Page 11234..1020..»

Best DNA Testing Kits 2019 – Genetic Testing for Ancestry …

How Much Do DNA Testing Kits Cost?Most ancestry DNA kits cost about $100. AncestryDNA, 23andMes Ancestry test and National Geographics Geno 2.0 test all fall nicely into that price point. If youre looking for a bargain, we recommend waiting to buy until your preferred test is on sale, as theyre often available well below their usual price. To get the most for your money, buy an Ancestry or 23andMe kit on sale then upload your Raw data to MyHeritage DNAs database, which is free.

How Accurate Are DNA Ancestry Tests?Our testers took multiple DNA ancestry tests, and the services returned slightly different results for each person. This doesnt necessarily mean that any one company is more accurate than another. Every DNA testing service uses its own algorithm and data set different reference populations drawn from different databases. Nacho Esteban of 24Genetics told us, Ancestry is not an exact science. The top five companies in the world would show very similar results when talking about continents; the similarity is smaller when talking about countries. In regional ancestry, some border regions are difficult to identify and sometimes there may be discrepancies. So we cannot take the information as something 100% sure. But at the end, it gives a great picture of where our ancestors were from.

In our tests, we did find consistency across our results on the continental level. For example, my ancestry is exclusively East Asian, but 23andMe breaks it down into 80 percent Korean, 10.5 percent Japanese and 0.8 percent Chinese, with the remaining 8.7 percent in broader categories. However, Ancestry reports my DNA as 98 percent Korean and Northern Chinese, with only 2 percent Japanese. National Geographic places 85 percent of my ancestry from Northeastern Asia and 14 percent from the South China Sea region, with my DNA most closely matching the Korean and Japanese reference populations.

Database Size & Reference PopulationsWhen asked about how database size affects ancestry results, David Nicholson, co-founder of Living DNA, told us, The tests absolutely rely on the reference database. If you have Polish ancestry but there are no people in the database who are Polish, then what the test will do is show what the next closest group is next to Polish, like German or Eastern European ancestry. Each ancestry DNA service has its own sample database and reference panel made of the DNA samples collected from their users and information collected from sources like the 1000 Genomes Project. The database consists of all this information collectively. A reference panel is made of certain curated samples with known family history and roots in a specific place. The services use insights gleaned from the reference panel to give you geographical ancestry results. In theory, a larger database leads to more information available to create a good reference panel, which then leads to better results for customers.

In testing, we found that many tests have much more specific and detailed results for European ancestry than anywhere else. This is due more to the diversity of the database than size. For example, AncestryDNA has the largest database with over 10 million samples yet results for Asian ancestry are markedly less specific than results from several companies with much smaller databases, including 23andMe and Living DNA. Instead of pulling reference samples directly from the existing database, however, many companies seek out high quality data with special research projects. 23andMe, for example, offers its Global Genetics project, which sends free kits to people with all four grandparents born in certain countries that are underrepresented in the database.

Should I Buy a DNA Test?

Direct-to-consumer DNA tests are still relatively new. The first ancestral DNA test launched in 2001 by FamilyTreeDNA, but companies didnt start genotyping autosomal DNA until 2007. Still, tests and results have come a long way since then, with much lower prices and streamlined sample collection, registration and results. If youre still on the fence about whether or not to buy a DNA ancestry test for yourself or as a gift, here are a few things to consider.

Why You Should Test Your DNA

DNA tests offer a wealth of insights into your connections to family, history and geographical locations. They both entertain and encourage you to dig into what you know about yourself. The tests make great gifts to bring you closer to your family and involve you and your family in the development of a cutting-edge science at the same time. Beyond that, the information is extremely useful for adoptees, people looking for lost relatives, genealogists and for medical science.

Many DNA databases, including Ancestry, 23andMe and MyHeritage DNA, have family search features, which match your DNA with that of potential relatives. These features help users searching for family, including adoptees and children conceived through sperm donations. Almost every DNA testing service we interviewed for this article had a story ready about how its service facilitated a heartwarming family reunion. Like these from Ancestry, this one from MyHeritage andthis one from 23andMe. Because many DNA services also have resources like family tree builders, the tests work in tandem with genealogical research.

For better ancestry and medical insights, you should encourage family members, especially parents and grandparents, to take a DNA test as well. If your family is from a specific geographical location for generations, your samples could potentially improve the service's reference panel, in turn improving results for everyone. If youre female and take a test from 23andMe or LivingDNA, you can view paternal haplogroup information, and you get more information when one of your male family members takes a test as well.

Why You Shouldnt Test Your DNA

There are several examples of people finding out a little more than they wanted because of results from a direct-to-consumer DNA test. There are Facebook communities full of people who found out they have different parents. Theres little you can do to prepare for that shock, though most services with family matching features do include warnings about unexpected discoveries in their terms of service. You can also opt to not receive family matches if youre simply looking for medical or geographical ancestry information.

Another reason you may want to avoid taking a DNA test is if youve committed a crime or you know someone closely related to you has committed a crime. Law enforcement has recently taken to testing DNA evidence from crime scenes through open DNA databases like GEDmatch after successfully solving several cold cases after the arrest of the Golden State Killer in April 2018. There are several open DNA databases floating around the internet, where people upload their raw DNA data after taking another test like 23andMe or Ancestry. Most companies do not release database information to law enforcement, however, a recent study estimates that up to 60% of Americans with European heritage can be identified via third-cousin-or-closer DNA using publicly available data.

DNA Traits

In addition to showing geographic ancestry percentages, some direct-to-consumer DNA tests also include insights about physical traits like hair and eye color. With 23andMe, this trait information is mostly available in the upgraded Ancestry + Health kit, but some interesting tidbits can be found in the Your DNA Family report, which is available if you opt to participate in the DNA Relatives service. This report tells you interesting information, such as that your DNA relatives are 32 percent more likely to own a cat or 11 percent less likely to have lived near a farm when they were young. DNA Passport by Humancode offers information about more than 20 physical traits, from appearance to grip strength. Ancestry DNA recently added its AncestryDNA Traits upgrade for $10, and it lets customers who have already taken one of its tests unlock information about 18 genetically influenced traits, including bitter taste perception, freckles and cilantro aversion.

Most of this trait data tells you things you already know, like your hair and eye color, but it is fun to see them compared to your genetic relatives and the world at large. We also found it fascinating to learn more about how these physical traits are genetically determined. For example, finger length ratio is determined by hormonal exposure in the womb, with higher testosterone exposure resulting in a better chance of having a longer ring finger. 23andMes Health report for finger length ratio looks at 15 gene markers to estimate your likelihood of having longer ring fingers or index fingers.

Types of DNA

Of the 23 pairs of chromosomes in the human genome, 22 are autosomes. Most direct-to-consumer DNA tests look primarily at your autosomal DNA to determine your geographic ancestry percentages. This DNA is a mix of inherited DNA segmentshalf from each parent. Because everyone inherits at least one X chromosome from their mother, DNA tests often include the X chromosome in autosomal testing, though the X chromosome is not an autosome.

The 23rd pair of chromosomes is comprised of sex chromosomes X and Y chromosomes that determine whether youre male (XY) or female (XX). Traits like red-green color blindness, male pattern baldness and hemophilia are specifically linked to X or Y chromosomes and are called sex-linked characteristics. All of those examples, and most other sex-linked traits, are X-linked and more common in males, who only have one X chromosome. Many DNA tests isolate Y DNA in males to show consumers their paternal haplogroup. Since the Y chromosome is directly inherited from father to son, it is possible to trace direct paternal lineage for many generations.

Similarly, mitochondrial DNA, or mtDNA, is used by direct-to-consumer DNA tests to trace your direct maternal lineage and determine maternal haplogroups. While most DNA lives in your cells' nuclei, mtDNA lives in the mitochondria. Mitochondria are the cells' powerhouses their 37 genes are necessary for cellular energy production and respiration. Previous research suggested that mtDNA is inherited directly from your mother, but a recent study found that biparental mtDNA may be more common. This discovery may affect maternal haplogroup testing in DNA tests in the future, but for now, its safe to assume your results are correct.

Genotyping vs. Sequencing

Most of the services we tested use genotyping to read your DNA. Genotyping looks for specific markers in your genetic code. For something like ancestry testing, genotyping is effective because it identifies known variants in your DNA. Scientifically speaking, genotypings weakness is that it can only recognize previously identified markers. This is one reason DNA tests accuracy relies so heavily on the DNA database size; there must be enough information available and identified genetic variants in the database to recognize new customers markers.

A few of the DNA tests we tested, including the National Geographic Geno 2.0, use genetic sequencing instead of genotyping. Sequencing is newer in the mainstream direct-to-consumer DNA testing market, as it used to cost more and take much longer to sequence a persons DNA. Sequencing identifies the exact makeup of a certain piece of DNA be it a short segment or the whole genome. The Helix tests sequence the Exome, which are the parts of the genome responsible for protein production, plus several other regions of interest. DNA sequencing gives more information overall and has more uses in medical testing than genotyping. In the future, more DNA kits may move from genotyping to DNA sequencing as the technology gets cheaper and faster, but for now both are effective ways to look into your geographic ancestry.

DNA Testing Your Pet

Beyond ancestry tests, there are at-home DNA kits available for everything from vitamin regimens to dating sites. There are even DNA test kits for your furry friends. Companies like Embark, Wisdom Panel and many others offer genetic health risk screenings, trait analyses and breed percentage information for dogs. These canine ancestry tests allow you to confidently state that your mutt is part Irish wolf hound and give you key information about your pets heritage for insights into potential health issues. For example, if you found out one of your rescue dogs parents was likely a purebred boxer, you could speak with your vet about breed-specific needs. Or if you find out your cute new puppy of indeterminate origin is mostly Bernese mountain dog, you can expect it to grow very large.

Like direct-to-consumer DNA tests for humans, these dog kits require a DNA sample, usually a cheek swab. They also fall in a similar price range, from $60 up to $200 for services with health information in addition to breed identification. Because there are so many canine DNA tests to choose from, we recommend shopping based on the companys sample database and the number of breeds the company tests for.

If youre looking for genetic information about your feline friend, there are fewer options, though Basepaws DNA CatKit promises information about your cats breed and traits with just a hair sample. It also offers swab kits for hairless cats. The company is fairly new and claims that results take up to four months, though most are delivered within eight to 12 weeks. The kit costs $95 and also tells you how closely related your kitty is to wild cats like lions, tigers and (bears, oh my!) ocelots.

DNA Testing for Children

Since genome sequencing is still a relatively young science, we don't recommend submitting your childs DNA to direct-to-consumer companies. We do encourage consulting with your doctor about genetic testing for your child. Due to some concerns with the DNA testing industry, the choice to have ones genes sequenced by a private company should be made with informed consent. Those concerns are magnified when applied to children, who cannot make their own decisions regarding the unlikely potential risks or privacy concerns.

Once your genetic information is out there, its difficult to undo. Also, once you know something about yourself, its impossible to un-know. Revelations such as having different parents than you expected or finding unknown half-siblings are difficult to process at any age, but its particularly troubling for kids. However, you can always simply opt out of family matching features.

Similarly, on the health side, finding out your child has a gene connected to cancer or another disease can induce unnecessary anxiety, especially since a genetic predisposition to a certain disease does not always guarantee a diagnosis.

See the rest here:
Best DNA Testing Kits 2019 - Genetic Testing for Ancestry ...

Recommendation and review posted by Bethany Smith

Invitae Genetics is rolling out personal genetic testing …

If the future of healthcare is in your DNA, there's a war brewing over how to harness the information it contains without causing harm to patients.

Today, there are two main ways to take a peak at your genes: either by getting a costly but complete genetic workup through a doctor, or by opting for a more affordable at-home test like those sold by 23andMe.

Clinicians and advocates criticize the at-home approach, which they say prioritizes convenience over privacy and long-term health. But entrepreneurs counter that the at-home approach lets more people access information.

A true hybrid approach something that combines the benefits of comprehensive testing with the convenience of at-home tests while still keeping your data safe and private has yet to have a sizeable impact.

Read more: Genetic testing is the future of healthcare, but many experts say companies like 23andMe are doing more harm than good

That's where San Francisco-based genetic information company Invitae hopes to make a splash.

The company will soon let patients order a personal genetic test online through a genetic counselor or physician, Invitae CEO Sean George said last week at the J.P. Morgan Healthcare Conference. The company's tests are currently only available from a clinician who orders the test on a patient's behalf.

"We now in 2019 will focus on removing the barriers of access to [genetic] information and providing support for that individual every step of the way," George said during a presentation last week.

Subscribe to Dispensed, our weekly newsletter on pharma, biotech, and healthcare.

Invitae has sequenced the genes of roughly half a million patients. Hollis Johnson/Business Insider Since its first test launched five years ago, Invitae has sequenced the genes of more than half a million patients. The company focused on diagnostic genetic testing for patients with conditions like cancer, heart disease, and rare disorders, as well as infertility and pregnancy. It catered to physicians and genetic counselors who would order the tests on behalf of their patients.

But as genetic information becomes increasingly important in healthcare, the Invitae team has begun to work on making its tests more accessible to more people.

Patients will be able to order genetic tests online through a clinician by this summer, George said. Nearly any test on Invitae's clinical menu will be available this way, making Invitae one of the first companies to offer wider access to clinical testing for an array of conditions and inherited health risks.

Unlike at-home genetic tests, Invitae's tests are clinical grade and will not require patients to follow-up their results with confirmation testing, a company spokesperson told Business Insider.

23andMe, perhaps the most widely-recognized name in genetic testing, sells its $199 'Health and Ancestry' kits in pharmacies or online without any input from a clinician. Because they're offered without a clinician's input, however, 23andMe's tests are not considered clinical grade. As a result, both the company and federal regulators instruct customers to confirm any health findings with a separate clinical-grade test.

Importantly, Invitae requires a physician or genetic counselor to be involved in all of its testing. Their role is to help translate complex genetic results into useful health guidance, Invitae CEO Sean George said.

Say you received a result that said you were at a high risk of an arrhythmia, or an irregular heartbeat. The genetic variants for this condition can be very difficult to interpret alone. While one variant could suggest to an expert that you're in immediate need of a pacemaker, another variant might simply require monthly check-ins with a physician. But only an expert can reliably tell you which variant you have and what to do next.

"It's important to us that they have somebody that can walk them through the results and immediately get them in touch with a specialist," George told Business Insider in November.

Several experts recently echoed George's sentiment, telling Business Insider last week that failing to include a physician or genetic counselor with a genetic test is confusing at best and harmful at worst. That's something George has been thinking about for a long time.

"One of the questions we ask ourselves at Invitae is how we get this information to patients responsibly," George said.

In addition to Invitae, several other companies are also beginning to experiment with new hybrid models for genetic testing. Color Genomics, for example, lets you order a genetic test through an independent physician who can help translate the findings remotely.

And Nebula Genomics says you can get your entire genome sequenced, own the data set, and earn digital money by sharing it.

Another approach is being pioneered by LunaDNA, which is offering to pay people for their genetic information in the form of shares of LunaDNA.

George said that while he hopes Invitae's new initiative will help more people get access to their genetic information earlier, he wants to also ensure that people are able to act on the guidance they receive.

"Our mission is to get it in more people's hands, but we aren't interested in unleashing a whole bunch of information on folks and providing no way to do anything tangible with it," he said.

See the original post here:
Invitae Genetics is rolling out personal genetic testing ...

Recommendation and review posted by Bethany Smith

Unwanted side effects of (bioidentical) hormone …

The use of bioidentical hormones got a lot of press after Suzanne Somers (Threes Company cast member and promoter of the ThighMaster) began touting them as an alternative to synthetic hormone replacement. I wholeheartedly agree that bioidentical hormones are preferable to synthetic hormone replacement therapy (HRT). Recall the large experiment on the female population known as the Womens Health Initiative Postmenopausal Hormone Therapy Trials. If you arent familiar with the results of that study, here is a summary provided by the National Institutes of Health:

Compared with the placebo, estrogen plus progestin resulted in:

Increased risk of heart attackIncreased risk of strokeIncreased risk of blood clotsIncreased risk of breast cancerReduced risk of colorectal cancerFewer fracturesNo protection against mild cognitive impairment and increased risk of dementia (study included only women 65 and older)

Compared with the placebo, estrogen alone resulted in:

No difference in risk for heart attackIncreased risk of strokeIncreased risk of blood clotsUncertain effect for breast cancerNo difference in risk for colorectal cancerReduced risk of fracture(Findings about memory and cognitive function are not yet available.)

Just because synthetic hormones come with proven risk, it seems that people have decided bioidentical hormones are totally fine to take. Bioidentical hormones are crafted to be the exact molecular structure of the hormone(s) your body produces. Synthetic hormones, on the other hand are not. Synthetic hormones are typically a bit different from the exact structure that your body makes because that way it can be patented by the manufacturer.

