Page 4«..3456..1020..»

Autologous cardiac-derived cells for advanced ischemic …

Disease Team Award DR1-01461, autologous cardiac-derived cells for advanced ischemic cardiomyopathy, is targeted at developing novel therapies for the treatment of heart failure, a condition which afflicts 7 million Americans. Heart failure, when symptomatic, has a mortality exceeding that of many malignant tumors; new therapies are desperately needed. In the second year of CIRM support, pivotal pre-clinical studies have been completed. We have found that dose-optimized injection of CSps preserves systolic function, attenuates remodeling, decreases scar size and increases viable myocardium in a porcine model of ischemic cardiomyopathy. The 3D microtissues engraft efficiently in preclinical models of heart failure, as expected from prior work indicating their complex multi-layer nature combining cardiac progenitors, supporting cells and derivatives into the cardiomyocyte and endothelial lineages. Analysis of the MRI data continues. We have developed standard operating procedures for cardiosphere manufacturing and release criteria, product and freezing/thawing stability testing have been completed for the 3D microtissue development candidate. We have identified two candidate potency assays for future development. The disease team will evaluate the results of the safety study (immunology, histology, and markers of ischemic injury) and complete the pivotal pig study in Q1 2012. With data in hand, full efforts will be placed on preparation of the IND for Q2 2012 submission.

See the original post here:
Autologous cardiac-derived cells for advanced ischemic …

Recommendation and review posted by Bethany Smith

Hypogonadism – UCSF Medical Center

Hypogonadism is a condition that causes decreased function of the gonads, which are the testis in males and the ovaries in females, and the production of hormones that play a role in sexual development during puberty. You may be born with the condition or it can develop later in life from injury or infection. Some types of hypogonadism can be treated with hormone replacement therapy.

There are two forms of the condition primary hypogonadism resulting from problems of the testis or ovary and central hypogonadism caused by problems with the pituitary or hypothalamic glands. Central hypogonadism leads to decreased levels of luteinizing hormone (LH) and follicle stimulating hormones (FSH), released by the pituitary gland.

The condition may have genetic, menopausal autoimmune and viral causes or may develop after cancer treatments such as radiation and chemotherapy.

Fasting, weight loss, eating disorders such as anorexia nervosa, and bulimia, and stressful conditions can cause the condition.

In children before puberty, hypogonadism causes no symptoms. In adolescents, it can delay or prevent exual development.

Adult women with the condition may stop menstruating or develop infertility, loss of libido, vaginal dryness and hot flashes. Prolonged periods of hypogonadism can cause osteoporosis.

Men with the condition may experience loss of libido, erectile dysfunction and infertility.

To diagnose hypogonadism, tests may be performed to check hormone levels estogren in females and testosterone in males. In addition, levels of luteinizing hormone (LH) and follicle stimulating hormones (FSH) will be tested. LH and FSH are pituitary hormones that are stimulated by the gonads.

Other tests may measure thyroid hormones, sperm count and prolactin, a hormone released by the pituitary gland that stimulates breast development and milk production Tests also may be performed to test for anemia and possible genetic causes of symptoms.

For women, your doctor may request a sonogram of your ovaries.

If pituitary disease is suspected, a magnetic resonance imaging (MRI) scan or computed tomography (CT) scan may be performed to examine the the pituitary gland.

Hormone replacement therapy has proven to be effective treatment for hypogonadism in men and pre-menopausal women.

Estrogen may be administered in the form of a patch or pill. Testosterone can be given by a patch, a product soaked in by the gums, a gel or by injection.

For women who have not had their uterus removed, a combination of estrogen and progesterone is often recommended to decrease the chance of developing endometrial cancer. Low-dose testosterone may be added for women with hypogonadism who have a low sex drive.

Other hormones may be prescribed to restore fertility in men and women.

Reviewed by health care specialists at UCSF Medical Center.

See the original post:
Hypogonadism – UCSF Medical Center

Recommendation and review posted by simmons

Hairy skin from mouse stem cells may hold a cure for …

In a finding that may provide a potential cure for baldness, researchers have used stem cells from mice to develop a skin patch that is complete with hair follicles in a laboratory.

Using the skin model, the scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.

The novel skin tissue more closely resembles natural hair than existing models and may prove useful for testing drugs, understanding hair growth, and reducing the practice of animal testing, the researchers said.

You can see the organoids with your naked eye, said Karl Koehler, assistant professor at the Indiana University. It looks like a little ball of pocket lint that floats around in the culture medium. The skin develops as a spherical cyst, and then the hair follicles grow outward in all directions, like dandelion seeds.

The scientists developed both the epidermis (upper) and dermis (lower) layers of skin, which grow together in a process that allows hair follicles to form the same way as they would in a mouses body.(Getty Images/iStockphoto)

In the study, published in Cell Reports, Koehler and team originally began using pluripotent stem cells from mice, which can develop into any type of cells in the body, to create organoids — miniature organs in vitro — that model the inner ear.

But they discovered that they were generating skin cells in addition to inner ear tissue. Thus, they decided to coax the cells into sprouting hair follicles. Moreover, they found that mouse skin organoid technique could be used as a blueprint to generate human skin organoids.

It could be potentially a superior model for testing drugs, or looking at things like the development of skin cancers, within an environment thats more representative of the in vivo microenvironment, Koehler noted.

Follow @htlifeandstyle for more

Go here to read the rest:
Hairy skin from mouse stem cells may hold a cure for …

Recommendation and review posted by Bethany Smith

Bone Marrow Transplantation | Bone Marrow Transplant …

Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The stem cells can develop into red blood cells, which carry oxygen throughout the body, white blood cells, which fight infections, and platelets, which help the blood to clot.

A bone marrow transplant is a procedure that replaces a person’s faulty bone marrow stem cells. Doctors use these transplants to treat people with certain diseases, such as

Before you have a transplant, you need to get high doses of chemotherapy and possibly radiation. This destroys the faulty stem cells in your bone marrow. It also suppresses your body’s immune system so that it won’t attack the new stem cells after the transplant.

In some cases, you can donate your own bone marrow stem cells in advance. The cells are saved and then used later on. Or you can get cells from a donor. The donor might be a family member or unrelated person.

Bone marrow transplantation has serious risks. Some complications can be life-threatening. But for some people, it is the best hope for a cure or a longer life.

NIH: National Heart, Lung, and Blood Institute

Link:
Bone Marrow Transplantation | Bone Marrow Transplant …

Recommendation and review posted by simmons

Hormone Replacement Clinic NY, Testosterone Injections for …

You may be reading this because you are not your normal self. Youre lethargic and your energy level is not what it was. Your body is becoming soft and flabby and youre having problems with focus and concentration. Your sex drive is down and you may be having difficulties achieving an erection. Low Testosterone or a Low T count may be responsible, and Hormone Replacement Therapy may be right for you.

According to the US Food and Drug Administration (FDA), 4 to 5 million American men may suffer from low testosterone, but only 5% are currently treated. What about the remaining 95%? Could you be one of them?

If you answered yes to more than half of these questions, chances are your testosterone levels are less than optimal and you may be deficient and benefit from Hormone Replacement Therapy. You may be going through the male menopause, a condition known as andropause.

Andropause refers to a set of gradual physical and psychological changes that men generally go through. Every man experiences a decline in bio-available testosterone but some mens levels dip lower than others.

Testosterone begins to decline in men at about age 25. Testosterone levels decline gradually over the years and because it comes on slowly, most men often accommodate to the symptoms and do not realize how much they have lost.

Look at the chart to the right. Where on that testosterone level down turn do you think you are?

Many men, after 35 or so, often have a hard time rising to the occasion and challenge of daily stress. It has only been recently that andropause has received attention and recognition, but why the holdup?

Doctors and scientists are well aware of the ramifications due to the absence of estrogen and progesterone in women. In the mean time, men have kept their focus from themselves and their own hormonal induced weaknesses. Why?

At CORE Medical New York our patients talk openly about their problems and what they are going through. But each of them would also admit that they had difficulty making that first call and that they still cannot admit or talk to their friends about their dysfunctions associated with low testosterone.

Men who receive testosterone therapy consequently report that they feel sexier, stronger and healthier. They say that it makes them feel as they did when they were in their prime.

Testosterone Treatments may stop and reverse the physical decline that robs men of their energy, strength and libido. Testosterone can restore muscle tone and improve stamina. Testosterone can restore healthy sexual excitement and desire, which in turn, results in an improvement in mood and overall well being.

Restoring testosterone to youthful levels with testosterone replacement can reverse the situation. All too often, men automatically assume that as they age, their sexual capacity will diminish. There is no need to accept this loss of sexuality. We should be able to live our life with the same excitement and enthusiasm we enjoyed during our youth.

