hyg. 81, 950960. https://doi.org/10.4269/ajtmh.2009.09-0132 (2009).

CAS Article PubMed Google Scholar

Van den Eede, P. et al. Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon. Malar. J. 9, 151. https://doi.org/10.1186/1475-2875-9-151 (2010).

Article PubMed PubMed Central Google Scholar

Delgado-Ratto, C. et al. Population genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl. Trop. Dis. 10, e0004376. https://doi.org/10.1371/journal.pntd.0004376 (2016).

Article PubMed PubMed Central Google Scholar

Manrique, P. et al. Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Negl. Trop. Dis. 13, e0007876. https://doi.org/10.1371/journal.pntd.0007876 (2019).

Article PubMed PubMed Central Google Scholar

Delgado-Ratto, C. et al. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar. J. 13, 8. https://doi.org/10.1186/1475-2875-13-8 (2014).

Article PubMed PubMed Central Google Scholar

Rathod, P. K., McErlean, T. & Lee, P. C. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94, 93899393 (1997).

ADS CAS Article Google Scholar

Larranaga, N. et al. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border. Malar. J. 12, 354. https://doi.org/10.1186/1475-2875-12-354 (2013).

Article PubMed PubMed Central Google Scholar

Lucchi, N. W., Ljolje, D., Silva-Flannery, L. & Udhayakumar, V. Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. parasites. PLoS ONE 11, e0151437. https://doi.org/10.1371/journal.pone.0151437 (2016).

CAS Article PubMed PubMed Central Google Scholar

Barazorda, K. A., Salas, C. J., Bishop, D. K., Lucchi, N. & Valdivia, H. O. Comparison of real time and malachite-green based loop-mediated isothermal amplification assays for the detection of Plasmodium vivax and P. falciparum. PLoS ONE 15, e0234263. https://doi.org/10.1371/journal.pone.0234263 (2020).

CAS Article PubMed PubMed Central Google Scholar

Mangold, K. A. et al. Real-time PCR for detection and identification of Plasmodium spp. J. Clin. Microbiol. 43, 24352440. https://doi.org/10.1128/JCM.43.5.2435-2440.2005 (2005).

CAS Article PubMed PubMed Central Google Scholar

Jacob, C. G. et al. Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination. Elife https://doi.org/10.7554/eLife.62997 (2021).

Article PubMed PubMed Central Google Scholar

Baniecki, M. L. et al. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl. Trop. Dis. 9, e0003539. https://doi.org/10.1371/journal.pntd.0003539 (2015).

CAS Article PubMed PubMed Central Google Scholar

Marfurt, J. et al. Molecular markers of in vivo Plasmodium vivax resistance to amodiaquine plus sulfadoxine-pyrimethamine: Mutations in pvdhfr and pvmdr1. J. Infect. Dis. 198, 409417. https://doi.org/10.1086/589882 (2008).

Article PubMed Google Scholar

Korsinczky, M. et al. Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site. Antimicrob. Agents Chemother. 48, 22142222. https://doi.org/10.1128/AAC.48.6.2214-2222.2004 (2004).

CAS Article PubMed PubMed Central Google Scholar

Suwanarusk, R. et al. Chloroquine resistant Plasmodium vivax: In vitro characterisation and association with molecular polymorphisms. PLoS ONE 2, e1089. https://doi.org/10.1371/journal.pone.0001089 (2007).

ADS CAS Article PubMed PubMed Central Google Scholar

Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 5055. https://doi.org/10.1038/nature12876 (2014).

ADS CAS Article PubMed Google Scholar

Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226234. https://doi.org/10.1038/ng.3189 (2015).

CAS Article PubMed PubMed Central Google Scholar

Peterson, D. S., Walliker, D. & Wellems, T. E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA 85, 91149118. https://doi.org/10.1073/pnas.85.23.9114 (1988).