The purpose of this article is not necessarily to compare and contrast synthetic from bioidentical HRT; but to alert you as to how the body responds when bioidentical (and synthetic) hormones are taken. Well, really to alert you on the downside consequences of taking ANY hormones. The physiology is simple and logical. It can be more in depth, but Ill focus on the basics. By the way, Im referring to the pathways of the most commonly replaced hormones, steroid (e.g.: estrogen, testosterone, progesterone, cortisol, DHEA, etc.) and thyroid hormones.

Most hormones work in the body via a negative feedback loop. This means that as the level of a hormone rises, a signal is mediated that ceases that hormones production and release; in order to prevent the production of the hormone from getting out of control. Lets begin with an example using thyroid hormone.

The three main glands involved in thyroid hormone production are the hypothalamus, pituitary and thyroid. The hypothalamus releases thyroid releasing hormone (TRH), which stimulates the pituitary gland to release thyroid stimulating hormone (TSH), which in turn stimulates the thyroid gland to manufacture and release thyroid hormones (thyroxine or T4 and triiodothyronine or T3). Once the thyroid hormone begins to do its job throughout the body, production begins to decline, so as not to produce too many hormones. So, as the level of thyroid hormone increases, the levels of TRH and TSH decrease. Its called a negative feedback loop because the rise in hormone levels results in a decreased production; as opposed to a positive feedback loop where a rise in hormone levels would produce an even greater rise in the level of that same hormone. The only example of a hormone that works on a positive feedback loop that I can think of is oxytocin.

Because these hormones work this way, you may be able to guess what happens when you are exposed to (i.e.: ingest) exogenous hormones. Exogenous (as opposed to endogenous) refers to those taken in from outside the body, and can be any type of hormone. So, if you take a hormone, you can be sure that those negative feedback loops will still function as usual. The resultyour body stops (or significantly slows) its own production of these hormones. Whats wrong with that? Eventually, youll be dependent on these hormones as your glands have gone to sleep, because someone else is doing their job. Its simply not necessary for the glands to have to do anything.

So if you stop taking them, it may be extremely difficult to get your bodys own production back up to par. Now, considering people often take hormones because theyre not producing enough on their own in the first place, you can imagine how difficult it would be to begin the production process after taking exogenous hormones and suppressing your hormone production even further. Therefore, people usually become completely dependent on hormones, bioidentical or not. In general, as long as youre okay with taking a hormone for the rest of your life, there is no need to worry. However, most (if not all) of my patients shun that idea.

The next issue is that of hormone receptor insensitivity. Generally speaking, each hormone docks into a receptor on its target cell. Its as if the receptor is the lock and the hormone is the key. Once the cell door opens, the hormone goes on to carry out its function (usually turning on or off genes). The problem with bombarding the cells with large doses of a hormone is that eventually its as if the cell decides to change the lock on the door. The result is that it is harder and harder for the hormone to open the cell door, and therefore more and more of the hormone is needed each successive time you want to make an effect on the cell/genes. Its almost as if you need enough hormone to knock the cell door down, because it doesnt want to open. This is especially prevalent with the use of hormone creams (usu. progesterone). However, if you make no lifestyle changes it typically happens with any hormone. Thats why people on thyroid hormone often have to continue increasing the dose to get the same effect; the same goes for those who take insulin. Have you ever known of diabetic or person with hypothyroidism (except for autoimmune thyroid disease/Hashimotos) that had to decrease their dose, without making lifestyle changes? So, taking a hormone for the rest of your life may not even do the trick, especially insulin. You may be familiar with how well diabetics fare without changing their lifestyle, and continually increasing their doses of insulin. By the way, hormone receptor sites often run out of the vitamin and minerals that are necessary to allow them to function properly, due to the constant bombardment of hormones they are subject to in these cases.

This is not to say that no one should be on HRT, bioidentical or synthetic. There is a time and place for everything. And when these hormones are necessary, they can be miraculous. The big question is: When are they necessary? Thats a debatable issue and can certainly vary between individuals. So I am not absolutely against HRT, though I definitely prefer bioidentical over synthetic when possible.

The point Im trying to get across is that I wouldnt recommend anyone start with HRT, unless they are in a very unmanageable state. In these instances, one option may be to start with HRT to prime the pump and then eventually wean off them. Unfortunately, with all the books written about HRT and the attention it gets these days, many people (and doctors) go straight for hormones (with or without lab tests). Dont get me wrong, chances are youll feel like a million bucks if you take hormones that you are deficient in, or insensitive to. But dont forget to ask the million dollar question just because you feel like a million bucks: How long does that last? Well, there is no single answer to that question because everybodys condition and lifestyle is a bit different. But, from what Ive seen, it lasts about six months at best, before they have to adjust the dose upward. You may eventually find yourself always having to increase the dose to get the same effect. And finally, your cells just may not respond adequately, despite the dose. Thats not say there is no hope though.

Im currently working with a patient who had low testosterone and used testosterone replacement therapy for over a year. Sure enough, he had to continually increase the dose, until it eventually stopped giving him the results he needed (i.e.: absence of musculoskeletal pain, strength, libido, and an erection). In this case (and others), I determine if the hypothalamus, pituitary, gonads (when it comes to testosterone), and/or cell receptors need support. Fortunately, in the above mentioned case, the patient got immediate results that according to him, showed via the number of plates he kept adding on the machines at the gym.

In some cases, it may not be easy to get everything back up and running like new. But with the proper nutritional support and lifestyle improvements, it certainly is an attainable goal. The willingness of the patient to change their lifestyle and the length of time the person has been on hormones are two very important factors that will help to determine the outcome. Fortunately, I havent seen a lost cause yet; but I sure have seen people feeling miserable after the hormones stop giving the desired effect. Remember, theres no such thing as a free lunch!

Not to go into politicsbut Im a big advocate of being able to buy supplements over-the-counter. Although I truly believe that hormones should only be dispensed through licensed health care practitioners who know how to use them.

PS: There are more problems associated with HRT (bioidentical or not) than what I mentioned above. For example, many men who take testosterone can eventually wind up converting it into estrogen (just about the opposite effect they are looking for)thats enough on that for now.

PSS: Im not saying that bioidentical hormones are never necessary. They certainly can be in some instancesjust consider the potential side-effects and work with a licensed, competent, qualified health care professional who knows how to use them appropriately. They can be very useful to prime the pump when other lifestyle changes are implemented.

Dr. Robert DAquila NYC Chiropractor Applied Kinesiology

Like Loading...

Related

Here is the original post:
Unwanted side effects of (bioidentical) hormone ...

Recommendation and review posted by Bethany Smith

Buy HGH Injections in Secaucus, New Jersey – Human Growth …

Human Growth Hormone in SecaucusInjectable HGH is indicated for the replacement of endogenous growth hormone in adults with growth hormone deficiency (AGHD) or low HGH levels.

HGH for Men and HGH for Women. As women go through menopause, and men through andropause, HGH levels decline and can become deficient causing a variety of age-related symptoms. Some of the most notable are decrease in libido, flabby muscles, rapid weight gain, fat around the belly, mood swings, hot flashes and night sweats. This, combined with city living, especially in fast-paced cities like Secaucus, and lifestyles like those in NYC where stress, lack of sleep or exercise can take a toll, make hormone optimization an important part of preventative medicine and anti-aging.

Secaucus HGH Therapy addresses how to prevent, slow, or reverse the effects of aging and help people live longer, healthier and happier lives. HGH scientific research has applications in genetic engineering, stem cell injections, tissue engineering, and other medical advances like hormone modulation, also known as Hormone Replacement Therapy. Some people want HGH prescribed specifically for weight loss, body-building, athletic performance, for use with HCG injections or anti-aging, and although growth hormone does help both men and women burn fat, lose weight, build strong lean muscle and enhance performance, prescription HGH is not prescribed by doctors for those purposes alone.

The best Human Growth Hormone Doctors & local HGH Treatment Clinics serving Secaucus New Jersey residents in HGH Secaucus, HGH Guttenberg, HGH Union City, HGH Fairview, HGH Weehauken, HGH Cliffside Park, HGH West New York, HGH Edgewater, HGH North Bergen, HGH in Jersey

To consult a Secaucus HGH Hormone Specialist in Secaucus New Jersey and to get HGH Injections pricing, fill out the Hormone Info Form for a Free HGH Consultation today.At Secaucus HGH Treatment Centers we have the best hormone therapy support services, and the best pricing on growth hormone injection products like Genotropin, Norditropin, Somatropin, Omnitrope, Nutropin, Tev-tropin and Humatrope. Our HGH doctors are Mayo Clinic, Cenegenics and Cleveland Clinic trained using the most advanced HGH treatment protocols. Get your growth hormone levels tested and a physical exam, and if you are hormone deficient, you can get high quality injectable HGH with a doctor's prescription at one of our HRT clinics nationwide - inquire online. Your HGH Treatment program can be shipped to you overnight to your home or office anywhere in Jersey.

Why use HGH for hormone replacement therapy? The Human Growth Hormone is responsible for the growth and maintenance of every cell and organ in the human body. It helps promote healthier skin, thick hair and nails, healing and recovery, muscle building and bone growth, heart and brain health, libido, sexual desire and sexual function. Human Growth Hormone Therapy using Somatropin, the genuine, bio-identical form of HGH, was developed to treat patients with low levels of HGH or deficient HGH production also known as AGHD.

Also ask about our Testosterone Therapy Programs for Men.Learn more about our Testosterone Programs. Our Testosterone treatments use prescription cypionate such as Depo-Testosterone, enanthate injections and propionate injectables, as well as AndroGel and Fortesta Androgen gels. Ask how to get a Testosterone Prescription in the Secaucus, Bergen/Lafayette area.

For more Secaucus HGH Therapy info, to find out the cost of HGH Treatment or to buy HGH Injections in Secaucus New Jersey at the best price, fill out the Quick Info Form.

HGH Clinics in Secaucus New Jersey provide HGH and Testosterone Therapy Services. Call for the cost of a somatropin prescription and best HGH injection prices.

Your HGH Treatment program can be shipped to you overnight to your Secaucus home or office.

Explore more about ourTestosterone Therapy Programs using Cypionate including Depo-Testosterone injections, Enanthate, Propionate, Undecanoate Aveed, topical androgen gel AndroGel, Trimix and Caverject for ED Therapy for men.

The Secaucus Low T Center can guide you through the process of obtaining Testosterone Therapy including testing, diagnoses and how to Buy Testosterone.

Read more here:
Buy HGH Injections in Secaucus, New Jersey - Human Growth ...

Recommendation and review posted by Bethany Smith

Neolithic Male Genetic Diversity Plummeted Heres Why …

Starting about 7,000 years ago, something weird seems to have happened to men: Over the next two millennia, recent studies suggest, their genetic diversity - specifically, the diversity of their Y chromosomes - collapsed. So extreme was that collapse that it was as if there was only one man left to mate for every 17 women.

Anthropologists and biologists were perplexed, but Stanford researchers now believe they've found a simple - if revealing - explanation. The collapse, they argue, was the result of generations of war between patrilineal clans, whose membership is determined by male ancestors.

The outlines of that idea came to Tian Chen Zeng, a Stanford undergraduate in sociology, after spending hours reading blog posts that speculated - unconvincingly, Zeng thought - on the origins of the "Neolithic Y-chromosome bottleneck," as the event is known. He soon shared his ideas with his high school classmate Alan Aw, also a Stanford undergraduate in mathematical and computational science.

"He was really waxing lyrical about it," Aw said, so the pair took their idea to Marcus Feldman, a professor of biology in Stanford's School of Humanities and Sciences. Zeng, Aw and Feldman published their results May 25 in Nature Communications .

"Woman Triumphant" by Rudolf Cronau. (1919). ( Public Domain )

It's not unprecedented for human genetic diversity to take a nosedive once in a while, but the Y-chromosome bottleneck, which was inferred from genetic patterns in modern humans, was an odd one. First, it was observed only in men - more precisely, it was detected only through genes on the Y chromosome, which fathers pass to their sons. Second, the bottleneck is much more recent than other biologically similar events, hinting that its origins might have something to do with changing social structures.

Certainly, the researchers point out, social structures were changing. After the onset of farming and herding around 12,000 years ago, societies grew increasingly organized around extended kinship groups, many of them patrilineal clans - a cultural fact with potentially significant biological consequences. The key is how clan members are related to each other. While women may have married into a clan, men in such clans are all related through male ancestors and therefore tend to have the same Y chromosomes. From the point of view of those chromosomes at least, it's almost as if everyone in a clan has the same father.

That only applies within one clan, however, and there could still be considerable variation between clans. To explain why even between-clan variation might have declined during the bottleneck, the researchers hypothesized that wars, if they repeatedly wiped out entire clans over time, would also wipe out a good many male lineages and their unique Y chromosomes in the process.

Cave art in Magura cave from between 10000-8000 years ago. ( Public Domain )

To test their ideas, the researchers turned to mathematical models and computer simulations in which men fought - and died - for the resources their clans needed to survive. As the team expected, wars between patrilineal clans drastically reduced Y chromosome diversity over time, while conflict between non-patrilineal clans - groups where both men and women could move between clans - did not.

Zeng, Aw and Feldman's model also accounted for the observation that among the male lineages that survived the Y-chromosome bottleneck, a few lineages underwent dramatic expansions, consistent with the patrilineal clan model, but not others.

Now the researchers are looking at applying the framework in other areas - anywhere "historical and geographical patterns of cultural interactions could explain the patterns you see in genetics," said Feldman, who is also the Burnet C. and Mildred Finley Wohlford Professor.

Feldman said the work was an unusual example of undergraduates driving research that was broad both in terms of the academic disciplines spanned - in this case, sociology, mathematics and biology - and in terms of its potential implications for understanding the role of culture in shaping human evolution. And, he said, "Working with these talented guys is a lot of fun."

Top image: Prehistoric Man Hunting Bears by Emmanuel Benner the Younger. Source: Public Domain

The article, originally titled Wars and clan structure may explain a strange biological event 7,000 years ago, was first published on Science Daily.

Stanford University. "Wars and clan structure may explain a strange biological event 7,000 years ago." ScienceDaily. ScienceDaily, 29 May 2018. http://www.sciencedaily.com/releases/2018/05/180529185356.htm

Tian Chen Zeng, Alan J. Aw, Marcus W. Feldman. Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck . Nature Communications , 2018; 9 (1) DOI: 10.1038/s41467-018-04375-6

More here:
Neolithic Male Genetic Diversity Plummeted Heres Why ...

Recommendation and review posted by Bethany Smith

Adult Hearts Lack Cardiac Stem Cells – genengnews.com

A cell-by-cell search for cardiac stem cells has come up empty, suggesting that previous studies hinting at the existence of cardiac stem cells were mistaken. More significantly, the absence of cardiac stem cells indicates that heart muscle that is lost due to a heart attack cannot be replaced.

The sobering finding was reported by scientists based at the Hubrecht Institute, which is located in the Netherlands. The scientists, led by Hans Clevers, group leader at the Hubrecht Institute and professor of molecular genetics at the University Medical Center Utrecht, published their work this week in the Proceedings of the National Academy of Sciences.

Along with colleagues from cole Normale Suprieure de Lyon and the Francis Crick Institute London, the Hubrecht Institute scientists described how they applied the broadest and most direct definition of stem cell function in the mouse heart: the ability of a cell to replace lost tissue by cell division. In the heart, this means that any cell that can produce new heart muscle cells after a heart attack would be termed a cardiac stem cell.

In an attempt to find cardiac stem cells, the scientists generated a cell-by-cell map of all dividing cardiac cells before and after a myocardial infarction using advanced molecular and genetic technologies. Details of this work appeared in the PNAS article, which is titled, Profiling proliferative cells and their progeny in damaged murine hearts.

Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types, the articles authors indicated in a prepublication version of their paper. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of FSTL1 in cardiac fibroblasts results in postdamage cardiac rupture.

Ultimately, the researchers found no evidence for the existence of a quiescent circulating stem cell population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury.

Most tissues of animals and humans contain stem cells that come to the rescue upon tissue damage: they rapidly produce large numbers of daughter cells to replace lost tissue cells. Cardiac tissues, however, appear to behave differently. According to the new study, the damaged heart incorporates many types of dividing cells, but none that are capable of generating new heart muscle. In fact, many of the false leads of past studies can now be explained: cells that were previously named cardiac stem cells now turn out to produce blood vessels or immune cells, but never heart muscle. Thus, the sobering conclusion is drawn that heart stem cells do not exist.

The authors make a second important observation. Connective tissue cells (also known as fibroblasts) that are intermingled with heart muscle cells respond vigorously to a myocardial infarction by undergoing multiple cell divisions. In doing so, they produce scar tissue that replaces the lost cardiac muscle.

While this scar tissue contains no muscle and thus does not contribute to the pump function of the heart, the fibrotic scar holds together the infarcted area. Indeed, when the formation of the scar tissue is blocked, the mice succumb to acute cardiac rupture. Thus, while scar formation is generally seen as a negative outcome of myocardial infarction, the authors stress the importance of the formation of scar tissue for maintaining the integrity of the heart.