Potential Testosterone Therapy results:

GET STARTED NOW!

CALL US AT (844) NYC-CORE

Continued here:
Hormone Replacement Clinic NY, Testosterone Injections for …

Recommendation and review posted by sam

The Hormone Reset Diet – Order the book

Get your free bonus gifts

The Harvard-educated physician and New York Times bestselling author of The Hormone Cure shows

HOW TO RESET YOUR METABOLIC HORMONES TO LOSE WEIGHT AND FEEL GREAT IN JUST 21 DAYS!

Based on leading scientific research, The Hormone Reset Diet is Dr. Gottfrieds proven step-by-step plan designed to help women of all shapes and sizes, ages, and ethnicities lose weight and feel lighter and more energetic.

Check out these bonuses you will receivewhen you preorder The Hormone Reset Diet

Video: Dr. Saras Top 10 Hormone Tests

Dr. Saras Top 10 Ways to Get Lean in 2015

Video: Hormone Reset Meal:Quinoa and Maca BreadedChicken and Sauted Vegetables

Dr. Saras 3 Proven Supplements for Energy

Video: Dr. Saras Stunningly SimpleMeditation Technique

Dr. SarasShake Guide

10% coupon for exclusiveDr. Sara Products

Weight loss isnt about restricting caloriesand willpower. Its about hormones: thechemical molecules that govern nearlyall aspects of your body fat

When your metabolism is broken, you get fatter no matter what you doespecially after age forty. The Hormone Reset Diet will show you, in seven three-day bursts, how to make specific dietary changes, eliminate metabolism-wrecking foods (meat and alcohol, sugar, fruit, caffeine, grain, dairy, and toxins), repair your body and reset your hormones.

About the Author

SARA GOTTFRIED, M.D. is the New York Times bestselling author of The Hormone Cure. After graduating from the physician-scientist training program at Harvard Medical School and MIT, Dr. Gottfried completed her residency at the University of California at San Francisco. She is a board-certified gynecologist who teaches natural hormone balancing in her novel online programs so women can lose weight, detoxify, and feel great. Dr. Gottfried lives in Berkeley, CA with her husband and two daughters. Visit her online at http://www.SaraGottfriedMD.com.

Continued here:
The Hormone Reset Diet – Order the book

Recommendation and review posted by sam

Chinese scientists already used Crispr gene editing on 86 …

China is taking the lead in the global race to perfect gene therapies.

Scientists have genetically engineered the cells of at least 86 cancer and HIV patients in the country using Crispr-Cas9 technology since 2015, the Wall Street Journal reports (paywall). Although no formal scientific papers have been written about these experiments, doctors told journalists at the WSJ that some patients have improved. There have also been least 15 deaths, seven of which were in one trial. Scientists report all of these deaths were related to patients previous conditions and not Crispr treatment.

These therapies, which involved taking the immune cells from hospital patients, editing the cells, and transfusing them back into the body, are the first to use Crispr-Cas9 in living humans.

In 2013 scientists first used (paywall) Crispr on on human DNA, and in 2017, US scientists at Oregon Health & Science University reported using the technology to edit human embryos. (The embryos were not allowed to develop further.) It took two years for the Oregon team to receive ethical approval for their experiment. It took the same amount of time for the University of Pennsylvania hospital and the US Food and Drug Administration to give Penn researchers the go-ahead to test a Crispr-based therapy on 18 cancer patients. That trial is expected to begin later this year. Scientists at the Cambridge, Massachusetts-based Crispr Therapeutics also hope to start phase I clinical trials using Crispr to treat patients with a genetic disorder called beta-thalassemias.

Crispr trials on humans have been relatively slow to develop in the US and UK in part due to concerns over how the risk of the procedure is communicated to patients. The Penn scientists first had to consult with an advisory board from the National Institutes of Health set up specifically to evaluate the potential risks and benefits of Crispr therapies, then get approval from the US Food and Drug Administration.

The FDA approved three gene therapies for treatment in 2017, none of which use Crispr. Two of these therapies treat late-stage forms of cancer, and both rely on editing the patients immune cells. The third, which targets a rare form of childhood blindness, works by modifying cells in the eye.

The Chinese ministry of health has to approve all gene-therapy clinical trials in China, but these regulations appear relatively relaxed. According to the WSJ, at Hangzhou Cancer Hospital, for example, a proposal to test a cancer treatment that modifies patients immune cells was approved in a single afternoon. One member of the hospitals approval committee told the WSJ that she did not really understand the science laid out for her in a 100-page document, but was told that the side effects were mild. This was enough for her to give it the go-ahead.

The truth, though, is that there is a dearth of data on the safety of Crispr on humans, and many scientists in the field are concerned that the treatment may cause unintended mutations or may not work at all.

If any of these Crispr treatments are proven successful under scientific scrutiny, theyd be the first of their kind.

Correction: An earlier version of this article stated that about half of the deaths in Crispr trials were related to the gene therapy. It has been corrected to reflect that doctors say all of the deaths in the Crispr trials were related to patients previous conditions.

Read this next: A highly successful attempt at genetic editing of human embryos has opened the door to eradicating inherited diseases

See the article here:
Chinese scientists already used Crispr gene editing on 86 …

Recommendation and review posted by Bethany Smith

Allogeneic Cardiac-Derived Stem Cells for Patients …

This project aims to demonstrate both safety and efficacy of a heart-derived cell product in patients who have experienced a heart attack either recently or in the past by conducting a mid-stage (Phase II) clinical trial. The cell product is manufactured using heart tissue obtained from a healthy donor and can be used in most other individuals. Its effect is thought to be long-lasting (months-years) although it is expected to be cleared from the body relatively quickly (weeks-months). Treatment is administered during a single brief procedure, requiring a local anesthetic and insertion of a tube (or catheter) into the heart. The overriding goal for the product is to prevent patients who have had a heart attack from deteriorating over time and developing heart failure, a condition which is defined by the hearts inability to pump blood efficiently and one which affects millions of Americans. At the outset of the project, a Phase I trial was underway. The Phase II trial was initiated at the beginning of the current reporting period, and all subjects enrolled in Phase I completed follow up during the current reporting period. Fourteen patients were treated with the heart-derived cell product as part of Phase I. The safety endpoint for the trial was pre-defined and took into consideration the following: inflammation in the heart accompanied by an immune response, death due to abnormal heart rhythms, sudden death, repeat heart attack, treatment for symptoms of heart failure, need for a heart assist device, and need for a heart transplant. Both an independent Data and Safety Monitoring Board (DSMB) and CIRM agreed that Phase I met its safety endpoint. Preliminary efficacy data from Phase I collected during the current reporting period showed evidence of improvements in scar size, a measure of damage in the heart, and ejection fraction, a measure of the hearts ability to pump blood. At the end of the current reporting period, Phase II is still enrolling subjects and clinical trial sites are still being brought on for participation in the trial. Meanwhile, the manufacturing processes established continue to be employed to create cell products for use in Phase II. Manufacturing data and trial status updates were also provided to the Food and Drug Administration (FDA) as part of standard annual reporting.

Read more:
Allogeneic Cardiac-Derived Stem Cells for Patients …

Recommendation and review posted by Bethany Smith

Crisprs Next Big Challenge: Getting Where It Needs to Go | WIRED

Your DNA is your bodys most closely guarded asset. To reach it, any would-be-invaders have to get under your skin, travel through your bloodstream undetected by immune system sentries, somehow cross a cell membrane, and finally find their way into the nucleus. Most of the time, thats a really good thing. These biological barriers prevent nasty viruses from turning your cells into disease-making factories.

But theyre also standing between patients with debilitating genetic diseases and their cures. Crispr, the promising new gene editing technology, promises to eradicate the world of human sufferingbut for all the hype and hope, it hasnt actually cured humans of anything, yet. Medical researchers have the cargo, now they just have to figure out the delivery route.

The first US trials of Crispr safety are set to begin any day now, with Europe expected to follow later this year. Chinese scientists, meanwhile, have been testing Crispr humans since 2015, as The Wall Street Journal recently reported, with mixed success. These first clinical forays involve removing cells from patients bodies, zapping them with electricity to let Crispr sneak in, then infusing them back into their bodies, to either better fight off cancer or to produce a missing blood protein. But that wont work for most rare genetic diseasesthings like cystic fibrosis, Duchennes muscular dystrophy, and Huntingtons. In the 34 trillion-cell sea that is your body, an IV bag full of Crisprd cells simply wont make a dent.