ADS CAS Article PubMed PubMed Central Google Scholar

Foote, S. J., Galatis, D. & Cowman, A. F. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA 87, 30143017. https://doi.org/10.1073/pnas.87.8.3014 (1990).

ADS CAS Article PubMed PubMed Central Google Scholar

Picot, S. et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar. J. 8, 89. https://doi.org/10.1186/1475-2875-8-89 (2009).

CAS Article PubMed PubMed Central Google Scholar

Amato, R. et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: A genotype-phenotype association study. Lancet Infect Dis. 17, 164173. https://doi.org/10.1016/S1473-3099(16)30409-1 (2017).

CAS Article PubMed Google Scholar

Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell. 6, 861871. https://doi.org/10.1016/s1097-2765(05)00077-8 (2000).

CAS Article PubMed PubMed Central Google Scholar

Foote, S. J. et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345, 255258. https://doi.org/10.1038/345255a0 (1990).

ADS CAS Article PubMed Google Scholar

Venkatesan, M. et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hygiene 91, 833843. https://doi.org/10.4269/ajtmh.14-0031 (2014).

Article Google Scholar

Veiga, M. I. et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun. 7, 11553. https://doi.org/10.1038/ncomms11553 (2016).

ADS CAS Article PubMed PubMed Central Google Scholar

Malmberg, M. et al. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J. Infect. Dis. 207, 842847. https://doi.org/10.1093/infdis/jis747 (2013).

CAS Article PubMed Google Scholar

Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906909. https://doi.org/10.1038/35002615 (2000).

ADS CAS Article PubMed Google Scholar

Chang, H. H. et al. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput. Biol. 13, e1005348. https://doi.org/10.1371/journal.pcbi.1005348 (2017).

CAS Article PubMed PubMed Central Google Scholar

Galinsky, K. et al. COIL: A methodology for evaluating malarial complexity of infection using likelihood from single nucleotide polymorphism data. Malar. J. 14, 4. https://doi.org/10.1186/1475-2875-14-4 (2015).

CAS Article PubMed PubMed Central Google Scholar

Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).

Article PubMed PubMed Central Google Scholar

Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

Article PubMed Google Scholar

Criscuolo, A. morePhyML: Improving the phylogenetic tree space exploration with PhyML 3. Mol. Phylogenet. Evol. 61, 944948. https://doi.org/10.1016/j.ympev.2011.08.029 (2011).

Article PubMed Google Scholar

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

CAS Article PubMed PubMed Central Google Scholar

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293W296. https://doi.org/10.1093/nar/gkab301 (2021).

CAS Article PubMed PubMed Central Google Scholar

Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 14031405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

CAS Article PubMed Google Scholar

Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 11101116 (2015).

Article Google Scholar

MINSA. Resolucion Ministerial 0342022-MINSA (2024).

Ome-Kaius, M. et al. Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Med. 17, 220. https://doi.org/10.1186/s12916-019-1456-9 (2019).

Article PubMed PubMed Central Google Scholar

Betuela, I. et al. Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 15 years of age. J. Infect Dis. 206, 17711780. https://doi.org/10.1093/infdis/jis580 (2012).

Article PubMed Google Scholar

Rovira-Vallbona, E. et al. Predominance of asymptomatic and sub-microscopic infections characterizes the Plasmodium gametocyte reservoir in the Peruvian Amazon. PLoS Negl. Trop. Dis. 11, e0005674. https://doi.org/10.1371/journal.pntd.0005674 (2017).

Article PubMed PubMed Central Google Scholar

Grietens, K. P. et al. Adherence to 7-day primaquine treatment for the radical cure of P. vivax in the Peruvian Amazon. Am. J. Trop. Med. Hygiene 82, 10171023. https://doi.org/10.4269/ajtmh.2010.09-0521 (2010).

Go here to see the original:
Drug resistance and population structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon | Scientific Reports - Nature.com

Related Posts

Comments are closed.

Archives