View post:
Adult Hearts Lack Cardiac Stem Cells - genengnews.com

Recommendation and review posted by Bethany Smith

FUJIFILM Cellular Dynamics to Establish New Facility for …

FUJIFILM Cellular Dynamics to Establish New Facility for Production of

Human iPS Cell Therapy Applications

Fujifilm is investing in the cGMP-compliant facility located in Madison, Wisconsin with the goal to begin operations by March 2020

MADISON, Wis., January 3, 2019 -- FUJIFILM Cellular Dynamics, Inc. (FCDI), a US subsidiary of FUJIFILM Corporation (President: Kenji Sukeno) and a leading global developer and manufacturer of human induced pluripotent stem (iPS) cell technologies, has announced an investment of about $21 million to open a new cGMP-compliant*1 production facility with the goal of industrializing iPS cell manufacturing for regenerative medicine therapies. The facility will support FCDIs internal cell therapeutics pipeline and will also serve as a Contract Development and Manufacturing Organization (CDMO) for iPS cell products.

Regenerative medicine is a highly advanced treatment modality with the potential to improve the quality of life for patients. The field is quickly growing due to scientific and engineering advancements that can harness the potential of iPS cells.

To meet the growing demand for FCDIs iPS cell platform, the state-of-the-art production facility will have a flexible cell culturing design to serve production requirements of both industrial quantities of cells, and small, diverse batches, said Seimi Satake, Chairman and Chief Executive Officer of FCDI. By combining Fujifilms experience gleaned from the intricate process of manufacturing photographic film along with FCDIs knowledge of cell reprogramming, genetic engineering and cell differentiation, the facility is poised to address the complex manufacturing processes of cell therapies.

With the facility operational by March 2020, FCDI intends to accelerate the development of its internal pipeline to address unmet medical needs in areas such as age-related macular degeneration, retinitis pigmentosa, Parkinsons disease, heart diseases, and cancer.

To fulfill the promise of cell therapy, sophisticated techniques and expertise are required to culture, differentiate, and control the quality of cells. Fujifilm has broad expertise across the regenerative medicine field through its group companies including Japan Tissue Engineering Co., Ltd., FUJIFILM Wako Pure Chemical Corporation, and FUJIFILM Irvine Scientific, Inc.

FCDI will continue to leverage its technologies and knowledge of iPS cells -- working together with academic institutions and corporations around the world to advance the field of regenerative medicine with the hope of providing new therapies for patients. A recent milestone achievement in the field includes Fujifilms partnership with Cynata Therapeutics Limited*2 for its product candidate CYP-011, which utilized FCDIs iPS cells, and represents the first-ever time a clinical trial using an iPS cell-derived therapy has been completed.

In addition to its advancements in regenerative medicine, FCDI manufactures iPS cell products for public institutions, major pharmaceutical companies, and academia for the purpose of life science research.

About Fujifilm:

FUJIFILM Cellular Dynamics, Inc. (FCDI), is a leading developer and supplier of human cells used in discovery, toxicity testing and regenerative medicine applications. Leveraging technology that can be used to create induced pluripotent stem cells (iPSCs) and differentiated tissue-specific cells from any individual, FCDI is committed to advancing life science research and transforming the therapeutic development process in order to fundamentally improve human health. The companys inventoried iCell products and donor-specific MyCell Products are available in the quantity, quality, purity and reproducibility required for drug and cell therapy development. For more information, please visit: http://www.FujifilmCDI.com

FUJIFILM Holdings Corporation, Tokyo, Japan brings cutting-edge solutions to a broad range of global industries by leveraging its depth of knowledge and fundamental technologies developed in its relentless pursuit of innovation. Its proprietary core technologies contribute to the various fields including healthcare, graphic systems, highly functional materials, optical devices, digital imaging and document products. These products and services are based on its extensive portfolio of chemical, mechanical, optical, electronic and imaging technologies. For the year ended March 31, 2018, the company had global revenues of $23.0 billion, at an exchange rate of 106 yen to the dollar. Fujifilm is committed to environmental stewardship and good corporate citizenship. For more information, please visit: http://www.fujifilmholdings.com.

###

All product and company names herein may be trademarks of their registered owners.

Media Contact:

Christine Jackman

Fujifilm

(914) 789-8523

christine.jackman@fujifilm.com

*1 An abbreviation of current Good Manufacturing Practice. Refers to the most recent rules and regulations for manufacturing and quality control of pharmaceuticals and quasi-drugs as determined by the US Food and Drug Administration (FDA).

*2 In January 2017 Cynata executed a license option agreement with FUJIFILM Corporation of Japan for the development and commercialization of certain Cynata technology, including Cynatas lead induced pluripotent stem cell(iPSC)-derived therapeutic mesenchymal stem cell (MSC) product, CYP-001, forgraft-versus-host disease (GvHD). As part of the transaction, Fujifilm acquired an equity position in Cynata through the purchase of 8,088,403 ordinary shares in Cynata, leading to Fujifilm becoming the largest shareholder in the Company with an approximate 9% stake.

View original post here:
FUJIFILM Cellular Dynamics to Establish New Facility for ...

Recommendation and review posted by Bethany Smith

FUJIFILM Cellular Dynamics to Establish New Production …

- Accelerating the practical application of treatments that apply iPS cells towards the early industrialization of regenerative medicine- Making the high quality and highly efficient production of iPS cells a reality

January 4, 2019FUJIFILM Cellular Dynamics, Inc.

FUJIFILM Cellular Dynamics, Inc. (FCDI), a US subsidiary of FUJIFILM Corporation (President: Kenji Sukeno) and a leader in the development and manufacture of human induced pluripotent stem (iPS) cells and tissue-specific cells differentiated from iPS cells, will establish a new cGMP-compliant* production facility with an investment of about 21 million US dollars in order to enhance its production of iPS cells for cell therapy. The facility is scheduled to begin operations during fiscal year ending March 2020.FCDI will use the iPS cells produced at this facility to accelerate development of its regenerative medicine products. In addition, by also conducting contract development and manufacturing of iPS cells and iPS cell-derived differentiated cells, it will expand its business and scale to the industrial stage.

Regenerative medicine is drawing interest as a solution for unmet medical needs. There are high expectations for the practical application of treatments that utilize iPS cells, as these cells possess totipotency and the capacity for infinite reproduction, making it possible to produce a large volume of diverse cells. To fulfill the promise of cell therapy, sophisticated techniques and know-how are required to culture, induce differentiation in, and control the quality of cells.

FCDI will be establishing a new production facility equipped with cell culture facilities appropriate for the production of a large volume of cells, as well as culture facilities appropriate for small-scale, diverse production, and a system capable of highly precise cell quality analyses. By also harnessing world-class technologies for the initialization and induction of differentiation in iPS cells and Fujifilm's advanced engineering technology and image analysis technology, the facility will be capable of efficiently producing high-quality iPS cells.Going forward, FCDI will use the high-quality iPS cells produced at this facility to accelerate the development of regenerative medicine products in the areas of age-related macular degeneration, retinitis pigmentosa, Parkinson's disease, heart diseases, and cancer. FCDI will also contribute to the realization and spread of treatments that utilize iPS cells by widely conducting the contract development and manufacturing of iPS cells and iPS cell-derived differentiated cells.

Currently, FCDI provides iPS cells and iPS cell-derived differentiated cells to public institutions, major pharmaceutical companies, and academia including the California Institute for Regenerative Medicine** and the National Heart, Lung, and Blood Institute*** while accelerating the development of its regenerative medicine products. FCDI will continue to harness its accumulated data, technologies, and know-how related to iPS cells, working together with academic institutions and corporations around the world and utilize the technologies and know-how of Fujifilm group companies including Fujifilm, Japan Tissue Engineering Co., Ltd., FUJIFILM Wako Pure Chemical Corporation, and Irvine Scientific Sales Company, Inc. to further expand its iPS cell-based business and contribute to the elevation of regenerative medicine business to the industrial stage.

Overview of the New Facility

View post:
FUJIFILM Cellular Dynamics to Establish New Production ...

Recommendation and review posted by Bethany Smith

Male Hypogonadism – Causes, Symptoms, Diagnosis, Treatment

Male hypogonadism is a condition in which your body does not produce enough of the testosterone hormone; the hormone that plays a key role in masculine growth and development during puberty, mental cognition or has an impaired ability to produce sperm or both. Clinically low testosterone levels can lead to the absence of secondary sex characteristics, infertility, muscle wasting, and other abnormalities.

You may be born with male hypogonadism, or it can develop later in life, often from injury or infection. Low testosterone levels may be due to testicular, hypothalamic, or pituitary abnormalities. The effects of male hypogonadism and what you can do about them depend on the cause and at what point in your life male hypogonadism occurs. Some types of male hypogonadism can be treated with testosterone replacement therapy.

Male hypogonadism can significantly reduce the quality of your life and has resulted in the loss of livelihood and separation of couples, leading to divorce. It is also important for you to recognize that testosterone is not just a sex hormone. There is an important research being published to demonstrate that testosterone may have key actions on metabolism, on the vasculature, and on brain function, in addition to its well-known effects on bone and body composition.

Male hypogonadism is a common condition in the male population, with a higher prevalence in older men, obese men, and men with type 2 diabetes. If you are concerned about your testosterone levels It is important to talk to doctor about ways to manage.

The pituitary gland is a tiny organ, the size of a pea, found at the base of the brain and is often referred to as the master gland. As the master gland of the body, thepituitary gland produces and stores manydifferent hormones that travel throughout your body, directing certain processes or stimulating other glands to produce other hormones.

The following hormones are made in the anterior (front part) of the pituitary gland:

The back part of the pituitary gland is called the posterior pituitary. It produces the following two hormones:

When the pituitary gland doesnt operate in a healthy manner, this can lead to pituitary disorders.

Hormones are essential to reproductive health in all aspects of a mans sexual life. The hypothalamus and pituitary gland are located at the base of the brain, and they work together to release hormones luteinizing hormone (LH) and follicle stimulating hormone (FSH) that stimulate the testes to produce testosterone and sperm. Testosterone, the main male hormone, helps maintain sex drive; vitality; sperm production; facial, pubic, and body hair; muscle; and bone.

In men, important health issues related to hormonal imbalances or deficiencies include:

These conditions are often, but not always, related to each other.

Testosterone is the most important sex hormone that men have. Throughout mens lifespan, testosterone plays a critical role in sexual, cognitive, and body development. During fetal development, testosterone aids in the determination of sex. The most visible effects of rising testosterone levels begin in the prepubertal stage. During this time, body odor develops, oiliness of the skin and hair increase, acne develops, accelerated growth spurts occur, and pubic, early facial, and axillary hair grows. In men, the pubertal effects include enlargement of the sebaceous glands, penis enlargement, increased libido, increased frequency of erections, increased muscle mass, deepening of voice, increased height, bone maturations, loss of scalp hair, and growth of facial, chest, leg, and axillary hair. Even as adults, the effects of testosterone are visible as libido, penile erections, aggression, and mental and physical energy.

Testosterone also helps maintain sex drive, sperm production, and bone health. The brain and pituitary gland (a small gland at the base of the brain) control the production of testosterone by the testes.

In the short term, low testosterone (also called hypogonadism) can cause:

Over time, low testosterone may cause a man to lose body hair, muscle bulk, and strength and to gain body fat. Chronic (long-term) low testosterone may also cause weak bones (osteoporosis), mood changes, less energy, and smaller testes. Signs and symptoms (what you see and feel) vary from person to person.

Testosterone therapy is only recommended for hypogonadism patients. Boosting testosterone is NOT approved by the US Food and Drug Administration (FDA) to help improve your strength, athletic performance, physical appearance, or to treat or prevent problems associated with aging. Using testosterone for these purposes may be harmful to your health.

You should NOT receive testosterone therapy if you have:

Low testosterone can result from:

Low testosterone is common in older men. In many cases, the cause is not known.

During a physical exam, your doctor will examine your body hair, size of your breasts and penis, and the size and consistency of the testes and scrotum. Your doctor may check for loss of side vision, which could indicate a pituitary tumor, a rare cause of low testosterone.

Your doctor will also use blood tests to see if your total testosterone level is low. The normal range is generally 300 to 1,000 ng/dL, but this depends on the lab that conducts the test. To get a diagnosis of low testosterone, you may need more than one early morning (710 AM) blood test and, sometimes, tests of pituitary gland hormones.

If you have symptoms of low testosterone, your doctor may suggest that you talk with an endocrinologist. This expert in hormones can help find the cause. Be open with your doctor about your medical history, all prescription and nonprescription drugs you are now taking, sexual problems, and any major changes in your life.

Testosterone replacement therapy can improve sexual interest, erections, mood and energy, body hair growth, bone density, and muscle mass. There are several ways to replace testosterone:

The best method will depend on your preference and tolerance, and the cost.

There are risks with long-term use of testosterone. The most serious possible risk is prostate cancer. African American men, men over 40 years of age who have close relatives with prostate cancer, and all men over 50 years of age need monitoring for prostate cancer during testosterone treatment. Men with known or suspected prostate cancer, or with breast cancer, should not receive testosterone treatment.

Other possible risks of testosterone treatment include:

Figure 1. The pituitary gland location

Figure 2. The hypothalamus and pituitary gland (anterior and posterior) endocrine pathways and target organs

Figure 3. Male reproductive system

Figure 4. Testicle anatomy (normal)

The cerebral cortex the layer of the brain often referred to as the gray matter is the most highly developed portion of the human brain. This portion of the brain, encompassing about two-thirds of the brain mass, is responsible for the information processing in the brain. It is within this portion of the brain that testosterone production begins. The cerebral cortex signals the hypothalamus to stimulate production of testosterone. To do this, the hypothalamus releases the gonadotropin-releasing hormone (GnRH) in a pulsatile fashion, which stimulates the pituitary gland the portion of the brain responsible for hormones involved in the regulation of growth, thyroid function, blood pressure, and other essential body functions. Once stimulated by the gonadotropin-releasing hormone (GnRH), the pituitary gland produces the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH). Once released into the bloodstream, the luteinizing hormone (LH) triggers activity in the Leydig cells in the testes. In the Leydig cells, cholesterol is converted to testosterone. When the testosterone levels are sufficient, the pituitary gland slows the release of the luteinizing hormone via a negative feedback mechanism, thereby, slowing testosterone production. With such a complex process, many potential problems can lead to low testosterone levels. Any changes in the testicles, hypothalamus or pituitary gland can result in hypogonadism. Such changes can be congenital or acquired, temporary, or permanent.

Recent studies have found that testosterone production slowly decreases as a result of aging, although the rate of decline varies. Unlike women who experience a rapid decline in hormone levels during menopause, men experience a slow, continuous decline over time. The Baltimore Longitudinal Study of Aging reported that approximately 20% of men in their 60s and 50% of men in their 80s are hypogonadal 1). The New Mexico Aging Process Study showed a decrease in serum testosterone of 110 ng/dL every 10 years 2). As testosterone hormone levels decline slowly, this type of hypogonadism is sometimes referred to as the partial androgen deficiency of the aging male (PADAM). With the growing elderly population, the incidence of partial androgen deficiency of the aging male may increase over the next few decades.

Regardless of the age or comorbid conditions, obesity is associated with hypogonadism 3). The Baltimore Longitudinal Study of Aging found that testosterone decreased by 10 ng/dL per 1-kg/m2 increase in body mass index 4). Another study also showed reduced testosterone levels in men with increased total abdominal adiposity 5). The proposed causes for the effects of obesity on testosterone level include increased clearance or aromatization of testosterone in the adipose tissue and increased formation of inflammatory cytokines, which hinder the secretion of the gonadotropin-releasing hormone 6). Similar to the projections for an aging population, the increasing incidence of obesity may lead to an increased incidence of secondary male hypogonadism. When the risk factors of obesity and age are removed, diabetes mellitus still remains an independent risk factor for male hypogonadism. Although diabetes mellitusrelated hypogonadism was previously thought to be associated with testicular failure, study results show one-third of diabetic men had low testosterone levels, but also had low pituitary hormone levels 7). Population projections expect the number of cases of diabetes mellitus to rise from 171 million in 2000 to 366 million in 2030 8). This drastic increase in cases will impact the prevalence of male hypogonadism as well. Certain medications are shown to reduce testosterone production. Among the medications known to alter the hypothalamic-pituitary-gonadal axis are spironolactone, corticosteroids, ketoconazole, ethanol, anticonvulsants, immunosuppressants, opiates, psychotropic medications, and hormones 9).

The complications of untreated hypogonadism differ depending on what age it first develops during fetal development, puberty or adulthood.

A baby may be born with:

Pubertal development can be delayed or incomplete, resulting in:

Complications may include:

Male hypogonadism means the testicles dont produce enough of the male sex hormone testosterone.

There are two basic types of male hypogonadism that exist:

Common causes of primary hypogonadism include:

This condition results from a congenital abnormality of the sex chromosomes, X and Y. A male normally has one X and one Y chromosome. In Klinefelters syndrome, two or more X chromosomes are present in addition to one Y chromosome (46,XXY). The Y chromosome contains the genetic material that determines the sex of a child and the related development. The extra X chromosome that occurs in Klinefelters syndrome causes abnormal development of the testicles, which in turn results in the underproduction of testosterone.