This is the same problem that has plagued the stop-and-go field of gene therapy for nearly three decades. Traditional gene therapy involves ferrying a good copy of a gene inside a harmless virus, and brute-forcing it into a cells DNA. Crisprs cutting action is much more elegant, but its bulk and vulnerability to immune attacks make it just as difficult to deliver.

The challenge is getting gene editors to the right place at the right time in the right amount, says Dan Anderson, an MIT chemical engineer and one of the scientific founders of Crispr Therapeutics. Thats a problem people have been working on for a long time. As of today there certainly is no one way to cure every disease with a single delivery formulation.

And its unlikely there will be anytime soon. So for now, most Crispr companies are taking more of a whatever works approach, borrowing mostly from gene therapys few success stories. One of those is a small, harmless helper virus called AAV, well-suited for carrying genetic instructions into a living cell. AAV wont make you sick, but it can still sneak into your cells and hijack their machinery, making them a perfect Trojan horse in which to put good stufflike a correct copy of a gene, or instructions for how to make the protein-RNA pair that forms the Crispr complex. Crisprs instructions are quite long, so they often cant fit inside one virus.

But once you get around that, theres an even bigger downside to AAV; once it ferries Crispr inside a cell, theres no good way to control its expression. And the longer Crispr hangs around, the greater the chance it could make unwanted cuts.

Delivering Crispr into the cell directly, as opposed to teaching the cell to build it, would provide more control. But doing that means enveloping the unwieldy, charged protein complex in a coating of fat particlesone that can simultaneously shield it from the immune system, get it across a cell membrane, and then release it to do its cutting work unencumbered. Although the technology is improving, its still not very efficient.

The big threeCrispr Therapeutics, Editas Medicine, and Intellia Therapeuticsas well as the latest newcomer, Casebia, are all investing in AAV and lipid nanoparticles, and testing both for their first rounds of treatment. Were leveraging existing delivery technologies, while exploring and developing the next generation, says Editas CEO Katrine Bosley. We will use whatever works best for a given target.

But industry isnt the only one feeling the urgency. This week the National Institutes of Health announced it will be awarding $190 million in research grants over the next six years, in part to push gene editing technologies into the mainstream. The focus of the Somatic Cell Genome Editing program is to dramatically accelerate the translation of these technologies to the clinic for treatment of as many genetic diseases as possible, NIH Director Francis Collins said in a statement Tuesday. Which could encourage some of the more exotic, experimental delivery systems out in the research worldstrategies like Crispr-covered gold beads, yarn-like ball structures called DNA nanoclews, and shape-shifting polymers to get the editor where it needs to go.

In October, UC Berkeley researchers Kunwoo Lee, Hyo Min Park, and Nirhen Murthy used those gold nanoparticles to repair the muscular dystrophy gene in mice. Theyre now expanding that work in a startup the trio cofounded called GenEdit. They plan to develop a suite of nanoparticle delivery vehicles optimized to different tissues, starting with muscles and the brain. Then theyll partner with the folks making the Crispr payloads. That will make it the first company devoted solely to Crispr delivery. The gene editing world is filling up with products to deliverbut even Amazon needs UPS.

Originally posted here:
Crisprs Next Big Challenge: Getting Where It Needs to Go | WIRED

Recommendation and review posted by simmons

Stem Cell Center Of NJ – New Jersey Stem Cell Therapy

COPD

Over 32 million Americans suffer from chronic obstructive pulmonary disease (also known as COPD). COPD is a progressive lung disease, however regenerative medicine, such as lung regeneration therapies using stem cells are showing potential for COPD by encouraging tissue repair and reducing inflammation to the diseased lung tissue.

Following up with stem cell therapy and exome therapy immediately in the first 36 to 48 hours after stroke symptoms surface has proven to be crucial to long-term recovery and regaining mobility again. Cell therapy also calms post-stroke inflammation in the body, and reduces risk of serious infections.

Parkinsons is a neurodegenerative brain disorder caused by the gradual loss of dopamine-producing cells in the brain. It afflicts more than 1 million people in the U.S., and currently, there is no known cure. Stem cell therapies have been showing incredible progress. Using induced pluripotent stem (iPS) cells, a mature cell can be reprogrammed into an embryonic-like, healthy and highly-functioning state, which has the potential to become a dopamine-producing cell in the brain.

A thick, full head of hair is possible, naturally! Stem cell and exosome therapy promotes healing from within to naturally stimulate hair follicles, which encourages new hair growth. Using your own stem cells, Platelet Rich Plasma (PRP) and exosomes, you can regrow your own healthy, thick hair naturally and restore your confidence!

Erectile Dysfunction (ED) is the inability to achieve or maintain an erection sufficient for satisfactory sexual intercourse. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue to improve performance and sensation.

If chronic joint pain is derailing your active lifestyle, then youre not alone. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to reduce inflammation, promote natural healing and regenerate healthy tissue surrounding the joint for relief.

Multiple Sclerosis (MS) affects 400,000 people in the U.S., and occurs when the body has an abnormal immune system response and attacks the central nervous system. Regenerative medicine now offers treatment for MS with stem cell therapy, which is an exciting and rapidly developing field of therapy. Stem cells work to repair damaged cells these new cells can become replacement cells to restore normal functionality.

Spinal cord injuries are as complex as they are devastating. Today, cellular treatments, usually a combination of therapies, such as stem cell, Platelet Rich Plasma (PRP) and exosome therapy with growth factors are showing promise in contributing to spinal cord repair and reducing inflammation at the site of injury.

If you have chronic nerve injury pain that doesnt fade, your health care provider may recommend surgery to reverse the damage. However, regenerative medicine offers a non-surgical option to repair damaged tissue and reduce inflammation at the site of injury. Stem cell therapy commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue.

Neuropathy also called peripheral neuropathy occurs when nerves are damaged and cant send messages from the brain and spinal cord to the muscles, skin and other parts of the body. Simply put, the two areas stop communicating. Stem cell and exosome therapies treat damaged nerves affected by neuropathy, and they have the ability to replicate and create new, healthy cells, while repairing damaged tissue.

See more here:
Stem Cell Center Of NJ – New Jersey Stem Cell Therapy

Recommendation and review posted by simmons

Pluripotent Stem CellBased Therapy for Heart Disease …

Five million people in the U.S. suffer with heart failure, resulting in ~60,000 deaths/year at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike other organs, the heart is unable to fully repair itself after injury. One of the common causes for the development of heart damage is a heart attack. After a myocardial infarction (heart attack), irreversible loss of contracting heart muscle cells occurs, resulting in scar formation and subsequently heart failure. Current therapies designed to treat heart attack patients in the acute setting include medical therapies and catheter-based technologies that aim to open the blocked coronary arteries with the hope of salvaging as much of the jeopardized heart muscle cells as possible. Unfortunately, despite advances over the past 2 decades, it is rarely possible to rescue the at-risk heart muscle cells from some degree of irreversible injury and death.

Attention has turned to new methods of treating heart attack and heart failure patients in both the acute and chronic settings after their event. Heart transplantation remains the ultimate approach to treating end-stage heart failure patients but this therapy is invasive, costly, some patients are not candidates for transplantation given their other co-morbidities, and most importantly, there are not enough organs for transplanting the increasing number of patients who need this therapy. As such, newer therapies are needed to treat the millions of patients with debilitating heart conditions. Recently, it has been discovered that stem cells may hold therapeutic potential for these patients. Experimental studies in animals have revealed encouraging results when pluripotent stem cells are introduced into the heart around areas of myocardial infarction. These therapies appear to result in improvement in the contractile function of the heart.

However, numerous questions remain unanswered concerning the use of pluripotent stem cells as therapy for patients with heart attack and heart failure. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance the possibility of their use in therapy for damaged heart muscle. We have developed methods for identifying and isolating specific types of human ES and iPS cells, stimulating them to become human heart muscle cells, and delivering these into the hearts of rodents that have had a heart attack. This research will refine and advance such approaches in small and large animals, develop clinical grade cells for use, and ultimately initiate clinical trials for patients suffering from heart disease.

Read this article:
Pluripotent Stem CellBased Therapy for Heart Disease …

Recommendation and review posted by simmons

Healthier Andropause Build to Balance

To the men out there, this post is for you! Im sure youre well aware that testosterone is critical for your health and vitality. But are you aware of its decline during the aging process, and that you can start doing something about it today with healthy diet and lifestyle practices?