Before birth, the testicles develop inside the abdomen and normally move down into their permanent place in the scrotum. Sometimes, one or both of the testicles may not descend at birth. This condition often corrects itself within the first few years of life without treatment. If not corrected in early childhood, it may lead to malfunction of the testicles and reduced production of testosterone.

If a mumps infection involving the testicles in addition to the salivary glands (mumps orchitis) occurs during adolescence or adulthood, long-term testicular damage may occur. This may affect normal testicular function and testosterone production.

Too much iron in the blood can cause testicular failure or pituitary gland dysfunction, affecting testosterone production.

Because of their location outside the abdomen, the testicles are prone to injury. Damage to normally developed testicles can cause male hypogonadism. Damage to one testicle may not impair testosterone production.

Chemotherapy or radiation therapy for the treatment of cancer can interfere with testosterone and sperm production. The effects of both treatments are often temporary, but permanent infertility may occur. Although many men regain their fertility within a few months after the treatment ends, preserving sperm before starting cancer therapy is an option that many men consider. Howell et al. 10) reported that hypogonadism was seen in 30% of the men with cancer and 90% of these gentlemen had germinal epithelial failure.

Older men generally have lower testosterone levels than younger men do. As men age, theres a slow and continuous decrease in testosterone production. The rate that testosterone declines varies greatly among men. As many as 30% of men older than 75 have a testosterone level that is below normal, according to the American Association of Clinical Endocrinologists. Whether or not treatment is necessary remains a matter of debate 11).

In secondary hypogonadism, the testicles are normal, but function improperly due to a problem with the pituitary or hypothalamus. A number of conditions can cause secondary hypogonadism, including:

Abnormal development of the hypothalamus the area of the brain that controls the secretion of pituitary hormones can cause hypogonadism. This abnormality is also associated with the impaired development of the ability to smell (anosmia) and red-green color blindness.

An abnormality in the pituitary gland can impair the release of hormones from the pituitary gland to the testicles, affecting normal testosterone production. A pituitary tumor or other type of brain tumor located near the pituitary gland may cause testosterone or other hormone deficiencies. Also, the treatment for a brain tumor such as surgery or radiation therapy may impair pituitary function and cause hypogonadism.

Certain inflammatory diseases such as sarcoidosis, histiocytosis, and tuberculosis involve the hypothalmus and pituitary gland and can affect testosterone production, causing hypogonadism.

This virus can cause low levels of testosterone by affecting the hypothalamus, the pituitary, and the testes.

The use of certain drugs, such as, opiate pain medications and some hormones, can affect testosterone production 12).

Being significantly overweight at any age may be linked to hypogonadism.

Stress, excessive physical activity, and weight loss have all been associated with hypogonadism. Some have attributed this to stress-induced hypercortisolism, which would suppress hypothalamic function 13).

Risk factors for hypogonadism include:

Hypogonadism can be inherited. If any of these risk factors are in your family health history, tell your doctor.

Male hypogonadism is characterized by serum testosterone levels

Adulthood Male hypogonadism is a combination of low testosterone levels and the presence of any of these symptoms:

Hypogonadism can also cause mental and emotional changes. As testosterone decreases, some men may experience symptoms similar to those of menopause in women. These may include:

Hypogonadism can also begin during fetal development or before puberty. Signs and symptoms depend on when the condition develops.

Fetal development

If the body doesnt produce enough testosterone during fetal development, the result may be impaired growth of the external sex organs. Depending on when hypogonadism develops and how much testosterone is present, a child who is genetically male may be born with:

Puberty

Male hypogonadism may delay puberty or cause incomplete or lack of normal development. It can cause:

Your doctor will conduct a physical exam during which he or she will note whether your sexual development, such as your pubic hair, muscle mass and size of your testes, is consistent with your age. Your doctor may test your blood level of testosterone if you have any of the signs or symptoms of male hypogonadism.

Early detection in boys can help prevent problems from delayed puberty. Early diagnosis and treatment in men offer better protection against osteoporosis and other related conditions.

Doctors base a diagnosis of male hypogonadism on symptoms and results of blood tests that measure testosterone levels. Because testosterone levels vary and are generally highest in the morning, blood testing is usually done early in the day, before 10 a.m.

If tests confirm you have low testosterone, further testing can determine if a testicular disorder or a pituitary abnormality is the cause. Based on specific signs and symptoms, additional studies can pinpoint the cause. These studies may include:

Testosterone testing also plays an important role in managing male hypogonadism. This helps your doctor determine the right dosage of medication, both initially and over time.

Treatment for male hypogonadism depends on the cause and whether youre concerned about fertility.

Hormone replacement. For hypogonadism caused by testicular failure, doctors use male hormone replacement therapy (testosterone replacement therapy). Testosterone replacement therapy can restore muscle strength and prevent bone loss. In addition, men receiving testosterone replacement therapy may experience an increase in energy, sex drive, erectile function and sense of well-being. Testosterone replacement therapy is safe and can be effective for men who are diagnosed with consistently abnormal low testosterone production and symptoms that are associated with this type of androgen (hormone) deficiency.

While testosterone replacement therapy is the primary treatment option some conditions that cause hypogonadism are reversible without testosterone therapy. These should be addressed before testosterone therapy is contemplated. If testosterone therapy is needed, goal of treatment is to improve symptoms associated with testosterone deficiency and maintain sex characteristics. There are many different types of testosterone therapy. You should discuss the different options with your physician your partner in care to find out which therapy is right for you.

If a pituitary problem is the cause, pituitary hormones may stimulate sperm production and restore fertility. Testosterone replacement therapy can be used if fertility isnt an issue. A pituitary tumor may require surgical removal, medication, radiation or the replacement of other hormones.Assisted reproduction. Although theres often no effective treatment to restore fertility in a man with primary hypogonadism, assisted reproductive technology may be helpful. This technology covers a variety of techniques designed to help couples who have been unsuccessful in achieving conception.

In boys, testosterone replacement therapy can stimulate puberty and the development of secondary sex characteristics, such as increased muscle mass, beard and pubic hair growth, and growth of the penis. Pituitary hormones may be used to stimulate testicle growth. An initial low dose of testosterone with gradual increases may help to avoid adverse effects and more closely mimic the slow increase in testosterone that occurs during puberty.

Testosterone replacement therapy is the primary treatment option for hypogonadism. Ideally, the therapy should provide physiological testosterone levels, typically in the range of 300 to 800 ng/dL. According to the guidelines from the American Association of Clinical Endocrinologists 15), the goals of therapy are to:

To achieve these goals, several testosterone delivery systems are currently available in the market. Clinical guidelines published in 2006, by the Endocrine Society 17), recommend reserving treatment for those patients with clinical symptoms, rather than for those with just low testosterone levels.

Method of treatment depends on the cause of low testosterone, the patients preferences, cost, tolerance, and concern about fertility.

Oral Tablets

Oral testosterone tablets, under the brand name Andriol, are available in other countries. Android and Testroid both methyl testosterone products are FDA approved oral formulations.

Although relatively inexpensive, oral products undergo extensive first-pass metabolism and therefore require multiple daily doses. Oral products are associated with elevated liver enzymes, GI intolerance, acne, and gynecomastia. Regardless of the treatment option, patients should be aware of the risks associated with testosterone therapy, including:

Patients should be educated on the signs and symptoms of these adverse effects and instructed to notify their doctor if any of these occur.

There is no firm scientific evidence that long-term testosterone replacement is associated with either prostate cancer or cardiovascular events. Recent research also suggests testosterone therapy might increase your risk of a heart attack. The FDA requires that you are made aware that the possibility of cardiovascular events may exist during treatment. Prostate cells are stimulated by testosterone, so be extra vigilant about cancer screenings. African American men over age 45 especially those with family history of cancer are already at risk for prostate cancer.

Read the original here:
Male Hypogonadism - Causes, Symptoms, Diagnosis, Treatment

Recommendation and review posted by Bethany Smith

What is a Bone Marrow Transplant (Stem Cell Transplant …

A bone marrow transplant, also called a stem cell transplant, is a treatment for some types of cancer. For example, you might have one if you have leukemia, multiple myeloma, or some types of lymphoma. Doctors also treat some blood diseases with stem cell transplants.

In the past, a stem cell transplant was more commonly called a bone marrow transplant because the stem cells were collected from the bone marrow. Today, stem cells are usually collected from the blood, instead of the bone marrow. For this reason, they are now often called stem cell transplants.

A part of your bones called bone marrow makes blood cells. Marrow is the soft, spongy tissue inside bones. It contains cells called hematopoietic stem cells (pronounced he-mah-tuh-poy-ET-ick). These cells can turn into several other types of cells. They can turn into more bone marrow cells. Or they can turn into any type of blood cell.

Certain cancers and other diseases keep hematopoietic stem cells from developing normally. If they are not normal, neither are the blood cells that they make. A stem cell transplant gives you new stem cells. The new stem cells can make new, healthy blood cells.

The main types of stem cell transplants and other options are discussed below.

Autologous transplant. This is also called an AUTO transplant or high-dose chemotherapy with autologous stem cell rescue.

In an AUTO transplant, you get your own stem cells after doctors treat the cancer. First, your health care team collects stem cells from your blood and freezes them. Next, you have powerful chemotherapy, and rarely, radiation therapy. Then, your health care team thaws your frozen stem cells. They put them back in your blood through a tube placed in a vein (IV).

It takes about 24 hours for your stem cells to reach the bone marrow. Then they start to grow, multiply, and help the marrow make healthy blood cells again.

Allogeneic transplantation. This is also called an ALLO transplant.In an ALLO transplant, you get another persons stem cells. It is important to find someone whose bone marrow matches yours. This is because you have certain proteins on your white blood cells called human leukocyte antigens (HLA). The best donor has HLA proteins as much like yours as possible.

Matching proteins make a serious condition called graft-versus-host disease (GVHD) less likely. In GVHD, healthy cells from the transplant attack your cells. A brother or sister may be the best match. But another family member or volunteer may also work.

Once you find a donor, you receive chemotherapy with or without radiation therapy. Next, you get the other persons stem cells through a tube placed in a vein (IV). The cells in an ALLO transplant are not typically frozen. This way, your doctor can give you the cells as soon as possible after chemotherapy or radiation therapy.

There are 2 types of ALLO transplants. The best type for each person depends on his or her age, health, and the type of disease being treated.

Ablative, which uses high-dose chemotherapy

Reduced intensity, which uses milder doses of chemotherapy

If your health care team cannot find a matched adult donor, there are other options. Research is ongoing to determine which type of transplant will work best for different people.

Umbilical cord blood transplant. This may be an option if you cannot find a donor match. Cancer centers around the world use cord blood.

Parent-child transplant and haplotype mismatched transplant. These types of transplants are being used more often. The match is 50%, instead of near 100%. Your donor might be a parent, child, brother, or sister.

Your doctor will recommend an AUTO or ALLO transplant based mostly on the disease you have. Other factors include the health of your bone marrow and your age and general health. For example, if you have cancer or other disease in your bone marrow, you will probably have an ALLO transplant. In this situation, doctors do not recommend using your own stem cells.

Choosing a transplant is complicated. You will need help from a doctor who specializes in transplants. You might need to travel to a center that does many stem cell transplants. Your donor might also need to go. At the center, you will talk with a transplant specialist and have an examination and medical tests.

Before a transplant, you should also think about non-medical factors. These include:

Who can care for you during treatment

How long you will be away from work and family responsibilities

If your insurance pays for the transplant

Who can take you to transplant appointments

Your health care team can help you find answers to these questions.

The information below tells you the main parts of AUTO and ALLO transplants. Your health care team usually does the steps in order. But sometimes certain steps happen in advance, such as collecting stem cells. Ask your health care team what to expect before, during, and after a transplant.

Part 1: Collecting your stem cells

During this part, you get injections of a medication to raise your number of stem cells.Your doctor may collect stem cells through your veins using standard IVs or a catheter, which is placed in a large vein in the chest. This stays in place throughout your stay at the hospital. The catheter is used to give chemotherapy, other medications, and blood transfusions.

Time: Several days

Where it is done: Clinic or hospital building. You do not need to stay in the hospital overnight.

Part 2: Transplant treatment

You get high doses of chemotherapy, and rarely, radiation therapy.

Time: 5 to 10 days

Where it is done: A clinic or hospital. At many transplant centers, people need to stay in the hospital for the duration of the transplant, usually about 3 weeks. At some centers, a person receives treatment in the clinic and can come in every day.

Part 3: Getting your stem cells back

This part is called the stem cell infusion. Your health care team puts your stem cells back in your blood through the transplant catheter.

Time: Each infusion usually takes less than 30 minutes. You may receive more than 1 infusion.

Where it is done: A clinic or hospital.

Part 4: Recovery

You take antibiotics and other drugs. You get blood transfusions through your transplant catheter, if needed. This is also when your health care team helps with any transplant side effects.

Time: Approximately 2 weeks

Where it is done: A clinic or hospital. You might be staying in the hospital.

Part 1: Collecting stem cells from your donor

During this part, the health care team gives your donor injections of a medication to increase white cells in the blood, if the cells are collected from blood. Some donors will donate bone marrow in the operating room during a procedure which takes several hours.

Time: Varies based on how the stem cells are collected

Where it is done: A clinic or hospital

Part 2: Transplant treatment

You get chemotherapy with or without radiation therapy.

Time: 5 to 7 days

Where it is done: Many ALLO transplants are done in the hospital.

Part 3: Getting the donor cells

This part is called the stem cell infusion. Your health care team puts the donors stem cells in your blood through the transplant catheter. It takes less than 1 hour. The transplant catheter stays in until after treatment.

Time: 1 day

Where it is done: A clinic or hospital

Part 4: Recovery

During the recovery, you receive antibiotics and other drugs. This includes medications to prevent graft-versus-host disease. If needed, you get blood transfusions through your catheter. This is also when your health care team takes care of any side effects from the transplant.

After the transplant, people visit the clinic frequently at first and less often over time.

Time: It varies.For an ablative transplant, people are usually in the hospital for about 4 weeks in total.For a reduced intensity transplant, people are in the hospital or visit the clinic daily for about a week.

The words successful transplant might mean different things to you, your family, and your health care team. Below are 2 ways to measure transplant success: Your blood counts are back to safe levels. A blood count is the number of red cells, white cells, and platelets in your blood. A transplant makes these numbers very low for 1 to 2 weeks. This causes risks of:

Infection from low numbers of white cells, which fight infections

Bleeding from low numbers of platelets, which stop bleeding

Tiredness from low numbers of red cells, which carry oxygen

Doctors lower these risks by giving blood and platelet transfusions after a transplant. You also take antibiotics to help prevent infections. When the new stem cells multiply, they make more blood cells. Then your blood counts improve. This is one way to know if a transplant is a success.

It controls your cancer. Doctors do stem cell transplants with the goal of curing disease. A cure may be possible for some cancers, such as some types of leukemia and lymphoma. For other people, remission is the best result. Remission is having no signs or symptoms of cancer. After a transplant, you need to see your doctor and have tests to watch for any signs of cancer or complications from the transplant.

Talking often with your health care team is important. It gives you information to make decisions about your treatment and care. The following questions may help you learn more about stem cell transplant:

Which type of stem cell transplant would you recommend? Why?

If I will have an ALLO transplant, how will we find a donor? What is the chance of a good match?

What type of treatment will I have before the transplant? Will radiation therapy be used?

How long will my treatment take? How long will I stay in the hospital?

How will a transplant affect my life? Can I work? Can I exercise and do regular activities?

How will we know if the transplant works?

What if the transplant does not work? What if the cancer comes back?

What are the short-term side effects that may happen during treatment or shortly after?

What are the long-term side effects that may happen years later?

What tests will I need later? How often will I need them?

If I am worried about managing the costs of treatment, who can help me with these concerns?

Side Effects of a Bone Marrow Transplant (Stem Cell Transplant)

Bone Marrow Aspiration and Biopsy

Donating Bone Marrow is Easy and Important: Here's Why

How Umbilical Cord BloodCan Save Someone's Life

Bone Marrow Transplants and Older Adults: 3 Important Questions

Be the Match: About Transplant

Be the Match: National Marrow Donor Program

Blood & Marrow Transplant Information Network (BMT InfoNet) National Bone Marrow Transplant Link (nbmtLINK)

U.S. Department of Health and Human Services: Learn About Transplant as a Treatment Option

Go here to read the rest:
What is a Bone Marrow Transplant (Stem Cell Transplant ...

Recommendation and review posted by Bethany Smith

Bone Marrow & Stem Cell Transplant | IU Health

To prepare your body for bone marrow or stem cell transplant, youll be treated with high doses of chemotherapy with or without radiation to destroy cancerous cells. Some healthy cells may also be destroyed, which can cause unpleasant side effects. These side effects typically go away after a few weeks.

Once this preparation is complete, new stem cells will be transplanted through your veins and the cells will make their way to your bone marrow. These stem cells will mature into healthy marrow, to produces healthy blood and immune cells.

Stem cells transplants can come from your own bone marrow (autologous) or a donors marrow (allogeneic). Whether autologous or allogeneic stem cells are used depends on your condition, and the procedures have some differences.