Andropause, sometimes referred to as Male Menopause or Hypogonadism, is the decline of testosterone production in aging men (starting around 50s). Testosterone is a male sex hormone that is important for sexual and reproductive development. The hormone influences sex drive, sperm production, fat distribution, red cell production, maintenance of muscle strength and mass, and the prevention of osteoporosis in men. When its production starts to decline, primarily due to aging, men can experience unfavorable symptoms (many similar to menopause):

Aging is an inevitable part of life, and a top contributing factor for andropause. SHBG (sex hormone binding globulin) increases with age, which binds with testosterone rendering it unavailable. A healthy diet and lifestyle can help slow the aging process and the onset of andropause. Here is what to focus on:

Bottom line keep that male vitality going strong today and every day by adopting a healthy diet and lifestyle.

References:

Bauman, E. NC202.2 Mens & Womens Health Lecture 2 (PowerPoint Handout). Retrieved from Bauman College: https://baumancollege.instructure.com

Rettner, R. (June 2017). What is Testosterone? Live Science. Retrieved from https://www.livescience.com/38963-testosterone.html

The Truth About Alcohol, Fat Loss, and Testosterone. (Oct. 2016). Prostate.net.Retrieved fromhttps://prostate.net/articles/join-30-day-alcohol-fast-t-levels-liver-will-thank

Like Loading…

Related

Read the original here:
Healthier Andropause Build to Balance

Recommendation and review posted by sam

Diminished Androgen and Estrogen Receptors and Aromatase …

Aims: One third of males with type 2 diabetes have hypogonadism, characterized by low total and free testosterone concentrations. We hypothesized that this condition is associated with a compensatory increase in the expression of androgen receptors (AR) and that testosterone replacement reverses these changes. We also measured estrogen receptor and aromatase expression.

Materials and Methods: This is a randomized double-blind placebo controlled trial. 32 hypogonadal and 32 eugonadal men with type 2 diabetes were recruited. Hypogonadal men were randomized to receive intramuscular testosterone or saline every 2 weeks for 22 weeks. We measured AR, ER and aromatase expression in peripheral blood mononuclear cells (MNC) and adipose tissue in hypogonadal and eugonadal males with type 2 diabetes at baseline and after 22 weeks of treatment in those with hypogonadism.

Results: The mRNA expression of AR, ER and aromatase in adipose tissue from hypogonadal men was significantly lower as compared to eugonadal men and it increased significantly to levels comparable to those in eugonadal patients with type 2 diabetes following testosterone treatment. AR mRNA expression was also significantly lower in MNC from hypogonadal patients compared to eugonadal T2DM patients. Testosterone administration in hypogonadal patients also restored AR mRNA and nuclear extract protein levels from MNC to that in eugonadal patients.

Conclusions: We conclude that, contrary to our hypothesis, the expression of AR, ER and aromatase is significantly diminished in hypogonadal men as compared to eugonadal men with type 2 diabetes. Following testosterone replacement, there is a reversal of these deficits.

Here is the original post:
Diminished Androgen and Estrogen Receptors and Aromatase …

Recommendation and review posted by Bethany Smith

Attention, Men: Doing This Every Day Could Lower Your …

Got a headache? Take an ibuprofen. Sore muscles? Pop a painkiller. But if you take a daily dose of ibuprofen, we have some bad news: All of those pills can add up. They might increase your risk ofheart attacksandcausemuscle weakness, for starters. Now, new research shows that ibuprofen can damage fertility, too.

According to a new study published in Proceedings of the National Academy of Sciences, men who take this popular pain reliever over a long period of time might be more likely to develop a condition called compensated hypogonadism, which could reduce their fertility. Find out the other daily habits that may be harming your fertility.

For the study, 31 men between the ages of 18 and 35 took 600 milligrams (three tablets) a day of ibuprofen for six weeks. Other volunteers received a placebo drug. Then, a team of researchers from Denmark and France monitored the participants for two weeks.

By the end of the study, all of the volunteers showed higher levels of luteinizing hormones, which prevented certain cells in their testicles from producing testosterone. The researchers also found that participants’ pituitary glands were producing more of another hormone that encouraged their bodies to produce more testosterone.

While the combination of these two responses kept the participants’ overall testosterone levels constant, the changes still overworked their bodies, causing compensated hypogonadism. This condition can cause a temporary reduction in the production of sperm cells in men, reducing their fertility.

But hold upyou might not want to toss those painkillers just yet. It’s likely that the average ibuprofen user won’t experience any negative side effects to their fertility; on the other hand, regularly using the drug for long periods of time could be cause for concern, researchers say. Still, it cant hurt to cut back on the pills in the meantime, regardless of your normal doseat least until further studies are done.

Concerned about your baby-making ability? Heres what men can do to boost their fertility.

[Source: MedicalXpress]

See the article here:
Attention, Men: Doing This Every Day Could Lower Your …

Recommendation and review posted by sam

Lilly pulls Axiron from Korean market | Righting Injustice

Eli Lilly & Co. has taken its topical testosterone replacement therapy Axiron off the market in Korea after gaining the blessing of the countrys Ministry of Food and Drug Safety. The company said that it made the decision to withdraw the treatment from the market in Korea due to several factors including low male menopause awareness and the existence of substitutable medicines.

Axiron was developed by Australian pharmaceutical company Acrux and marketed by U.S.-based Lilly. It was approved by the U.S. Food and Drug Administration (FDA) in 2010 for the treatment of hypogonadism, a condition in which men do not produce enough of the male hormone due to injury, disease or defect. Axiron was approved by Koreas Ministry of Food and Drug Safety in November 2013, and hit the market there in 2014.

Lilly pulled Axiron from the U.S. as well as other countries, including Australia, last year, citing multiple commercial manufacturers supplying the U.S. market.

Not only was Eli Lilly & Co. facing growing competition from generic Axiron in the U.S., the company is also facing a slew of lawsuits as part of a multidistrict litigation naming several makers of testosterone replacement therapies for not warning the drug could incease the risk of heart attacks, strokes, blood clots and death. Two cases against AbbVie Inc., over its AndroGel testosterone treatment have been tried resulting in verdicts totaling nearly $300 million.

Lilly was to face its first two bellwether trials in the multidictrict litigation this month and in March, but announced it had reached a global settlement in all the cases. The judge overseeing the cases canceled the trial dates involving Axiron.

Sources:Korea Bio MedRighting Injustice

The rest is here:
Lilly pulls Axiron from Korean market | Righting Injustice

Recommendation and review posted by simmons

New CRISPR method could take gene editing to the next level

Remove and replace

Science / Alamy Stock Photo

By Michael Le Page

The CRISPR genome-editing method may just have become even more powerful. Uri David Akavias team at McGill University in Canada has managed to repair mutations in 90 per cent of target cells using CRISPR the best success rate yet.

The CRISPR approach is very good at disabling genes, but using the technique to fix them is much harder, because it involves replacing a faulty sequence with another. This typically works in less than 10 per cent of target cells.

To make the process more efficient, Akavias team physically linked the replacement DNA with the CRISPR protein that finds and cuts the faulty sequence. This ensures that the replacement DNA is there ready to be slotted in once the cut is made. Weve taped the [replacement] text to the scissors, says Akavia.

The team also used a polymer

See the original post:
New CRISPR method could take gene editing to the next level

Recommendation and review posted by sam

The coming of age of gene therapy: A review of the past …

Media Advisory

Friday, January 12, 2018

No longer the future of medicine, gene therapy is part of present-day clinical treatment.

After three decades of hopes tempered by setbacks, gene therapythe process of treating a disease by modifying a persons DNAis no longer the future of medicine, but is part of the present-day clinical treatment toolkit. The Jan. 12 issue of the journal Science provides an in-depth and timely review of the key developments that have led to several successful gene therapy treatments for patients with serious medical conditions.

Co-authored by Cynthia E. Dunbar, M.D., senior investigator at the Hematology Branch of the National Heart, Lung and Blood Institute (NHLBI), part of the National Institutes of Health, the article also discusses emerging genome editing technologies. According to Dunbar and her colleagues, these methods, including the CRISPR/Cas9 approach, would provide ways to correct or alter an individual’s genome with precision, which should translate into broader and more effective gene therapy approaches.

Gene therapy is designed to introduce genetic material into cells to compensate for or correct abnormal genes. If a mutated gene causes damage to or spurs the disappearance of a necessary protein, for example, gene therapy may be able to introduce a normal copy of the gene to restore the function of that protein.

The authors focused on the approaches that have delivered the best outcomes in gene therapy so far: 1) direct in vivo administration of viral vectors, or the use of viruses to deliver the therapeutic genes into human cells; and 2) the transfer of genetically engineered blood or bone marrow stem cells from a patient, modified in a lab, then injected back into the same patient.

Originally envisioned as a treatment solely for inherited disorders, gene therapy is now being applied to acquired conditions such as cancer. For example, the engineering of lymphocytes, white blood cells, that can be used in the targeted killing of cancer cells.

In 2017, a steady stream of encouraging clinical results showed progress in gene therapies for hemophilia, sickle-cell disease, blindness, several serious inherited neurodegenerative disorders, an array of other genetic diseases, and multiple cancers of the bone marrow and lymph nodes.

Three gene therapies have been approved by the U.S. Food and Drug Administration in the past year, and many more are under active clinical investigation. The authors looked to the future of gene therapies, and the challenges of delivering these complex treatments to patients.

Much of this research has been funded by NIH, and key advances took place in the NIH Clinical Center.

Cynthia E. Dunbar, M.D., senior investigator, Hematology Branch, NHLBI, NIH, is available for comments.

Dunbar et al., Gene therapy comes of age. Science 359, eaan4672 (2018)

For more information or to schedule an interview, please contact the NHLBI Office of Science Policy, Engagement, Education, and Communications at 301-496-5449 or nhlbi_news@nhlbi.nih.gov.

Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at https://www.nhlbi.nih.gov.

About the National Institutes of Health (NIH):NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

See the original post here:
The coming of age of gene therapy: A review of the past …

Recommendation and review posted by Bethany Smith

Gene therapy comes of age | Science

Gene therapy: The power of persistence

Nearly 50 years after the concept was first proposed, gene therapy is now considered a promising treatment option for several human diseases. The path to success has been long and tortuous. Serious adverse effects were encountered in early clinical studies, but this fueled basic research that led to safer and more efficient gene transfer vectors. Gene therapy in various forms has produced clinical benefits in patients with blindness, neuromuscular disease, hemophilia, immunodeficiencies, and cancer. Dunbar et al. review the pioneering work that led the gene therapy field to its current state, describe gene-editing technologies that are expected to play a major role in the field’s future, and discuss practical challenges in getting these therapies to patients who need them.

Science, this issue p. eaan4672

Nearly five decades ago, visionary scientists hypothesized that genetic modification by exogenous DNA might be an effective treatment for inherited human diseases. This gene therapy strategy offered the theoretical advantage that a durable and possibly curative clinical benefit would be achieved by a single treatment. Although the journey from concept to clinical application has been long and tortuous, gene therapy is now bringing new treatment options to multiple fields of medicine. We review critical discoveries leading to the development of successful gene therapies, focusing on direct in vivo administration of viral vectors, adoptive transfer of genetically engineered T cells or hematopoietic stem cells, and emerging genome editing technologies.

The development of gene delivery vectors such as replication-defective retro viruses and adeno-associated virus (AAV), coupled with encouraging results in preclinical disease models, led to the initiation of clinical trials in the early 1990s. Unfortunately, these early trials exposed serious therapy-related toxicities, including inflammatory responses to the vectors and malignancies caused by vector-mediated insertional activation of proto-oncogenes. These setbacks fueled more basic research in virology, immunology, cell biology, model development, and target disease, which ultimately led to successful clinical translation of gene therapies in the 2000s. Lentiviral vectors improved efficiency of gene transfer to nondividing cells. In early-phase clinical trials, these safer and more efficient vectors were used for transduction of autologous hematopoietic stem cells, leading to clinical benefit in patients with immunodeficiencies, hemoglobinopathies, and metabolic and storage disorders. T cells engineered to express CD19-specific chimeric antigen receptors were shown to have potent antitumor activity in patients with lymphoid malignancies. In vivo delivery of therapeutic AAV vectors to the retina, liver, and nervous system resulted in clinical improvement in patients with congenital blindness, hemophilia B, and spinal muscular atrophy, respectively. In the United States, Food and Drug Administration (FDA) approvals of the first gene therapy products occurred in 2017, including chimeric antigen receptor (CAR)T cells to treat B cell malignancies and AAV vectors for in vivo treatment of congenital blindness. Promising clinical trial results in neuromuscular diseases and hemophilia will likely result in additional approvals in the near future.

In recent years, genome editing technologies have been developed that are based on engineered or bacterial nucleases. In contrast to viral vectors, which can mediate only gene addition, genome editing approaches offer a precise scalpel for gene addition, gene ablation, and gene correction. Genome editing can be performed on cells ex vivo or the editing machinery can be delivered in vivo to effect in situ genome editing. Translation of these technologies to patient care is in its infancy in comparison to viral gene addition therapies, but multiple clinical genome editing trials are expected to open over the next decade.

Building on decades of scientific, clinical, and manufacturing advances, gene therapies have begun to improve the lives of patients with cancer and a variety of inherited genetic diseases. Partnerships with biotechnology and pharmaceutical companies with expertise in manufacturing and scale-up will be required for these therapies to have a broad impact on human disease. Many challenges remain, including understanding and preventing genotoxicity from integrating vectors or off-target genome editing, improving gene transfer or editing efficiency to levels necessary for treatment of many target diseases, preventing immune responses that limit in vivo administration of vectors or genome editing complexes, and overcoming manufacturing and regulatory hurdles. Importantly, a societal consensus must be reached on the ethics of germline genome editing in light of rapid scientific advances that have made this a real, rather than hypothetical, issue. Finally, payers and gene therapy clinicians and companies will need to work together to design and test new payment models to facilitate delivery of expensive but potentially curative therapies to patients in need. The ability of gene therapies to provide durable benefits to human health, exemplified by the scientific advances and clinical successes over the past several years, justifies continued optimism and increasing efforts toward making these therapies part of our standard treatment armamentarium for human disease.

AAV and lentiviral vectors are the basis of several recently approved gene therapies. Gene editing technologies are in their translational and clinical infancy but are expected to play an increasing role in the field.

After almost 30 years of promise tempered by setbacks, gene therapies are rapidly becoming a critical component of the therapeutic armamentarium for a variety of inherited and acquired human diseases. Gene therapies for inherited immune disorders, hemophilia, eye and neurodegenerative disorders, and lymphoid cancers recently progressed to approved drug status in the United States and Europe, or are anticipated to receive approval in the near future. In this Review, we discuss milestones in the development of gene therapies, focusing on direct in vivo administration of viral vectors and adoptive transfer of genetically engineered T cells or hematopoietic stem cells. We also discuss emerging genome editing technologies that should further advance the scope and efficacy of gene therapy approaches.

The rest is here:
Gene therapy comes of age | Science

Recommendation and review posted by Bethany Smith

CRISPR hits a snag: Our immune systems may attack the treatment

A

new paper points to a previously unknown hurdle for scientists racing to develop therapies using the revolutionary genome-editing tool CRISPR-Cas9: the human immune system.

In a study posted Friday on the preprint site bioRxiv, researchers reported that many people have existing immune proteins and cells primed to target the Cas9 proteins included in CRISPR complexes. That means those patients might be immune to CRISPR-based therapies or vulnerable to dangerous side effects the latter being especially concerning as CRISPR treatments move closer to clinical trials.

But researchers not involved with the study said its findings, if substantiated, could be worked around. (Papers are posted to bioRxiv before being peer-reviewed.) Many of the first planned CRISPR clinical trials, for example, involve removing cells from patients, fixing their DNA, and then returning them to patients. In that case, its possible that there will be few or no CRISPR proteins remaining for the immune system to detect.

advertisement

They also noted that scientists are already studying other types of CRISPR that use different proteins, which could stave off the immune responses.

At the end of the day, Im not that concerned about it, said Daniel Anderson of the Massachusetts Institute of Technology, who has studied the delivery of CRISPR therapies and who was not involved with the new study. But we want to do some experiments to learn more.

The new study should not put the brakes on developing CRISPR therapies, agreed Dr. Matthew Porteus of Stanford, a senior author of the paper and who is himself at work on a CRISPR-based therapy for sickle cell disease. But he said he and his colleagues investigated the immune issues because he felt they were being overlooked as the excitement around CRISPR grew.

Like any new technology, you want to identify potential problems and engineer solutions for them, Porteus said. And I think thats where were at. This is an issue that should be addressed.

(Porteus and Anderson are both scientific founders of CRISPR Therapeutics, one of the most prominent companies exploring CRISPR-based therapies.)

CRISPR has gained fame in recent years as researchers have deployed it to correct an array of disease-causing mutations in cells in the lab and in animal models, with hopes that the same results can be achieved in people. There are different types of CRISPR systems, but the most well known is dubbed CRISPR-Cas9; it includes Cas9 proteins that cut DNA so that it can be edited. Cas9 proteins come from bacteria.

For the study, the researchers decided to check for immune signals against two of the most common types of Cas9 proteins used, those from the bacteria S. aureus (called SaCas9) and those from S. pyogenes (called SpCas9). In their samples of blood from 22 newborns and 12 adults, the scientists found that 79 percent of donors had immune proteins, called antibodies, against SaCas9, and 65 percent had antibodies against SpCas9.