Uses your own stem cells. Before chemotherapy, your stem cells are collected by apheresis, frozen with a preservative and stored until they are needed. Because the cells are yours, theres no risk of your body rejecting the transplanted stem cells. This method is appropriate for blood-related cancers like multiple myeloma, non-Hodgkin lymphomas and Hodgkin disease, as well as certain germ-cell cancers.

Use healthy cells from a donor, when an immunological effect is needed to fight your cancer. Your donor will usually be a sibling or a strong match from the national registry. If a matched sibling or unrelated donor cannot be found, cord blood stem cells or a mismatched relative donor may be used.

The donors stem cells are collected by apheresis or from the bone marrow in a surgical procedure. Youll need to take medicines to suppress your immune system to prevent rejection and keep the donors immune cells from attacking your normal cells. Donor-cell transplant is used to treat blood-related cancers like leukemias and some lymphomas or multiple myeloma, and bone marrow failure disorders like myelodysplastic syndrome and aplastic anemia.

Follow this link:
Bone Marrow & Stem Cell Transplant | IU Health

Recommendation and review posted by Bethany Smith

Apple Stem Cells – The Anti-Aging skin care ingredient …

What are Stem Cells?

Stem cells are super unique in that they have the ability to go through numerous cycles and cell divisions while maintaining the undifferentiated state. Primarily, stem cells are capable of self-renewal and can transform themselves into other cell types of the same tissue. Their crucial role is to replenish dying cells and regenerate damaged tissue. Stem cells have a limited life expectation due to environmental and intrinsic stress factors. Because their life is endangered by internal and external stresses, stem cells have to be protected and supported to delay preliminary aging. In aged bodies, the number and activity of stem cells in reduced.

Until several years ago, the tart, unappealing breed of the Swiss-grown Uttwiler Sptlauber apples, did not seem to offer anything of value. That was until Swiss scientists discovered the unusual longevity of the stem cells that kept these apples alive months after other apples shriveled and fell off their trees. In the rural region of Switzerland, home of these magical apples, it was discovered that when the unpicked apples or tree bark was punctured, Swiss Apple trees have the ability to heal themselves and last longer than other varieties. What was the secret to these apples prolonged lives?

Proven to Diminish the Signs of Aging

These scientists got to work to find out. What they revealed was that apple stem cells work just like human stem cells, they work to maintain and repair skin tissue. The main difference is that unlike apple stem cells, skin stem cells do not have a long lifespan, and once they begin depleting, the signs of aging start kicking in (in the forms of loose skin, wrinkles, the works). Time to harness these apple stem cells into anti aging skin care! Not so fast. As mentioned, Uttwiler Sptlauber apples are now very rare to the point that the extract can no longer be made in a traditional fashion. The great news is that scientists developed a plant cell culture technology, which involves breeding the apple stem cells in the laboratory.

Human stem cells on the skins epidermis are crucial to replenish the skin cells that are lost due to continual shedding. When epidermal stem cells are depleted, the number of lost or dying skin cells outpaces the production of new cells, threatening the skins health and appearance.

Like humans, plants also have stem cells. Enter the stem cells of the Uttwiler Sptlauber apple tree, whose fruit demonstrates an exceptionally long shelf-life. How can these promising stem cells help our skin?

Studies show that apple stem cells boosts production of human stem cells, protect the cell from stress, and decreases wrinkles. How does it work? The internal fluid of these plant cells contains components that help to protect and maintain human stem cells. Apple stem cells contain metabolites to ensure longevity as the tree is known for the fact that its fruit keep well over long periods of time.

When tested in vitro, the apple stem cell extract was applied to human stem cells from umbilical cords and was found to increase the number of the stem cells in culture. Furthermore, the addition of the ingredient to umbilical cord stem cells appeared to protect the cells from environmental stress such as UV light.

Apple stem cells do not have to be fed through the umbilical cord to benefit our skin! The extract derived from the plant cell culture technology is being harnessed as an active ingredient in anti aging skincare products. When delivered into the skin nanotechnology, the apple stem cells provide more dramatic results in decreasing lines, wrinkles, and environmental damage.

Currently referred to as The Fountain of Youth, intense research has proved that with just a concentration level of 0.1 % of the PhytoCellTec (apple stem cell extract) could proliferate a wealth of human stem cells by an astounding 80%! These wonder cells work super efficiently and are completely safe. Of the numerous benefits of apple stems cells, the most predominant include:

See the original post here:
Apple Stem Cells - The Anti-Aging skin care ingredient ...

Recommendation and review posted by Bethany Smith

CRISPR | MIT News

Enzyme can target almost half of the genomes ZIP codes and could enable editing of many more disease-specific mutations.

McGovern Institute scientist is recognized with award for outstanding and creative achievements made in the life and medical sciences.

Whitehead team deploys CRISPR tools to better understand and uncover ways of improving methotrexate, a popular chemotherapy drug.

A new daughter helped Alejandra Falla PhD 18 gain perspective on life and her tiny MIT regalia stole the show at Commencement.

Study reveals why people with the APOE4 gene have higher risk of the disease.

With SHERLOCK, a strip of paper can now indicate presence of pathogens, tumor DNA, or any genetic signature of interest.

Whitehead Institute researchers are using a modified CRISPR/Cas9-guided activation strategy to investigate the most frequent cause of intellectual disability in males.

Department of Biology kicks off IAP seminar series with a lecture by synthetic-biology visionary George Church.

New delivery system developed by MIT team deletes disease-causing genes and reduces cholesterol.

REPAIR system edits RNA, rather than DNA; has potential to treat diseases without permanently affecting the genome.

Biological engineers identify genes that protect against protein linked to Parkinsons disease.

MIT associate professor and member of the Broad Institute and McGovern Institute recognized for commitment to invention, collaboration, and mentorship.

Five recipients honored for their fundamental and complementary accomplishments related to CRISPR-Cas9.

Mark Bathe develops molecular packages for targeted delivery of drugs, vaccines, and gene-editing tools.

Red, green, and blue light can be used to control gene expression in engineered E. coli.

SDSCon 2017 gathers community and showcases research projects that apply data science to major systems and issues.

Introducing genetic mutations with CRISPR offers a fast and accurate way to simulate the disease.

New system adapts tool known for gene editing; to be used in rapid, inexpensive disease diagnosis.

MIT professor and NAS report committee co-chair Richard Hynes gives insight into the reports recommendations.

Charles Jennings of MITs McGovern Institute discusses the intellectual property dispute over the gene-editing technique.

Original post:
CRISPR | MIT News

Recommendation and review posted by Bethany Smith

Crispr Babies, IVF, and the Ethics of Genetic Class Warfare …

Last month, Chinese national He Jiankui flouted a vigorous scientific debate when he told a room full of scientists that he had manipulated the embryos of Chinese twins, using Crispr, and made one resistant to their fathers HIV. He announced to the group that the twins of the experiment had already been born.

The big reveal was ethically dubious at best. He never went through proper channels to get his experiment approved. The scientist is being condemned by his contemporaries for ignoring universally respected protocol and forgoing peer research. In The Washington Post, Eileen Hunt Botting wrote that Hes experiment had no moral or scientific justification, given that the medical profession can successfully prevent fathers from transmitting HIV without genetic engineering. Botting went on to compare Hes experiment to popular science fiction: However extreme their scenarios, both Gattaca and Frankenstein remind us that all children are vulnerable to discrimination based on factors beyond their controlincluding circumstances shaped by artificial reproductive technology.

Collier Meyerson is an Ideas contributor at WIRED. She was awarded an Emmy for her work on MSNBC's All In with Chris Hayes and two awards for her reporting from the National Association of Black Journalists. She is a contributing editor at New York Magazine, and maintains the Nobler Fellowship at The Nation Institute.

It's easy to fear this kind of procedure: follow embryonic gene editing to its logical conclusion and well end up with a society dramatically altered through eugenics, with generations of people engineered to fit a single vision of perfection. Its an unequivocally scary prospect. (Also, those people would be boring in their uniformity, and no sane person wants a world full of cogs.)

When we think about genetic engineering, we tend to think in absolute termsa black-and-white stance with a barrier that, once crossed, leads to the downfall of civilization as we know it. In reality, we make genetic decisions all the time, in ways that are already subtly altering the people who make up society. It might seem strange to group Hes experiment alongside the more common genetic procedures parents use to ensure their offspring don't inherit diseases. Yet both exist within a system in whichgenerallyonly the economically privileged are able to pay for treatment to alter the traits that their offspring will and wont inherit. The danger isn't in the procedure itself, but who has access to this type of medicineand right now that group is limited to those who can pay.

Suspend your belief in moral absolutism for just a moment. There is a universe in which the eugenics He practiced are actually a good idea. When we think of scientific eugenics, like in the movies, its generally of the nonessential sort, the kind that will work to maintain western European standards of beauty or universal standards of good healthwhite babies with blue eyes, blond hair, and an ability to run 12 marathons a year. But what if the technology were used, in earnest, to create better outcomes for those with a proverbial leg down on the ladder of white supremacy?

In the United States, where black women disproportionately contract HIV, or in eastern and southern Africa, where according to UNICEF half the worlds population with HIV live, breeding immunity into the population could be a good thing. The same thing goes for other possibly deadly diseases like sickle cell anemia, which most severely affects black children.

In practice, use of these techniques is a lot grimmer. The idea that [gene editing] could be rolled out in subsaharan Africa is a fantasy, Hank Greely, a professor who specializes in the ethics of genetics at Stanford, told me. The place where HIV is most prevalent is the place where people have the least access to medical care, he said, explaining that for the foreseeable future the technology will cost a lot of money.

In other places in the world, these kinds of genetic enhancements are already a readily used option. Last year my friend Allison tested positive for the BRCA gene, a mutation that dramatically increases her risk of developing ovarian cancer, breast cancer, or both. When Allison got the test results, it was a hard time, but ultimately she was thankful for the information. Recently Allison and I were discussing whether she would consider using in vitro fertilization to prevent passing the gene onto her children (should she choose to have them).

As far as Allison knows, she doesnt face fertility challenges, so there is no medical need for her to do in vitro. She would be electing to do something called preimplantation genetic diagnosis, a process that allows in vitro specialists to identify which embryos have BRCA and which dont, and then only implant the ones that dont.

My friend told me she doesnt expect to determine the fate of her future child using in vitro. I feel confident that, by the time I have kids who might be dealing with this, there will be other solutions, she said over text. But if her insurance were to cover it, she said shell reconsider.

Skewed access to the kind of treatment Allison considered is already creating a tiered genetic system, according to Judith Daar, a law professor at UC Irvine and author of The New Eugenics. Aside from preimplantation genetic diagnosis, Daar told me that lack of access to IVF has revived early-20th-century eugenics ideas that some are better fit to reproduce than others. Current law and policy surrounding IVFwhere some are given access to expensive treatments while, for others, they remain out of reachare tantamount to a new eugenics, she says, because they enable demographic features likes socioeconomic status, race, ethnicity, marital status, sexual orientation, and disability to suppress access to reproductive technology.

Though it doesnt involve manipulating embryos, weve already got a version of Hes vision right under our nose. Gene technology is, for the most part, geared toward those who have. Its different, for surethere is no editing, just eliminating embryos deemed undesirable. But traces of the same issue remain: Only some babies will benefit. How to universalize access is the real ethical pursuit.

Correction appended, 12/17/18, 9:35 PM EDT: This story has been updated to correct the spelling of Hank Greely's name.

See the original post here:
Crispr Babies, IVF, and the Ethics of Genetic Class Warfare ...

Recommendation and review posted by Bethany Smith

Androgenetic alopecia – Genetics Home Reference – NIH

A variety of genetic and environmental factors likely play a role in causing androgenetic alopecia. Although researchers are studying risk factors that may contribute to this condition, most of these factors remain unknown. Researchers have determined that this form of hair loss is related to hormones called androgens, particularly an androgen called dihydrotestosterone. Androgens are important for normal male sexual development before birth and during puberty. Androgens also have other important functions in both males and females, such as regulating hair growth and sex drive.

Hair growth begins under the skin in structures called follicles. Each strand of hair normally grows for 2 to 6 years, goes into a resting phase for several months, and then falls out. The cycle starts over when the follicle begins growing a new hair. Increased levels of androgens in hair follicles can lead to a shorter cycle of hair growth and the growth of shorter and thinner strands of hair. Additionally, there is a delay in the growth of new hair to replace strands that are shed.

Although researchers suspect that several genes play a role in androgenetic alopecia, variations in only one gene, AR, have been confirmed in scientific studies. The AR gene provides instructions for making a protein called an androgen receptor. Androgen receptors allow the body to respond appropriately to dihydrotestosterone and other androgens. Studies suggest that variations in the AR gene lead to increased activity of androgen receptors in hair follicles. It remains unclear, however, how these genetic changes increase the risk of hair loss in men and women with androgenetic alopecia.

Researchers continue to investigate the connection between androgenetic alopecia and other medical conditions, such as coronary heart disease and prostate cancer in men and polycystic ovary syndrome in women. They believe that some of these disorders may be associated with elevated androgen levels, which may help explain why they tend to occur with androgen-related hair loss. Other hormonal, environmental, and genetic factors that have not been identified also may be involved.

Read more:
Androgenetic alopecia - Genetics Home Reference - NIH

Recommendation and review posted by Bethany Smith

Cryopreservation – Wikipedia

Cryo-preservation or cryo-conservation is a process where organelles, cells, tissues, extracellular matrix, organs or any other biological constructs susceptible to damage caused by unregulated chemical kinetics are preserved by cooling to very low temperatures[1] (typically 80C using solid carbon dioxide or 196C using liquid nitrogen). At low enough temperatures, any enzymatic or chemical activity which might cause damage to the biological material in question is effectively stopped. Cryopreservation methods seek to reach low temperatures without causing additional damage caused by the formation of ice crystals during freezing. Traditional cryopreservation has relied on coating the material to be frozen with a class of molecules termed cryoprotectants. New methods are constantly being investigated due to the inherent toxicity of many cryoprotectants.[2] By default it should be considered that cryopreservation alters or compromises the structure and function of cells unless it is proven otherwise for a particular cell population. Cryoconservation of animal genetic resources is the process in which animal genetic material is collected and stored with the intention of conservation of the breed.

Water-bears (Tardigrada), microscopic multicellular organisms, can survive freezing by replacing most of their internal water with the sugar trehalose, preventing it from crystallization that otherwise damages cell membranes. Mixtures of solutes can achieve similar effects. Some solutes, including salts, have the disadvantage that they may be toxic at intense concentrations. In addition to the water-bear, wood frogs can tolerate the freezing of their blood and other tissues. Urea is accumulated in tissues in preparation for overwintering, and liver glycogen is converted in large quantities to glucose in response to internal ice formation. Both urea and glucose act as "cryoprotectants" to limit the amount of ice that forms and to reduce osmotic shrinkage of cells. Frogs can survive many freeze/thaw events during winter if no more than about 65% of the total body water freezes. Research exploring the phenomenon of "freezing frogs" has been performed primarily by the Canadian researcher, Dr. Kenneth B. Storey.[citation needed]

Freeze tolerance, in which organisms survive the winter by freezing solid and ceasing life functions, is known in a few vertebrates: five species of frogs (Rana sylvatica, Pseudacris triseriata, Hyla crucifer, Hyla versicolor, Hyla chrysoscelis), one of salamanders (Hynobius keyserlingi), one of snakes (Thamnophis sirtalis) and three of turtles (Chrysemys picta, Terrapene carolina, Terrapene ornata).[3] Snapping turtles Chelydra serpentina and wall lizards Podarcis muralis also survive nominal freezing but it has not been established to be adaptive for overwintering. In the case of Rana sylvatica one cryopreservant is ordinary glucose, which increases in concentration by approximately 19mmol/l when the frogs are cooled slowly.[3]

One of the most important early theoreticians of cryopreservation was James Lovelock. He suggested that damage to red blood cells during freezing was due to osmotic stress. During the early 1950s, Lovelock had also suggested that increasing salt concentrations in a cell as it dehydrates to lose water to the external ice might cause damage to the cell.[4] In the mid-1950s, he experimented with the cryopreservation of rodents, determining that hamsters could be frozen with 60% of the water in the brain crystallized into ice with no adverse effects. Other organs were shown to be susceptible to damage.[5]

Cryopreservation was applied to humans beginning in 1954 with three pregnancies resulting from the insemination of previously frozen sperm.[6] Fowl sperm was cryopreserved in 1957 by a team of scientists in the UK directed by Christopher Polge.[7] However, the rapid immersion of the samples in liquid nitrogen did not, for certain samples such as some types of embryos, bone marrow and stem cells produce the necessary viability to make them usable after thawing. Increased understanding of the mechanism of freezing injury to cells emphasised the importance of controlled or slow cooling to obtain maximum survival on thawing of the living cells. A controlled-rate cooling process, allowing biological samples to equilibrate to optimal physical parameters osmotically in a cryoprotectant (a form of anti-freeze) before cooling in a predetermined, controlled way proved necessary. The ability of cryoprotectants, in the early cases glycerol, to protect cells from freezing injury was discovered accidentally. Freezing injury has two aspects: direct damage from the ice crystals and secondary damage caused by the increase in concentration of solutes as progressively more ice is formed. During 1963, Peter Mazur, at Oak Ridge National Laboratory in the U.S., demonstrated that lethal intracellular freezing could be avoided if cooling was slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. That rate differs between cells of differing size and water permeability: a typical cooling rate around 1C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulphoxide, but the rate is not a universal optimum.[8]

Storage at very low temperatures is presumed to provide an indefinite longevity to cells, although the actual effective life is rather difficult to prove. Researchers experimenting with dried seeds found that there was noticeable variability of deterioration when samples were kept at different temperatures even ultra-cold temperatures. Temperatures less than the glass transition point (Tg) of polyol's water solutions, around 136C (137K; 213F), seem to be accepted as the range where biological activity very substantially slows, and 196C (77K; 321F), the boiling point of liquid nitrogen, is the preferred temperature for storing important specimens. While refrigerators, freezers and extra-cold freezers are used for many items, generally the ultra-cold of liquid nitrogen is required for successful preservation of the more complex biological structures to virtually stop all biological activity.

Phenomena which can cause damage to cells during cryopreservation mainly occur during the freezing stage, and include: solution effects, extracellular ice formation, dehydration and intracellular ice formation. Many of these effects can be reduced by cryoprotectants.Once the preserved material has become frozen, it is relatively safe from further damage. However, estimates based on the accumulation of radiation-induced DNA damage during cryonic storage have suggested a maximum storage period of 1000 years.[9]

The main techniques to prevent cryopreservation damages are a well established combination of controlled rate and slow freezing and a newer flash-freezing process known as vitrification.

Controlled-rate and slow freezing, also known as slow programmable freezing (SPF),[10] is a set of well established techniques developed during the early 1970s which enabled the first human embryo frozen birth Zoe Leyland during 1984. Since then, machines that freeze biological samples using programmable sequences, or controlled rates, have been used all over the world for human, animal and cell biology "freezing down" a sample to better preserve it for eventual thawing, before it is frozen, or cryopreserved, in liquid nitrogen. Such machines are used for freezing oocytes, skin, blood products, embryo, sperm, stem cells and general tissue preservation in hospitals, veterinary practices and research laboratories around the world. As an example, the number of live births from frozen embryos 'slow frozen' is estimated at some 300,000 to 400,000 or 20% of the estimated 3 million in vitro fertilisation (IVF) births.[11]

Lethal intracellular freezing can be avoided if cooling is slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. To minimize the growth of extracellular ice crystal growth and recrystallization,[12] biomaterials such as alginates, polyvinyl alcohol or chitosan can be used to impede ice crystal growth along with traditional small molecule cryoprotectants.[13] That rate differs between cells of differing size and water permeability: a typical cooling rate of about 1C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulfoxide, but the rate is not a universal optimum. The 1C / minute rate can be achieved by using devices such as a rate-controlled freezer or a benchtop portable freezing container.[14]

Several independent studies have provided evidence that frozen embryos stored using slow-freezing techniques may in some ways be 'better' than fresh in IVF. The studies indicate that using frozen embryos and eggs rather than fresh embryos and eggs reduced the risk of stillbirth and premature delivery though the exact reasons are still being explored.

Researchers Greg Fahy and William F. Rall helped to introduce vitrification to reproductive cryopreservation in the mid-1980s.[15] As of 2000, researchers claim vitrification provides the benefits of cryopreservation without damage due to ice crystal formation.[16] The situation became more complex with the development of tissue engineering as both cells and biomaterials need to remain ice-free to preserve high cell viability and functions, integrity of constructs and structure of biomaterials. Vitrification of tissue engineered constructs was first reported by Lilia Kuleshova,[17] who also was the first scientist to achieve vitrification of womans eggs (oocytes), which resulted in live birth in 1999.[18] For clinical cryopreservation, vitrification usually requires the addition of cryoprotectants prior to cooling. The cryoprotectants act like antifreeze: they decrease the freezing temperature. They also increase the viscosity. Instead of crystallizing, the syrupy solution becomes an amorphous iceit vitrifies. Rather than a phase change from liquid to solid by crystallization, the amorphous state is like a "solid liquid", and the transformation is over a small temperature range described as the "glass transition" temperature.

Vitrification of water is promoted by rapid cooling, and can be achieved without cryoprotectants by an extremely rapid decrease of temperature (megakelvins per second). The rate that is required to attain glassy state in pure water was considered to be impossible until 2005.[19]

Two conditions usually required to allow vitrification are an increase of the viscosity and a decrease of the freezing temperature. Many solutes do both, but larger molecules generally have a larger effect, particularly on viscosity. Rapid cooling also promotes vitrification.

For established methods of cryopreservation, the solute must penetrate the cell membrane in order to achieve increased viscosity and decrease freezing temperature inside the cell. Sugars do not readily permeate through the membrane. Those solutes that do, such as dimethyl sulfoxide, a common cryoprotectant, are often toxic in intense concentration. One of the difficult compromises of vitrifying cryopreservation concerns limiting the damage produced by the cryoprotectant itself due to cryoprotectant toxicity. Mixtures of cryoprotectants and the use of ice blockers have enabled the Twenty-First Century Medicine company to vitrify a rabbit kidney to 135C with their proprietary vitrification mixture. Upon rewarming, the kidney was transplanted successfully into a rabbit, with complete functionality and viability, able to sustain the rabbit indefinitely as the sole functioning kidney.[20]

Generally, cryopreservation is easier for thin samples and small clumps of individual cells, because these can be cooled more quickly and so require lesser doses of toxic cryoprotectants. Therefore, cryopreservation of human livers and hearts for storage and transplant is still impractical.

Nevertheless, suitable combinations of cryoprotectants and regimes of cooling and rinsing during warming often allow the successful cryopreservation of biological materials, particularly cell suspensions or thin tissue samples. Examples include:

Additionally, efforts are underway to preserve humans cryogenically, known as cryonics. For such efforts either the brain within the head or the entire body may experience the above process. Cryonics is in a different category from the aforementioned examples, however: while countless cryopreserved cells, vaccines, tissue and other biologial samples have been thawed and used successfully, this has not yet been the case at all for cryopreserved brains or bodies. At issue are the criteria for defining "success". Proponents of cryonics claim that cryopreservation using present technology, particularly vitrification of the brain, may be sufficient to preserve people in an "information theoretic" sense so that they could be revived and made whole by hypothetical vastly advanced future technology. Not only is there no guarantee of its success, many people argue that human cryopreservation is unethical. According to certain views of the mind body problem, some philosophers believe that the mind, which contains thoughts, memories, and personality, is separate from the brain. When someone dies, their mind leaves the body. If a cryopreserved patient gets successfully resuscitated, no one knows if they would be the same person that they once were or if they would be an empty shell of the memory of who they once were. Right now scientists are trying to see if transplanting cryopreserved human organs for transplantation is viable, if so this would be a major step forward for the possibility of reviving a cryopreserved human.[22]

Cryopreservation for embryos is used for embryo storage, e.g., when in vitro fertilization (IVF) has resulted in more embryos than is currently needed.

Pregnancies have been reported from embryos stored for 16 years.[23] Many studies have evaluated the children born from frozen embryos, or frosties. The result has been uniformly positive with no increase in birth defects or development abnormalities.[24] A study of more than 11,000 cryopreserved human embryos showed no significant effect of storage time on post-thaw survival for IVF or oocyte donation cycles, or for embryos frozen at the pronuclear or cleavage stages.[25] Additionally, the duration of storage did not have any significant effect on clinical pregnancy, miscarriage, implantation, or live birth rate, whether from IVF or oocyte donation cycles.[25] Rather, oocyte age, survival proportion, and number of transferred embryos are predictors of pregnancy outcome.[25]

Cryopreservation of ovarian tissue is of interest to women who want to preserve their reproductive function beyond the natural limit, or whose reproductive potential is threatened by cancer therapy,[26] for example in hematologic malignancies or breast cancer.[27] The procedure is to take a part of the ovary and perform slow freezing before storing it in liquid nitrogen whilst therapy is undertaken. Tissue can then be thawed and implanted near the fallopian, either orthotopic (on the natural location) or heterotopic (on the abdominal wall),[27] where it starts to produce new eggs, allowing normal conception to occur.[28] The ovarian tissue may also be transplanted into mice that are immunocompromised (SCID mice) to avoid graft rejection, and tissue can be harvested later when mature follicles have developed.[29]

Human oocyte cryopreservation is a new technology in which a womans eggs (oocytes) are extracted, frozen and stored. Later, when she is ready to become pregnant, the eggs can be thawed, fertilized, and transferred to the uterus as embryos.Since 1999, when the birth of the first baby from an embryo derived from vitrified-warmed womans eggs was reported by Kuleshova and co-workers in the journal of Human Reproduction,[17] this concept has been recognized and widespread. This break-through in achieving vitrification of womans oocytes made an important advance in our knowledge and practice of the IVF process, as clinical pregnancy rate is four times higher after oocyte vitrification than after slow freezing.[30] Oocyte vitrification is vital for preservation fertility in young oncology patients and for individuals undergoing IVF who object, either for religious or ethical reasons, to the practice of freezing embryos.

Semen can be used successfully almost indefinitely after cryopreservation. The longest reported successful storage is 22 years.[31] It can be used for sperm donation where the recipient wants the treatment in a different time or place, or as a means of preserving fertility for men undergoing vasectomy or treatments that may compromise their fertility, such as chemotherapy, radiation therapy or surgery.

Cryopreservation of immature testicular tissue is a developing method to avail reproduction to young boys who need to have gonadotoxic therapy. Animal data are promising, since healthy offsprings have been obtained after transplantation of frozen testicular cell suspensions or tissue pieces. However, none of the fertility restoration options from frozen tissue, i.e. cell suspension transplantation, tissue grafting and in vitro maturation (IVM) has proved efficient and safe in humans as yet.[32]

Cryopreservation of whole moss plants, especially Physcomitrella patens, has been developed by Ralf Reski and coworkers[33] and is performed at the International Moss Stock Center. This biobank collects, preserves, and distributes moss mutants and moss ecotypes.[34]

MSCs, when transfused immediately within a few hours post-thawing, may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth (fresh). As a result, cryopreserved MSCs should be brought back into log phase of cell growth in in vitro culture before these are administered for clinical trials or experimental therapies. Re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various clinical trials on MSCs have failed which used cryopreserved products immediately post-thaw as compared to those clinical trials which used fresh MSCs.[35]

Bacteria and fungi can be kept short-term (months to about a year, depending) refrigerated, however, cell division and metabolism is not completely arrested and thus is not an optimal option for long-term storage (years) or to preserve cultures genetically or phenotypically, as cell divisions can lead to mutations or sub-culturing can cause phenotypic changes. A preferred option, species-dependent, is cryopreservation. Nematode worms are the only multicellular eukaryotes that have been shown to survive cryopreservation. [36][37]

Fungi, notably zygomycetes, ascomycetes and higher basidiomycetes, regardless of sporulation, are able to be stored in liquid nitrogen or deep-frozen. Crypreservation is a hallmark method for fungi that do not sporulate (otherwise other preservation methods for spores can be used at lower costs and ease), sporulate but have delicate spores (large or freeze-dry sensitive), are pathogenic (dangerous to keep metabolically active fungus) or are to be used for genetic stocks (ideally to have identical composition as the original deposit). As with many other organisms, cryoprotectants like DMSO or glycerol (e.g. filamentous fungi 10% glycerol or yeast 20% glycerol) are used. Differences between choosing cryoprotectants are species (or class) dependent, but generally for fungi penetrating cryoprotectants like DMSO, glycerol or polyethylene glycol are most effective (other non-penetrating ones include sugars mannitol, sorbitol, dextran, etc.). Freeze-thaw repetition is not recommended as it can decrease viability. Back-up deep-freezers or liquid nitrogen storage sites are recommended. Multiple protocols for freezing are summarized below (each uses screw-cap polypropylene cryotubes):[38]

Many common culturable laboratory strains are deep-frozen to preserve genetically and phenotypically stable, long-term stocks. Sub-culturing and prolonged refrigerated samples may lead to loss of plasmid(s) or mutations. Common final glycerol percentages are 15, 20 and 25. From a fresh culture plate, one single colony of interest is chosen and liquid culture is made. From the liquid culture, the medium is directly mixed with equal amount of glycerol; the colony should be checked for any defects like mutations. All antibiotics should be washed from the culture before long-term storage. Methods vary, but mixing can be done gently by inversion or rapidly by vortex and cooling can vary by either placing the cryotube directly at 50 to 95C, shock-freezing in liquid nitrogen or gradually cooling and then storing at 80C or cooler (liquid nitrogen or liquid nitrogen vapor). Recovery of bacteria can also vary, namely if beads are stored within the tube then the few beads can be used to plate or the frozen stock can be scraped with a loop and then plated, however, since only little stock is needed the entire tube should never be completely thawed and repeated freeze-thaw should be avoided. 100% recovery is not feasible regardless of methodology.[39][40][41]

The microscopic soil-dwelling nematode roundworms Panagrolaimus detritophagus and Plectus parvus are the only eukaryotic organisms that have been proven to be viable after long-term cryopreservation to date. In this case, the preservation was natural rather than artificial, due to permafrost.

Read the original:
Cryopreservation - Wikipedia

Recommendation and review posted by Bethany Smith

15 Worrying Things About the CRISPR Babies Scandal – The Atlantic

11. There is no way to tell whether Hes work did any good.

Both Nana and Lulu will be monitored at least until they turn 18. But the children were already at virtually no risk of contracting HIV, said Alta Charo, a bioethicist from the University of Wisconsin at Madison, in a statement. This means that there is no way to evaluate if this indeed conferred any benefit. If they remain HIV-negative, there is no way to show it has anything to do with the editing.

At the Hong Kong summit, He was asked whether the two children would be treated differently by their parents, who will know that they have been edited. I dont know how to answer this question, He said.

12. He has doubled down.

If He shows any contrition about how these events have unfolded, it has not been obvious. Speaking at the Hong Kong summit, he apologized, but only because news about his work leaked unexpectedly before he could present it in a scientific venue. That, He said, took away from the community. Regarding the experiment itself, he said: I feel proud.

13. Scientific academies have prevaricated.

In the wake of Hes bombshell, several scientists, including the CRISPR pioneer Feng Zhang and the stem-cell biologist Paul Knoepfler, have called for a temporary moratorium on similar experiments. By contrast, after the news first broke, the organizing committee of the Hong Kong summit, which includes representatives from scientific academies in Hong Kong, the United Kingdom, and the United States, released a bland statement in which it simply restated the conclusions from its earlier report. A second statement, released after the summit, was stronger, calling Hes claims deeply disturbing and his work irresponsible.

Read: A reckless and needless use of gene editing on human embryos

But the second statement still discusses the creation of more gene-edited babies as a goal that should be worked toward. The risks are too great to permit clinical trials of germ-line editing at this time, it says, but it is time to define a rigorous, responsible translational pathway toward such trials. George Daley from Harvard Medical School, who was one of the meetings co-organizers, made similar points during the event itself. Given that the world is still grappling with the implications of what has happened, no, its not time yet and its tone-deaf to say so, says Hank Greely.

Although the chair opened the summit by invoking Huxleys Brave New World, few of the discussions at the meeting, and nothing in the concluding statement, suggest a meaningful engagement with social consequences, says the Center for Genetics in Society, a watchdog group.

14. A leading geneticist came to Hes defense.

In an interview with Science, George Church, a respected figure from Harvard and a CRISPR pioneer, said that he felt an obligation to be balanced about the He affair. Church suggested that the man was being bullied and that the most serious thing about his experiment was that he didnt do the paperwork right. [Churchs] comments are incredibly irresponsible, says Alexis Carere, who is president-elect of the Canadian Association of Genetic Counsellors. If someone contravenes the rules that we have laid down, we are very justified in speaking out about it. The unfortunate effect of this is that it makes it seem like there is some kind of balance, and George is just in the middle. There is not.

Continued here:
15 Worrying Things About the CRISPR Babies Scandal - The Atlantic

Recommendation and review posted by Bethany Smith

Genetic Testing Market Share Analysis – Global Industry …

Published Date:May 2018|160Pages|Report ID:GMI2490 | Report Format: PDF

Industry Trends

Genetic Testing Market size was valued at USD 10.6 billion in 2017 and is expected to witness more than 11.6% CAGR from 2018 to 2024.

U.S. Genetic Testing Market, By Test Type, 2013 2024

Increasing demand from patients for personalized medicines will fuel the demand for genetic testing during the forthcoming years. Personalized medicine offers tailored medical treatment to patients based on their molecular basis. Various developed economies such as Europe undergo genetic testing for detection of various genetic and rare diseases. Detection of diseases at an early stage facilitates early treatment and helps reduce severity of diseases. Growing adoption of personalized medicines coupled with increasing awareness regarding early diagnosis of disease will boost the industry growth over the forecast period.