The researchers then searched for immune cells called T cells. They discovered that about half of the donors had T cells that specifically targeted SaCas9, so that if the immune cells detected that protein on the surface of a cell, they would rally a response to try to destroy it. The researchers did not find anti-SpCas9 T cells, though they said the cells might still have been present.

Its not surprising so many of the donors had antibodies and T cells against the Cas9 proteins, experts said. That simply means that those people had been exposed to the bacteria containing the proteins in the past, and other studies have found that, at any given time, 40 percent of people are colonized by S. aureus and 20 percent of schoolchildren have S. pyogenes. The bacteria only sometimes cause disease.

But what then does that previous exposure mean for our receptiveness to CRISPR therapies?

A lot remains unclear, Porteus said. Its not known how severe the immune response would be, and whether it would trigger a dangerous inflammatory attack or just render the treatment useless.

Experts also said that perhaps the immune responses could be avoided. If the CRISPR complex does its editing after the cells are removed from the patient whats called ex vivo or in a place like the eye that is isolated from the immune system, then the antibodies and T cells might not detect any Cas9 proteins. Even in in vivo therapies in which CRISPR complexes would be ferried into cells in a patients body much depends on what kind of delivery system is used and whether the Cas9 proteins become expressed on the outside of the cells in which the editing is taking place.

Porteus said he and his team decided to post the paper on bioRxiv because they wanted CRISPR researchers to start thinking now about possible immune system challenges. The team has also submitted the paper to a journal for peer review and publication.

As a cautionary tale about the importance of asking these questions now, Porteus pointed to what happened with gene therapy in 1999. In that case, a patient in a trial died after an immune system attack, likely because he had preexisting antibodies against a virus used as part of the therapy. The death led to years lost in gene therapy development, experts say. (Patients who have preexisting antibodies to viruses used in gene therapies are now generally excluded from trials.)

I would hate to see the field have a major setback because we didnt address this potential issue, Porteus said. We should learn from that.

Roland Herzog, a gene therapy expert at the University of Florida, agreed that the hype around CRISPR meant that possible immune issues were not being given enough credence.

I suspect that the field has not been aware of it sufficiently, he said. Its not a show stopper, he added about the paper, but the field needs to know about this, that its a potential problem that they need to work around or fix.

One possible fix is simply using a different protein or enzyme in the CRISPR complex, one that doesnt come from such common bacteria. If people havent been exposed to the bacterial protein previously, then they wont have specific antibodies or T cells ready to attack.

New Cas editing enzymes are being described all the time from bacterial species that are not human pathogens (and so there would be no chance to develop the pre-existing antibodies), Jacob Corn, of the University of California, Berkeley, who was not involved with the new paper, wrote in an email. I also know some people have already been working on making Cas enzymes that would be invisible to the immune system.

He added: The field moves very fast!

General Assignment Reporter

Andrew is a general assignment reporter at STAT.

Go here to see the original:
CRISPR hits a snag: Our immune systems may attack the treatment

Recommendation and review posted by simmons

Obstacle to Using CRISPR in Humans? The Immune System – The …

2018 is supposed to be the year of CRISPR in humans. The first U.S. and European clinical trials that test the gene-editing tool’s ability to treat diseasessuch as sickle-cell anemia, beta thalassemia, and a type of inherited blindnessare slated to begin this year.

But the year has begun on a cautionary note. On Friday, Stanford researchers posted a preprint (which has not been peer reviewed) to the website biorXiv highlighting a potential obstacle to using CRISPR in humans: Many of us may already be immune to it. Thats because CRISPR actually comes from bacteria that often live on or infect humans, and we have built up immunity to the proteins from these bacteria over our lives.

Its the first time this concern has been aired so publicly, and the preprint kicked off something of a firestorm. We had no anticipation it would be picked up so broadly on social media. I dont even have a Twitter account. I just heard this from others, says Matthew Porteus, a pediatrician and stem-cell researcher at Stanford who led the study and is working on a clinical trial for sickle-cell anemia.

Not all CRISPR therapies in humans will be doomed. We dont think this is the end of the story. This is the start of the story, says Porteus. There are likely ways around the problem of immunity to CRISPR proteins, and many of the early clinical trials appear to be designed around this problem.

Porteus and his colleagues focused on two versions of Cas9, the bacterial protein mostly commonly used in CRISPR gene editing. One comes from Staphylococcus aureus, which often harmlessly lives on skin but can sometimes causes staph infections, and another from Streptococcus pyogenes, which causes strep throat but can also become flesh-eating bacteria when it spreads to other parts of the body. So yeah, you want your immune system to be on guard against these bacteria.

The human immune system has a couple different ways of recognizing foreign proteins, and the team tested for both. First, they looked to see if people have molecules in their blood called antibodies that can specifically bind to Cas9. Among 34 people they tested, 79 percent had antibodies against the staph Cas9 and 65 percent against the strep Cas9.

Then, they looked to see if a particular type of immune cells called T cells can recognize the Cas9 proteins. This time they studied T cells from 13 healthy adults. Six of themor 46 percentreacted to the staph Cas9. None of them did against the strep Cas9.

The Stanford team only tested for preexisting immunity against Cas9, but anytime you inject a large bacterial protein into the human body, it can provoke an immune response. After all, thats how the immune system learns to fight off bacteria its never seen before. (Preexisting immunity can make the response faster and more robust, though.)

In statements to The Atlantic, three of the leading companies in CRISPR human therapyEditas Medicine, CRISPR Therapeutics, and Intellia Therapeuticsall downplayed the new findings, citing various ways their therapies could around the immune system. (Porteus is a scientific founder of CRISPR Therapeutics, though this study was performed independently.) A September 2017 presentation from a scientist at Editas Medicine also detailed some of the ways to test for immune reactions to CRISPR, anticipating a potential problem.

Here are some possible strategies to get around the immune system that are being discussed and tested:

Only use CRISPR outside of the body: Instead of delivering CRISPR/Cas9 into the body, you take cells out of the body, use CRISPR to edit their genes in a lab, and return Cas9-free cells. This is the strategy pursued by CRISPR Therapeutics for the inherited blood disorder thalassemia and in various trials using CRISPR to modify immune cells to attack cancer.

Only use CRISPR in places the immune system cannot reach: Some sites of the body are immunoprivileged, meaning the immune system cant really attack invaders there. The eye, which Editas Medicine is targeting for inherited blindness, is one of those sites.

Modify Cas9 or use a different CRISPR protein altogether: It may be possible to redesign Cas9 to hide it from the immune system or to find other bacterial proteins that can do the job of Cas9 without provoking the immune response. Many different bacteria have CRISPR systems. We already have lots of Cas enzymes and could get many more, George Church, a geneticist at Harvard and a founding scientific advisor of Editas, wrote in an email.

Express Cas9 only transiently:Once Cas9 has made its edit, it doesnt need to stick around. A spokesperson for Intellia noted that its still unclear how the immune system responds to continuous versus transient expression of Cas9. The company says its lipid-nanoparticle delivery system can get cells to make Cas9 only transiently, but enough for the editing to happen in rodents and non-human primates.

The one type of therapy where immune response may be most dangerous and unavoidable is when Cas9 is produced for a prolonged period of time in a non-immunoprivileged site. In the liver, for instance, the immune system could end up attacking the Cas9-making liver cells.

The danger of the immune system turning on a patients body hangs over a lot of research into correcting genes. In the late 1990s and 2000s, research into gene therapy was derailed by the death of 18-year-old Jesse Gelsinger, who died from an immune reaction to the virus used to deliver the corrected gene. This is the worst-case scenario that the CRISPR world hopes to avoid.

Read the original:
Obstacle to Using CRISPR in Humans? The Immune System – The …

Recommendation and review posted by sam

Is Infertility Genetic? | Female Infertility Genetic …

Many women are unable to conceive and deliver a healthy baby due to genetic factors. Sometimes this is due to an inherited chromosome abnormality. Other times it is because of a single-gene defect passed from parent to child.

In addition, if other women in your family have had problems conceiving due to premature menopause, endometriosis or other factors, you may be at increased risk of the same problems.

Chromosomally abnormal embryos have a low rate of implantation in the mothers uterus, often leading to miscarriages. If an abnormal embryo does implant, the pregnancy may still result in miscarriage or the birth of a baby with physical problems, developmental delay, or mental retardation.

There are several kinds of chromosome abnormalities:

Translocation is the most common of these. Although a parent who carries a translocation is frequently normal, his or her embryo may receive too much or too little genetic material, and a miscarriage often results.

Couples with specific chromosome defects may benefit from pre-implantation genetic diagnosis (PGD) in conjunction with in vitro fertilization (IVF).

Down syndrome is usually associated with advanced maternal age and is a common example of aneuploidy. Down syndrome is caused by having an extra number-21 chromosome (three instead of two). It is also referred to as trisomy 21.

More rare is the existence of an inherited genetic disease due to abnormal genes or mutations. Chromosome analysis of the parents blood identifies such an inherited genetic cause in less than 5 percent of couples.

Single-gene abnormalities are mutations caused by changes in the DNA sequence of a gene, which produce proteins that allow cells to work properly. Gene mutations alter the functioning of cells due to a lack of a protein.

Single-gene disorders usually indicate a family history of a specific genetic disease such as cystic fibrosis (CF) an incurable and fatal disease affecting the mucous glands of vital organs and Tay Sachs, also a fatal disorder, in which harmful quantities of a fatty substance build up in tissues and nerve cells in the brain.

Though generally rare, these diseases are usually devastating to a family. Fortunately, much progress has been made in detection through pre-implantation genetic diagnosis (PGD) in conjunction with in vitro fertilization (IVF).

Although a couple may otherwise have no fertility problems, IVF and PGD can work together to spare mother and father from heartache in cases where there is a known single-gene family history.

Learn more about genetic causes of infertility

Read this article:
Is Infertility Genetic? | Female Infertility Genetic …

Recommendation and review posted by simmons

Bone Marrow and Stem Cell Transplant | Cook Children’s

Certain diseases and treatments can deplete a child’s healthy stem cells. Sometimes the body needs help to replenish those cells. When this happens, your child may require a very complex process called a stem cell or bone marrow transplant.

Since 1986, Cook Children’s Bone Marrow and Stem Cell Transplant program has performed more than 1,000 transplants in children with cancer, blood disorders or inherited conditions. That’s what makes this program one of the more diverse and experienced pediatric transplant programs in the Southwest.

Cook Children’s is a member of:

Over the last three years, 30 to 40 transplants were performed every year for a variety of diseases, with leukemia being the most common primary diagnosis.

The goal of the program is to provide a stem cell or marrow transplant to any child who needs one and to improve the outcomes for these patients who do not have better therapy options. We work to achieve this goal through excellent clinical care from several services within Cook Children’s, quality initiatives and ongoing comparison of our processes and performance against large academic transplant centers and international data.

Common referral diagnoses:

Stem cells are cells in the body that have the potential to turn into anything, such as a skin cell, a liver cell, a brain cell, or a blood cell. Stem cells that turn into blood cells are called hematopoietic stem cells. These cells are capable of developing into the three types of blood cells:

Stem cells may come from the patient or from a donor. Stem cells that come from a patient may come from their own cord blood cells if they were harvested from the mother’s placenta immediately after the child was born and frozen for later use. Stem cells may also be harvested and frozen before the child or teen undergoes treatment. These stem cells are thawed and put back into the patient’s body after treatment is complete.

Donor stem cells come from a compatible family member or through a match from a national registry of donors. Depending on the particular needs of your child, one or all three types of a donor’s stem cells will be harvested:

While all three types can replenish a patient’s blood and bone marrow cells, there are advantages and disadvantages to each. The doctor will discuss these issues and suggest the best type of stem cell for your child’s illness.

If your child has been diagnosed, you probably have lots of questions. We can help. If you would like to schedule an appointment, refer a patient or speak to our staff, please call our offices at 682-885-4007.

See more here:
Bone Marrow and Stem Cell Transplant | Cook Children’s

Recommendation and review posted by Bethany Smith

Embryonic Stem Cells | Stem Cells Freak

As their name suggests, embryonic stem cells (ESCs) are stem cells that are derived from embryos. If we wanted to be more scientific, we would say that ESCs are pluripotent stem cells derived from a blastocyst, an embryo in a very early stage (4-5 days of age).A blastocyst is consisted of 50-150 cells. ESCs measure approximately 14m in diameter.

The use of human embryonic stem cells is highly controversial, as their extraction requires the destruction of a human embryo, raising a great number of ethical issues. The main one is whether a blastocyst can be considered a living person or not. Check our article, Stem Cell Controversy for more info on this topic

Embryonic Stem cell propertiesThere are two important attributes that distinguish stem cells from any other typical cell:

Embryonic stem cells are pluripotent, having the capacity to differentiate and develop into almost all kinds of cells belonging to thethree primary germ layers:

As for self-renewal, ES cells have the capacity to replicate indefinitely. In other words they have the ability, under the proper conditions, to produce infinite numbers of daughter cells just from one or a few father cells.

Human Embryonic Stem Cell Extraction And CultureFirst the inner cell mass (ICM) of the blastocyst is separated from the trophectoderm. Then the cells of the ICM are placed on aplastic laboratory culture dish that contains a nutrient broth called the “culture medium”.Typically the inner surface of the dish is coated with what is called a “feeder layer”, consisting of reprogrammed embryonic mouse skin cells that don’t divide. These mouse cells lay in the bottom of the dish and act as a support for the hESCs. The feeder layer not only provides support, but it also releases all the needed nutrients for thehESCs to grow and replicate. Recently, scientists have devised new ways for culturing hESCs without the need of a mouse feeder cell, a really important advance as there is always the danger of viruses being transmitted from the mouse cells to the human embryonic stem cells.

It should be noted that the process described above isn’t always successful, and many times the cells fail to replicate and/or survive. If on the other hand, the hESCs do manage to survive and multiply enough so that the dish is “full”, they have to be removed and plated into several dishes. This replating and subculturing process can be done again and again for many months. This way we can get millions and millions of hESCs from the handful ones we had at the beginning.

At any stage of the process, a batch of hESCs can be frozen for future use or to be sent somewhere else for further culturing and experimentation.

How are human embryonic stem cells induced to differentiate ?There are various options for researchers to choose from, if they decide to differentiate the cultured cells.

The easiest one, is to simply allow the cells to replicate until the disc is “full”. Once the disc is full, they start to clump together forming embryoid bodies(rounded collections of cells ). These embryoid bodies contain all kinds of cells including muscle, nerve, blood and heart cells. As said before, although this is easiest method to induce differentiation, it is the most inefficient and unpredictable as well.

In order to induce differentiation to a specific type of cell, researchers have to change the environment of the dish by employingone of the ways below:

Human Embryonic Stem Cells, potential usesMany researchers believe that studying hESCs is crucial for fully understanding the complex events happening during the fetal development. This knowledge would also include all the complex mechanisms that trigger undifferentiated stem cells to develop into tissues and organs. A deeper understanding of all these mechanisms would in return give scientists a deeper understanding of what sometimes goes wrong and as a result tumours,birth defects and other genetic conditions occur, thus helping them to come up with effective treatments.

Several new studies also address the fact that human embryonicstem cells can be used as models for human genetic disorders that currently have no reliable model system. Two examples are the Fragile-X syndromeandCystic fibrosis.

As of now, there has been only one human clinical trial ,involving embryonic stem cells, with the officialapproval of the U.S. Food and Drug Administration (FDA).The trial started on January 23, 2009, and involved the transplantation ofoligodendrocytes (a cell type of the brain and spinal cord) derived from human embryonic stem cells. During phase I of the trial, 8 to 10paraplegics with fresh spinal cord injuries (two weeks or less) were supposed to participate.

In August 2009,the trial wasput on hold, due to concerns made by the FDA, regarding a small number of microscopic cysts found in several treated rat models. InJuly 30, 2010 the hold was lifted and researchers enrolled the first patient and administered him with the stem cell therapy.

Read the original here:
Embryonic Stem Cells | Stem Cells Freak

Recommendation and review posted by Bethany Smith

Pituitary Disorders – labtestsonline.org

NOTE: This article is based on research that utilizes the sources cited here as well as the collective experience of the Lab Tests Online Editorial Review Board. This article is periodically reviewed by the Editorial Board and may be updated as a result of the review. Any new sources cited will be added to the list and distinguished from the original sources used. To access online sources, copy and paste the URL into your browser.

Sources Used in Current Review

American Brain Tumor Association. 2014. Craniopharyngioma. Available online at http://www.abta.org/brain-tumor-information/types-of-tumors/craniopharyngioma.html. Accessed April 2, 2017.

Cleveland Clinic Center for Continuing Education. 2012. Pituitary Disorders. Available online at http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/endocrinology/pituitary-disorders/. Accessed April 2, 2017.

Goldberg J., and Jewell, T. 2016. Prolactin Level Test. Healthline. Available online at http://www.healthline.com/health/prolactin#overview1. Accessed March 31, 2017.

Hormone Health Network. 2012. Cushing Syndrome. Available online at http://www.hormone.org/diseases-and-conditions/adrenal/cushing-syndrome. Accessed April 2, 2017.