Technological advancement in genetic testing is expected to drive the genetic testing market during the coming years. The demand for genetic testing is increasing across the globe owing to the availability of new tests as well as advancement in the genetic testing techniques. Innovations in tests that offer safer and efficient techniques of disease detection, surpassing the risk of miscarriage during early stages of pregnancy will serve to be a high impact rendering factor that will drive the genetic testing market growth during the forthcoming years.

Dearth of experienced professionals and advanced infrastructure in developing as well as under developed economies is should hamper the market growth over the forecast period. Accessibility to quality healthcare in low resource areas is difficult to maintain owing to lack of infrastructure. Moreover, risk of false interpretations associated with unavailability of experienced professionals will restrain industry growth noticeably.

Genetic Testing Market, By Test Type

Diagnostic testing segment accounted for the highest market share with a revenue share of USD 5690.6 million and is expected to grow at a significant rate over the forecast timeframe owing to its wide applications in various diseases. Detection of diseases at early stage allow patients to undergo therapeutic treatment at an early stage and minimizes the severity of diseases leading to reduced mortality rate. Increasing prevalence of chronic diseases worldwide will augment the segment growth over the forecast period.

Prenatal and newborn testing segment is estimated to witness lucrative growth with a CAGR of 11.6% during the forecast period. Increasing prevalence of chromosomal abnormalities and genetic disorders in the newborns worldwide is one of the leading cause of infant morbidity and mortality. According to Centers for Disease Control and Prevention (CDC), around 3% of all babies born in the U.S. are affected by birth defects leading to infant death. Aforementioned factors will fuel the demand for prenatal and new-born genetic testing during the coming years.

Genetic Testing Market, By Application

Cardiovascular disease diagnosis segment of genetic testing market will grow at the fastest CAGR of nearly12.8% owing to rising prevalence of cardiac diseases across the globe. Genetic testing allows testing for a wide range of cardiovascular diseases (CVDs) encompassing congenital heart malformations. Timely diagnosis of heart disorders helps save lives and reduce the number of CVD deaths. Healthcare systems efforts towards reducing CVD incidences should fuel business growth over the forecast period.

Cancer diagnosis segment dominated the genetic testing market with a revenue of USD 5562.8 million in 2017. According to, The Institute for Health Metrics and Evaluation (IHME), around 8.9 million cancer deaths were recorded in 2016, of which around 5%-10% were caused by inheriting genetic mutation. Rising prevalence of various types of cancer such as prostate cancer, breast cancer and lung cancer coupled with increasing awareness pertaining to early detection of cancer will stimulate the market growth throughout the forecast period.

Genetic Testing Market, By Region

North America dominated the genetic testing market with a revenue of USD 6382.1 million in 2017 and is projected to grow at a significant rate over the forecast period. This is attributable to increasing incidences genetic diseases such as cancer, Turner syndrome, neurofibromatosis, and spinal muscular atrophy. Availability of new tests owing to technological advancements will fuel the demand for genetic testing. Advanced infrastructure coupled with high healthcare expenditure and regulatory support for direct-to-consumer genetic testing will further augment the market growth in the coming years.

Latin America Genetic Testing Market is projected to grow at a robust CAGR of around 13.3% during the forecast period owing to increasing prevalence of various types of cancer such as prostate cancer, breast cancer and lung cancer. Breast cancer is the most common cancer among women in Latin America. According to the Pan American Health Organization (PAHO), around 4,08,200 women were diagnosed with breast cancer and the number is estimated to grow by 46% by 2030. Hence, adoption of genetic testing for early detection and prevention of cancer and other genetic diseases will accelerate the regional growth over the forecast period.

Competitive Market Share

Some of the eminent industry players operating in global genetic testing market are 23andMe, Abbott Molecular, Bayer Diagnostics, Biocartis, BioHelix, BioMerieux, BGI, Celera Genomics, Cepheid, Counsyl, deCODEme, Genentech, Genomictree, Genomic Health, HTG Molecular Diagnostics, IntegraGen, LabCorp Diagnostics, Luminex, MolecularMD, Myriad, Natera, PacBio, Pathway Genomics, Qiagen, Roche Diagnostics, Sequenom and Siemens. Industry players are focusing on strategic expansion through acquisitions, mergers and collaborations help the players to strengthen and enhance the product portfolio. For instance, in December 2017, Roche acquired Ariosa Diagnostics, a molecular diagnostic testing services provider, to enter the non-invasive prenatal test (NIPT) and cell-free DNA testing services market.

Genetic Testing Industry Background

Rising prevalence of diseases such as cancer, cystic fibrosis, Alzheimers and other genetic diseases will drive global genetic testing industry. Increasing adoption of genetic testing for early detection of diseases and identification of genetic mutation prior to its manifestation will further augment industry growth over the forecast period. The industry is expected to witness rapid growth in the future owing to rising physician adoption of genetic testing into clinical care. Availability of regulatory support for direct to consumer (DTC) testing and ongoing advancements in technology enable industry players to maintain their market position.

What Information does this report contain?

Historical data coverage: 2013 to 2017; Growth Projections: 2018 to 2024.

Expert analysis: industry, governing, innovation and technological trends; factors impacting development; drawbacks, SWOT.

6-7 year performance forecasts: major segments covering applications, top products and geographies.

Competitive landscape reporting: market leaders and important players, competencies and capacities of these companies in terms of production as well as sustainability and prospects.

Continued here:
Genetic Testing Market Share Analysis - Global Industry ...

Recommendation and review posted by Bethany Smith

The Infamous Scientist Behind the CRISPR Baby Gene Editing Is …

From Popular Mechanics

When He Jiankui shocked the world last week by declaring he had successfully altered the genetic code of two babies, he was met with overwhelming skepticism and condemnation from the scientific community. Now, his case has gotten weirder. The South China Morning Post reports that the infamous scientist has gone missing.

Officials at He's now-former university, the Shenzhen-based Southern University of Science and Technology, denied claims that He had been detained by the Chinese government. Right now nobodys information is accurate, only the official channels are, the official tells the SCMP.

On November 26, He Jiankui released a series of YouTube videos announcing that he had made science fiction real-using the genetic editing tool CRISPR, he had successfully edited the genetic code of two twin baby girls to make them more resistant to the HIV virus. He had not allowed any independent scientific inspection of his work, choosing to announce his breakthrough through mainstream journalism and social media.

After the highly unconventional announcement, He's work has come under intense criticism in the realms of both ethics and pure science. Speaking at the International Human Genome Editing Summit, He falsely claimed that his results had "leaked," although their release had been part of a carefully coordinated media release.

During a 20-minute talk with a question and answer period, He attempted to justify his study to his peers. Presenting himself as a champion working against discrimination of those with HIV, He said that he feels "proud" of his work which targeted CCR5, a known pathway for the virus.

The scientific community disagreed on both purely scientific and as well as moral grounds. Several scientists who observed He's speech began challenging his work with the two girls, known as Lulu and Nana. One of the most thorough breakdowns of He's work comes from Gaetan Burgio of Australia National University.

"If you look into details," Burgio tells PopMech over the phone, "what they meant to target, they havent targeted. They targeted CCR5, which is correct, but they havent targeted the region known to show resistance to HIV." Burgio says that its "likely" that at least one of the children has no additional resistance to HIV at all.

A particular failure of He's, according to Burgio, was not recognizing what's known as the "allele mosaic." In genetics, a mosaic refers to two or more cell populations with differing genotypes (pieces of genetic material) in one individual. Alleles are crucial parts of our genetic code, variations on DNA that allow for unique traits like eye color. Like eye color, CCR5 has a wide variety of potential variations. Ignoring this mosaic while working on genes could end up in any number of results, ranging from the neutral to the deeply harmful.

He's lack of transparency means that "we dont know what has been done to the genes" of the two infants, Burgio says.

There also appear to have been significant problems with an important part of any study this risky-informed consent of the parents. The consent form that patients signed has come under stern criticism from other scientists, comparing it to a "business form, of the kind that a company might use when subcontracting" while downplaying any risks of the procedure.

"If this was a mouse," Burgio says, "I would not be concerned. But were talking about kids." When asked about He's motivations, Burgio felt sure that He wanted "to be first" in making the discovery. When asked about the possibility that He was genuine in his concern for HIV patients, Burgio laughed, noting that there are far safer ways to treat the disease.

Since He's appearance at the summit, he has not been seen. His university, where He has apparently been on leave since February, has disavowed knowledge of his work. A graduate of Rice University in Texas, He found a collaborator in a professor from the school, Michael Deem. Rice has released a statement declaring that the work "violates scientific conduct guidelines and is inconsistent with ethical norms of the scientific community and Rice University.

Source: SCMP

('You Might Also Like',)

See more here:
The Infamous Scientist Behind the CRISPR Baby Gene Editing Is ...

Recommendation and review posted by Bethany Smith

What Happens to the CRISPR Twins? Their Lives Will … – time.com

For now, theyre known as Lulu and Nana, pseudonyms that are meant to give them some amount of anonymity amid the international uproar over their birth. As the first babies born after their genomes were edited (while they were embryos, by the genetics tool CRISPR) the twin girls, born in Shenzhen, China, are the subject of scientific and public scrutiny that will only escalate as they get older.

He Jiankui, a professor at the Southern University of Science and Technology, stunned the world when he claimed, both in a video posted by his lab and in an interview with a journalist, that he used CRISPR to disable a gene involved in helping HIV to enter healthy cells. By doing so, he gave the resulting edited embryos, including the twin girls, resistance to the virus. Doing so means He violated current guidelines prohibiting using CRISPR on human embryos for pregnancy. For now, Hes claims are only claims, since he has not published his work in a scientific journal for others to review and validate. While he did present his findings at a conference a few days after his YouTube announcement, researchers can only take the data at face value. He says he plans to publish the data, but now that the report has been released to the public, its difficult to predict which journals would accept the manuscript.

The Chinese researchers university denied knowledge of his experiment and said that He has been on leave since last February. Chinese authorities have now suspended Hes work, and Xu Nanping, vice minister of Chinas Ministry of Science and Technology, said Hes study was abominable in nature and violated Chinese laws and regulations, according to the governments Xinhua news.

The reason for the scientific censure boils down to the fact that He preempted a continuing debate over how and when CRISPR should be used in people. The technology, discovered in 2012, provides unprecedented precision and power to edit any genome, including the DNA of people, by snipping out portions of mutated genes and either allowing the genome to repair itself or by providing healthy versions of the gene. But because the approach is relatively new, scientists are still learning about exactly how precise their edits can be, and what some of the potential negative and long term consequences of altering human DNA could be.

Chinese geneticist He Jiankui of the Southern University of Science and Technology in Shenzhen, China, speaking during the Second International Summit on Human Genome Editing at the University of Hong Kong.

SOPA ImagesLightRocket/Getty Images

Nearly all international genetics groups have guidelines prohibiting using CRISPR to edit human embryos and implanting them for pregnancy, as the Chinese researcher did. Experts fully support using CRISPR in cells that cant be passed down from generation to generation, like skin cells or blood cells.

But what He did will forever change the twins DNA. Because he altered their genomes when they were embryos, those changes were picked up by every new cell that the embryos made as they continued to divide and develop, eventually forming the twins. So when the girls are ready to have children, their eggs may contain the CRISPR edits that He gave them, and they could pass on their altered genes to their children and all future generations of children in their lineage.

Having the gene itself is not necessarily a bad thing the edit He made is meant to protect people from getting infected with HIV but the problem is that scientists arent convinced yet that the HIV protection will be the only thing the CRISPR edit did to the twins genomes.

Its not clear, for example, that CRISPR is as precise as researchers would like it to be. It makes mistakes. In some cases, CRISPR may make unintended changes in random parts of the genome, like an autocorrect feature that mistakenly corrects typos to produce an entirely different word. In other cases, it may not make the edits as consistently as needed, so some cells may be edited while others are not, and some cells may even be partially edited, leaving a patchwork result scientists call mosaicism.

According to experts who reviewed some of the data He presented at a conference days after his stunning announcement, they say there is evidence that both girls born with the CRISPR edits showed such signs of mosaicism when they were embryos, meaning they are now likely to have the same mishmash of CRISPRd and unCRISPRd cells in their bodies. That means that they may not even benefit from the resistance to HIV that Hes grand experiment was meant to provide.

Theres also evidence that compromising the HIV gene may have other consequences for example, making people more susceptible to West Nile Virus and possibly the flu.

Its because of these unanswered questions and potential risks that scientists have favored a moratorium on using CRISPR in human embryos meant for pregnancy, at least until they have a better grasp on how CRISPR works and what some of the long term effects of editing might be. While the U.S. National Academy of Sciences in 2017 allowed for the eventual possibility of human babies whose genomes have been edited by CRISPR, it provided strict criteria for how that should happen: under strict monitoring and only in cases where there is no other medical option.

Neither of those criteria were met in the controversial CRISPR study. The university and the hospital where the births took place denied knowledge of Hes work, and the scientific community was blindsided that he had been proceeding with transferring human embryos for pregnancy. The gene he altered also does not represent an unmet medical need among the couples he worked with, only the fathers were HIV positive, meaning they were unlikely to pass on their infection to their children. Whats more, the fathers were on anti-HIV medications, which controlled their infection and make it even less likely they would infect their partners or their children.

In the twins case, what happens when they want to have children? Will they be allowed to have children naturally, and pass on their edited genes and whatever potential side effects might arise from their altered DNA? Or will regulatory or scientific authorities step in and attempt to control whether their genes continue into future generations by requiring the twins to have IVF and only implanting the embryos that do not show signs of the edited gene? Would those regulatory and scientific bodies even have the right to make such a request?

The implications go beyond just these twins, says Dr. Kiran Musunuru, professor of cardiovascular medicine and genetics at University of Pennsylvania Perelman School of Medicine. If we talk about the sanctity of human life, and the inherent dignity of human life, not much has been gained here. These babies were treated as subjects in a grand medical experiment, and we have to believe that they will be studied for the rest of their lives; its sad actually.

In his presentation and in his video, He justified his unorthodox actions by focusing on the personal. He said the father of the twins now feels motivated to find work and care for his family, and that altering the gene will protect future generations from HIV. But HIV experts say that judicious use and distribution of currently available drugs can effectively stop transmission of the virus, without taking such drastic steps of trying an proven genetic procedure and exposing people to its unknown risks.

While their identities are still protected for now, its unlikely the twins will remain anonymous for long. In bypassing ethical guidelines prohibiting the experiment that he conducted, He not only violated basic tenets of responsible scientific inquiry, he also forever changed how the girls will be viewed by society, and ultimately the decisions they make as a result of their involuntary status as the worlds first CRISPR babies.

Contact us at editors@time.com.

See the rest here:
What Happens to the CRISPR Twins? Their Lives Will ... - time.com

Recommendation and review posted by Bethany Smith

Rogue Scientist Says Another Crispr Pregnancy Is Underway

On the second day of the Second International Summit on Human Genome Editing, the last session before lunch was already running long. But the crowd crammed into the Lee Shau Kee Lecture Centre at the University of Hong Kong wasnt budging. Neither were the 5,500 people around the world glued to their live video feeds. Everyone was waiting to hear from the the final speaker, the man who says he helped make the worlds first gene-edited babies.

That man is He Jiankui, the Chinese-born, American-trained biophysicist who claims to have Crisprd a pair of twin baby girls.

Robin Lovell-Badge, a biologist at the Francis Crick Institute in the UK, took to the podium to introduce the controversial speaker. Lovell-Badge reminded everyone that the National Academy of the Sciences, the global non-governmental science panel that helped convene this summit, did not know in advance about Hes work. He sent me the slides he was going to show in this session and they did not include any of the work he was going to talk about, said Lovell-Badge. Nothing involving human embryos that were implanted.

But after MIT Technology Review broke the news of Hes covert trials two days ago, Hes session at this event became the object of intense fascination. Folks following along on Twitter wondered if He would show at all. And for one long, agonizing minute after Lovell-Badge welcomed He to the stage, it looked like he might not. When He at last appeared, he began to deliver a different talk, packed with details about what hed been up to.

For the last two years, He has been working in secret, skirting ethical and scientific codes of conduct, and possibly even some laws, to make biological history. On Wednesday morning, Hong Kong time, he revealed to the world just how he did it. It will take scientists days to parse the 59 data-dense slides that describe Hes methods and results. Only then will a fuller picture begin to emerge about just how safe and effective the experiment was. But in the meantime, He still gave the rest of us plenty to think about.

Like the fact that Lulu and Nana, the twin girls, arent the only children Hes group has Crisprd. When pressed on the number of implantations that have taken place so far, the scientist disclosed that there is another potential pregnancy involving a gene-edited embryo. He hesitated to answer the question because the pregnancy is in an early stage. His research team has so far injected Crispr systems into 31 embryos that have developed to the blastocyst stage. He said 70 percent of them were successfully edited and await further screening and implantation in five remaining couples. But now thats all on hold. The trial is paused due to the current situation, said He.

He is now under investigation by his own university, and other legal bodies in China.