Hormone Health Network. 2013. Diabetes Insipidus. Available online at http://www.hormone.org/diseases-and-conditions/pituitary/diabetes-insipidus. Accessed April 2, 2017.

Hormone Health Network. 2012. Acromegaly. Available online at http://www.hormone.org/diseases-and-conditions/pituitary/acromegaly. Accessed April 2, 2017.

National Organization for Rare Disorders. 2013. Empty Sella Syndrome. Available online at https://rarediseases.org/rare-diseases/empty-sella-syndrome/. Accessed April 2, 2017.

Pituitary Network Association. 2013. Disorders. Available online at http://pituitary.org/knowledge-base/disorders. Accessed March 29, 2017.

Pituitary Network Association. 2013. Adrenal Insufficiency (Addison’s Disease). Available online at http://pituitary.org/knowledge-base/disorders/adrenal-insuffieciency-addison-s-disease. Accessed April 7, 2017.

Sources Used in Previous Reviews

Pagana, Kathleen D. & Pagana, Timothy J. (2001). Mosby’s Diagnostic and Laboratory Test Reference 5th Edition: Mosby, Inc., Saint Louis, MO.

(2003 February 1, Revised). Introduction. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162a.html.

(2003 February 1, Revised). Acromegaly and Gigantism. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162e.html.

(2003 February 1, Revised). Central Diabetes Insipidus. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162d.html.

Empty Sella Syndrome (2003 February 1, Revised). Empty Sella Syndrome. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162g.html.

Galactorrhea (2003 February 1, Revised). Galactorrhea. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162f.html.

(2003 February 1, Revised). Hypopituitarism. The Merck Manual of Medical Information Second Home Edition [On-line information]. Available online at http://www.merck.com/mmhe/sec13/ch162/ch162c.html.

Leung, A. and Pacaud, D. (2004 August 1). Diagnosis and Management of Galactorrhea. American Family Physician [On-line journal]. Available online at http://www.aafp.org/afp/20040801/543.html.

(2005 April). Diabetes Insipidus. FamilyDoctor.org [On-line information]. Available online at http://familydoctor.org/048.xml.

Klibanski, A., Editor (2004 January, Reviewed). Pituitary Information. The Hormone Foundation [On-line information]. Available online at http://www.hormone.org/learn/pituitary.html.

( 2004). The Pituitary Foundation. Fact Sheets [On-line information]. Available online at http://www.pituitary.org.uk. For: Cushing’s Disease, Non-Functioning Pituitary Tumours, Acromegaly, Hyperprolactinaemia, Craniopharyngioma, Hypopituitarism, Diabetes Insipidus

Clarke, W. and Dufour, D. R., Editors (2006). Contemporary Practice in Clinical Chemistry, AACC Press, Washington, DC. Pp 353-356.

Klibanski, A. Editor (2008 March)Pituitary) Pituitary Gland. The Hormone Foundation [On-line information]. Available online at http://www.hormone.org/pituitary_gland.cfm. Accessed on 1/4/09.

Principles of Endocrinology, Introduction. The Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merck.com/mmpe/sec12/ch150/ch150a.html. Accessed on 1/4/09.

Principles of Endocrinology, Endocrine Disorders. The Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merck.com/mmpe/sec12/ch150/ch150b.html. Accessed on 1/4/09.

Mayo Clinic Staff (2008 June 6). Pituitary Tumors. MayoClinic.com [On-line information]. Available online at http://www.mayoclinic.com/health/pituitary-tumors/DS00533. Accessed on 1/4/09.

(2008 August, Revised). Pituitary Disorders. Pituitary Network Association [On-line information]. Available online at http://www.pituitary.org/disorders/. Accessed on 1/4/09.

(2007 September 5, Updated). NINDS Pituitary Tumors Information Page. National Institute of Neurological Disorders and Stroke [On-line information]. Available online at http://www.ninds.nih.gov/disorders/pituitary_tumors/pituitary_tumors.htm. Accessed on 1/4/09.

Kattah, J. (2006 March 30). Pituitary Tumors. EMedicine [On-line information]. Available online at http://emedicine.medscape.com/article/1157189-overview. Accessed on 1/4/09.

Thomas, Clayton L., Editor (1997). Taber’s Cyclopedic Medical Dictionary. F.A. Davis Company, Philadelphia, PA [18th Edition]. Pp. 1481-1483.

I. Jialaal, W. E. Winter, and D.W. Chan (eds). Handbook of Diagnostic Endocrinology, AACC Press, 1999.

(Reviewed April 2009). Principles of Endocrinology, Endocrine Disorders. The Merck Manual for Healthcare Professionals [On-line information]. Available online at http://www.merck.com/mmpe/sec12/ch150/ch150a.html. Accessed on October 12, 2012

Mayo Clinic Staff. (Updated August 10, 2012). Pituitary Tumors. MayoClinic.com [On-line information]. Available online at http://www.mayoclinic.com/health/pituitary-tumors/DS00533. Accessed on October 12, 2012.

(Updated October 26, 2010). NINDS Pituitary Tumors Information Page. National Institute of Neurological Disorders and Stroke [On-line information]. Available online at http://www.ninds.nih.gov/disorders/pituitary_tumors/pituitary_tumors.htm. Accessed on October 12, 2012.

(Updated August 15, 2011). Pituitary Tumors. EMedicine. Available online at http://emedicine.medscape.com/article/1157189-overview. Accessed on October 12, 2012.

Pituitary Disorders. Pituitary Network Association. Available online at https://www.pituitary.org/library/disorders.aspx?page_id=1043. Accessed on October 12, 2012.

(Updated September 27, 2012) Empty Sella Syndrome. MedlinePlus. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/000349.htm. Accessed on October 24, 2012.

UCLA Neurosurgery. Available online at http://neurosurgery.ucla.edu/body.cfm?id=185. Accessed on October 24, 2012.

(Reviewed May 8, 2012). Hypogonadotropic hypogonadism. Pubmed Health. Available online at http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001427/. Accessed on October 24, 2012.

Read more from the original source:
Pituitary Disorders – labtestsonline.org

Recommendation and review posted by sam

Masculinizing hormone therapy – Care at Mayo Clinic – Mayo …

Mayo Clinic’s approachTeamwork

The Transgender and Intersex Specialty Care Clinic (TISCC) provides integrated medical, psychosocial and surgical intervention to individuals with gender dysphoria or incongruence and to those with disorders of sexual development. The team includes providers from various specialties including endocrinology, pediatric endocrinology, social work, psychiatry, psychology, voice therapy, gynecology and plastic surgery.

Treatments offered include:

Before you start treatment, you will meet with at least one member of the TISCC medical team a doctor or nurse practitioner and a member of the TISCC mental health team, such as a social worker, psychologist or psychiatrist. You’ll have a complete medical evaluation to make sure that your treatment risks are identified and addressed. Evaluation of your mental health ensures that any mood or mental health concerns are reasonably well-managed before you start the hormone therapy.

Each person is different. Your providers will look at your specific case in order to come up with the best recommendations for you. Your health care team will work with you during your treatment and make sure your expectations are realistic. Your team wants to make sure your goals are being met, any risks are managed and your questions are answered.

Mayo Clinic specialists are committed to providing the latest, most comprehensive treatment options for gender dysphoria. Your Mayo Clinic specialist’s advice about the best treatment for you will be based on expert knowledge of and experience with all treatment options for gender dysphoria.

At Mayo Clinic, endocrinologists, psychiatrists, psychologists, nurse practitioners, social workers and surgeons work together to provide exactly the care you need.

Having all of this expertise in a single place, focused on you, means that you’re not just getting one opinion your care is discussed among the team, your test results are available quickly, your appointments are scheduled in coordination and highly specialized experts are all working together to determine what’s best for you.

Mayo Clinic has major campuses in Phoenix and Scottsdale, Arizona; Jacksonville, Florida; and Rochester, Minnesota. The Mayo Clinic Health System has dozens of locations in several states.

For more information on visiting Mayo Clinic, choose your location below:

Mayo Clinic works with hundreds of insurance companies and is an in-network provider for millions of people.

In most cases, Mayo Clinic doesn’t require a physician referral. Some insurers require referrals, or may have additional requirements for certain medical care. All appointments are prioritized on the basis of medical need.

Learn more about appointments at Mayo Clinic.

Please contact your insurance company to verify medical coverage and to obtain any needed authorization prior to your visit. Often, your insurer’s customer service number is printed on the back of your insurance card.

Aug. 31, 2017

See the rest here:
Masculinizing hormone therapy – Care at Mayo Clinic – Mayo …

Recommendation and review posted by Bethany Smith


Archives