After Hes presentation, he took questions from the audience and the moderators, including Lovell-Badge and Matthew Porteus, a Stanford researcher and the scientific founder of Crispr Therapeutics, a company developing Crispr-based drugs to treat genetic diseases. Throughout, He remained calm and thoughtful, if not always fully forthcoming.

At one point, Harvard biochemist David Liu questioned the unmet medical need that He said his experiments were addressing. He recruited couples where the mother is HIV-negative and the father HIV-positive, editing their embryos to bestow them with a rare but natural traitthe ability to resist HIV infections. Given that there are ways to make sure HIV-positive parents dont transmit their disease to their babies without altering their DNA, Liu asked He to describe the unmet medical need, not of HIV in general, but of these patients in particular.

He responded that his trial was not just for these few patients, but for the millions of children suffering from HIV all over the world. He described personal experience with a village in China where 30 percent of the residents are infected and children have to live with their relatives for fear of contracting the virus. I feel proud, actually, said He.

Not everyone agreed with Hes take. Between question and answer sessions, Nobel laureate and summit chair David Baltimore interjected to announce that the organizing committee would issue a formal statement regarding Hes work on Thursday. Baltimore then shared a few personal thoughts, including that the experiments as described do not meet the criteria of the National Academy of Sciences for a responsible application of human germline editing. Personally I dont think it was medically necessary, said Baltimore. I think there has been a failure of self-regulation by the scientific community because of a lack of transparency, he added.

Other members of the organizing committee were similarly skeptical. Having listened to Dr. He, I can only conclude that this was misguided, premature, unnecessary and largely useless, Alta Charo, a bioethicist at the University of Wisconsin-Madison wrote in an email to WIRED. Charo co-chaired the 2017 National Academies consensus study that laid out the criteria for an ethical path to human germline editing. Her greatest concern, she said, is that the consent forms that Hes patients signed created the impression that his project was an AIDS vaccine trial, and may have conflated research with therapy by claiming participants were likely to benefit.

As to the other embryos hes edited, which are on ice while the trial is itself frozen? What will happen to those embryos, or even who decides what happens, Charo says, is unknown.

Link:
Rogue Scientist Says Another Crispr Pregnancy Is Underway

Recommendation and review posted by Bethany Smith

Before the Claims of Crispr Babies, There Was Chinas One …

In China, many people have already ventured into that terrain. Even before Crispr, it has been possible to create so-called designer babies using in vitro fertilization and selecting egg donors with desirable genetic enhancements, such as looks and intelligence. Thats what many wealthy Chinese have been doing for years. The practice is fairly standard among rich consumers of any nationality, but I was told by fertility clinics and doctors in California that Chinese customers were frequently the most upfront and demanding, driving up prices of East Asian donor eggs to twice and even triple market rates.

Wendie Wilson-Miller, who runs an egg donor agency in Southern California, told me that her Chinese clients almost always want taller, at least 5 foot 5. And they have questions about eyelids; they want to see baby pictures to see if the donors had eyelid surgery.

For years, B.G.I. Shenzhen, one of the worlds largest gene-sequencing facilities, has been running a project to explore the genetic basis for human intelligence, with the goal of eventually enabling parents to boost their offsprings I.Q. before birth. While it may not be possible to isolate human intelligence to a purely genetic component, the company clearly believes theres huge potential demand for such a service. One of its co-founders, Wang Jiang, recently caused a furor when he said in a speech that employees would not be allowed to have children with birth defects because they would be a disgrace.

No society is uniform, and news of the Crispr babies has generated much condemnation and outrage within China, particularly by Dr. Hes peers, who consider him an irresponsible rogue scientist. A top Chinese bioethicist, Qiu Renzong, compared his actions to using a cannon to shoot a bird.

But at the same time, a recent poll indicated wide support in China for gene editing to treat disease, with 24 percent in favor of legalizing gene editing for enhancing intelligence. By contrast, 68 percent of Americans say they are worried about gene editing and its effects, according to Pew Research.

Much is still unknown about the so-called Crispr babies. But it is almost certain that more will follow; Dr. He has already said his experiments have generated another pregnancy. It is also almost certain someone will attempt gene editing to make stronger, smarter, more attractive babies. Pandoras box is wide open in China.

Mei Fong, a Pulitzer Prize-winning journalist, is the author of One Child: The Story of Chinas Most Radical Experiment.

Follow The New York Times Opinion section on Facebook, Twitter (@NYTopinion) and Instagram.

Read more:
Before the Claims of Crispr Babies, There Was Chinas One ...

Recommendation and review posted by Bethany Smith

Learn About Men’s Health Issues and Genetics – Men’s …

The genetic causes of mens health issues cut both ways. On the one hand, it can make you resigned to the fact that youre going to have this or that problem. On the other hand, you can just blame it on your genes!

Having a certain type of genes doesnt mean that you will definitely develop the related disease or health issue. Very few genetic markers are like that. Most inherited genes only increase the risk of you getting the health problem. Lets look more closely at the known and suspected genetic causes of mens health issues.

The most common talking points about baldness are far from proven. They are only educated guesses with certain promising correlations shown in studies, though far from conclusive. These include hair follicles health, blood circulation in the head, eating too much greasy food, etc.

In comparison, male pattern baldness is definitively linked to genetics. You are more likely to go bald if your father is bald. This is also true concerning your grandfather and uncles on your mothers side of the family. A study using over 52,000 genetic data from the UK Biobank found that among the men in the top 10% highest risk pool, 58% of them had moderate to severe hair loss. There are many more such studies.

We are happy to report that research into the genetics of erectile dysfunction is in its infancy. This is probably because most types of ED are unlikely to be caused by genes.

There is a small chance that infertility has a genetic root, and thats only if the infertility is caused by Klinefelters syndrome, Y chromosome deletions, and cystic fibrosis gene mutation.

As for prostate cancer, about 5-10% of prostate cancers are genetic, according to the Memorial Sloan Kettering Cancer Center. However, your chances of getting prostate cancer can increase 5 times if two or more of your close male relatives have it.

And thats about it. Apart from baldness, how you live your life is often more influential than the genetic causes of mens health issues.

Continue reading here:
Learn About Men's Health Issues and Genetics - Men's ...

Recommendation and review posted by Bethany Smith

Scientist Who Crisprd Babies Bucked His Own Ethics Policy

We said dont freak out, when scientists first used Crispr to edit DNA in non-viable human embryos. When they tried it in embryos that could theoretically produce babies, we said dont panic. Many years and years of boring bench science remain before anyone could even think about putting it near a womans uterus. Well, we might have been wrong. Permission to push the panic button granted.

Late Sunday night, a Chinese researcher stunned the world by claiming to have created the first human babies, a set of twins, with Crispr-edited DNA. Two beautiful little Chinese girls, Lulu and Nana, came crying into the world as healthy as any other babies a few weeks ago, the scientist, He Jiankui, said in the first of five promotional videos posted to YouTube hours after MIT Technology Review broke the news.

Lulu and Nana are reported to have a genetic mutation, courtesy of Crispr, that makes it harder for HIV to invade and infect their white blood cells. The claim, which has yet to be independently verified or backed up by published data, has ignited furious criticism, international outrage, and multiple investigations. The scientific outcry has been so swift because Hes purported work, conducted in secret, bulldozes past existing ethical guidance on so-called germline editing, in which alterations to an embryos DNA will be passed down to subsequent generations.

Whats perhaps most strange is not that He ignored global recommendations on conducting responsible Crispr research in humans. He also ignored his own advice to the worldguidelines that were published within hours of his transgression becoming public.

On Monday, He and his colleagues at Southern University of Science and Technology, in Shenzhen, published a set of draft ethical principles to frame, guide, and restrict clinical applications that communities around the world can share and localize based on religious beliefs, culture, and public-health challenges. Those principles included transparency and only performing the procedure when the risks are outweighed by serious medical need.

The piece appeared in the The Crispr Journal, a young publication dedicated to Crispr research, commentary, and debate. Rodolphe Barrangou, the journals editor in chief, where the peer-reviewed perspective appeared, says that the article was one of two that it had published recently addressing the ethical concerns of human germline editing, the other by a bioethicist at the University of North Carolina. Both papers authors had requested that their writing come out ahead of a major gene editing summit taking place this week in Hong Kong. When half-rumors of Hes covert work reached Barrangou over the weekend, his team discussed pulling the paper, but ultimately decided that there was nothing too solid to discredit it, based on the information available at the time.

Now Barrangou and his team are rethinking that decision. For one thing, He did not disclose any conflicts of interest, which is standard practice among respectable journals. Its since become clear that not only is He at the helm of several genetics companies in China, He was actively pursuing controversial human research long before writing up a scientific and moral code to guide it.Were currently assessing whether the omission was a matter of ill-management or ill-intent, says Barrangou, who added that the journal is now conducting an audit to see if a retraction might be warranted. Its perplexing to see authors submit an ethical framework under which work should be done on the one hand, and then concurrently do something that directly contravenes at least two of five of their stated principles.

One is transparency. Reporting by Tech Review and The Associated Press has raised questions about whether He misled trial participants and Chinese regulators in his ambitions to make the first Crisprd baby. Two is medical necessity.

Take the gene Hes group chose to edit: CCR5. It codes for a receptor that HIV uses to infiltrate white blood cells, like a key to a locked door. No key, no access. Other controversial Crispr firsts have attempted to correct faulty versions of genes responsible for inherited, often incurable disorders, reverting them back to the healthy version. In contrast, Hes group crippled normal copies of CCR5 to lower the risk of future possible infection with HIVa disease that is easily prevented, treated, and controlled by means that dont involve forever changing someones DNA. Drugs, condoms, needle-exchange programs are all reasonable alternatives.

There are all sorts of questions these issues raise, but the most fundamental is the risk-benefit ratio for the babies who are going to be born, says Hank Greely, an ethicist at Stanford University. And the risk-benefit ratio on this stinks. Any institutional review board that approved it should be disbanded if not jailed.

Reporting by Stat indicates that He may have just gotten in over his head and tried to cram a self-guided ethics education into a few short months. The young scientistrecords indicate He is just 34has a background in biophysics, with stints studying in the US at Rice University and in bioengineer Stephen Quakes lab at Stanford. His resume doesnt read like someone steeped deeply in the nuances and ethics of human research. Barrangou says that came across in the many rounds of edits Hes framework went through. The editorial team did spend a significant amount of time improving both the language and the content, he says.

Its too soon to say whether Hes stunt will bring him fame or just infamy. Hes still scheduled to speak at the human genome editing summit on Wednesday and Thursday. And Chinas central government in Beijing has yet to come down one way or another. Condemnation would make He a rogue and a scientific outcast. Anything else opens the door for a Crispr IVF cottage industry to emerge in China and potentially elsewhere. Its hard to imagine this was the only group in the world doing this, says Paul Knoepfler, a stem cell researcher at UC Davis who wrote a book on the future of designer babies called GMO Sapiens. Some might say this broke the ice. Will others forge ahead and go public with their results or stop what theyre doing and see how this plays out?

What happens next makes all the difference. The fact that two babies now exist with one gene changed by Crispr to a less common form doesnt change the world overnight. What changes the world is how society reacts, and whether it decides to let such DNA-altering procedures become common.

See more here:
Scientist Who Crisprd Babies Bucked His Own Ethics Policy

Recommendation and review posted by Bethany Smith

Chinese Scientist Claims to Use Crispr to Make First …

Ever since scientists created the powerful gene editing technique Crispr, they have braced apprehensively for the day when it would be used to create a genetically altered human being. Many nations banned such work, fearing it could be misused to alter everything from eye color to I.Q.

Now, the moment they feared may have come. On Monday, a scientist in China announced that he had created the worlds first genetically edited babies, twin girls who were born this month.

The researcher, He Jiankui, said that he had altered a gene in the embryos, before having them implanted in the mothers womb, with the goal of making the babies resistant to infection with H.I.V. He has not published the research in any journal and did not share any evidence or data that definitively proved he had done it.

But his previous work is known to many experts in the field, who said many with alarm that it was entirely possible he had.

Its scary, said Dr. Alexander Marson, a gene editing expert at the University of California in San Francisco.

While the United States and many other countries have made it illegal to deliberately alter the genes of human embryos, it is not against the law to do so in China, but the practice is opposed by many researchers there. A group of 122 Chinese scientists issued a statement calling Dr. Hes actions crazy and his claims a huge blow to the global reputation and development of Chinese science.

If human embryos can be routinely edited, many scientists, ethicists and policymakers fear a slippery slope to a future in which babies are genetically engineered for traits like athletic or intellectual prowess that have nothing to do with preventing devastating medical conditions.

While those possibilities might seem far in the future, a different concern is urgent and immediate: safety. The methods used for gene editing can inadvertently alter other genes in unpredictable ways. Dr. He said that did not happen in this case, but it is a worry that looms over the field.

[Like the Science Times page on Facebook. | Sign up for the Science Times newsletter.]

Dr. He made his announcement on the eve of the Second International Summit on Human Genome Editing in Hong Kong, saying that he had recruited several couples in which the man had H.I.V. and then used in vitro fertilization to create human embryos that were resistant to the virus that causes AIDS. He said he did it by directing Crispr-Cas9 to deliberately disable a gene, known as CCR, that is used to make a protein H.I.V. needs to enter cells.

Dr. He said the experiment worked for a couple whose twin girls were born in November. He said there were no adverse effects on other genes.

In a video that he posted, Dr. He said the father of the twins has a reason to live now that he has children, and that people with H.I.V. face severe discrimination in China.

Dr. Hes announcement was reported earlier by the MIT Technology Review and The Associated Press.

In an interview with the A.P. he indicated that he hoped to set an example to use genetic editing for valid reasons. I feel a strong responsibility that its not just to make a first, but also make it an example, he told the A.P. He added: Society will decide what to do next.

It is highly unusual for a scientist to announce a groundbreaking development without at least providing data that academic peers can review. Dr. He said he had gotten permission to do the work from the ethics board of the hospital Shenzhen Harmonicare, but the hospital, in interviews with Chinese media, denied being involved. Cheng Zhen, the general manager of Shenzhen Harmonicare, has asked the police to investigate what they suspect are fraudulent ethical review materials, according to the Beijing News.

The university that Dr. He is attached to, the Southern University of Science and Technology, said Dr. He has been on no-pay leave since February and that the school of biology believed that his project is a serious violation of academic ethics and academic norms, according to the state-run Beijing News.

In a statement late on Monday, Chinas national health commission said it has asked the health commission in southern Guangdong province to investigate Mr. Hes claims.

Many scientists in the United States were appalled by the developments.

I think thats completely insane, said Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University. Dr. Mitalipov broke new ground last year by using gene editing to successfully remove a dangerous mutation from human embryos in a laboratory dish.

Dr. Mitalipov said that unlike his own work, which focuses on editing out mutations that cause serious diseases that cannot be prevented any other way, Dr. He did not do anything medically necessary. There are other ways to prevent H.I.V. infection in newborns.

Just three months ago, at a conference in late August on genome engineering at Cold Spring Harbor Laboratory in New York, Dr. He presented work on editing the CCR gene in the embryos of nine couples.

At the conference, whose organizers included Jennifer Doudna, one of the inventors of Crispr technology, Dr. He gave a careful talk about something that fellow attendees considered squarely within the realm of ethically approved research. But he did not mention that some of those embryos had been implanted in a woman and could result in genetically engineered babies.

What we now know is that as he was talking, there was a woman in China carrying twins, said Fyodor Urnov, deputy director of the Altius Institute for Biomedical Sciences and a visiting researcher at the Innovative Genomics Institute at the University of California. He had the opportunity to say Oh and by the way, Im just going to come out and say it, people, theres a woman carrying twins.

I would never play poker against Dr. He, Dr. Urnov quipped.

Richard Hynes, a cancer researcher at the Massachusetts Institute of Technology, who co-led an advisory group on human gene editing for the National Academy of Sciences and the National Academy of Medicine, said that group and a similar organization in Britain had determined that if human genes were to be edited, the procedure should only be done to address serious unmet needs in medical treatment, it had to be well monitored, it had to be well followed up, full consent has to be in place.

It is not clear why altering genes to make people resistant to H.I.V. is a serious unmet need. Men with H.I.V. do not infect embryos. Their semen contains the virus that causes AIDS, which can infect women, but the virus can be washed off their sperm before insemination. Or a doctor can inject a single sperm into an egg. In either case, the woman will not be infected and neither will the babies.

Dr. He got his Ph.D., from Rice University, in physics and his postdoctoral training, at Stanford, was with Stephen Quake, a professor of bioengineering and applied physics who works on sequencing DNA, not editing it.

Experts said that using Crispr would actually be quite easy for someone like Dr. He.

After coming to Shenzhen in 2012, Dr. He, at age 28, established a DNA sequencing company, Direct Genomics, and listed Dr. Quake on its advisory board. But, in a telephone interview on Monday, Dr. Quake said he was never associated with the company.

-

Austin Ramzy contributed reporting from Hong Kong and Elsie Chen contributed research from Beijing.

Continued here:
Chinese Scientist Claims to Use Crispr to Make First ...

Recommendation and review posted by Bethany Smith


Archives