Page 20«..10..19202122..3040..»

BioLineRx Announces Regulatory Submission of Phase 3 Registrational Study for BL-8040 in Stem Cell Mobilization – Markets Insider

TEL AVIV, Israel, Aug 21, 2017 /PRNewswire/ –BioLineRx Ltd. (NASDAQ: BLRX) (TASE:BLRX), a clinical-stage biopharmaceutical company focused on oncology and immunology, announced today the filing of regulatory submissions required to commence a randomized, controlled Phase 3 registrational trial of BL-8040 for the mobilization of hematopoietic stem cells for autologous transplantation in patients with multiple myeloma. The trial, named GENESIS, is expected to commence by the end of 2017, following receipt of regulatory approvals.

The Phase 3 GENESIS trial is aimed at evaluating the safety, tolerability and efficacy of the combination treatment of BL-8040 and granulocyte colony-stimulating factor(G-CSF), as compared to the control arm of placebo and G-CSF. The trial will be conducted in two parts: The first part, designed to validate the optimal dosing of BL-8040, is a lead-in, open-label, multi-center study that will include 10-30 patients, in order to assess the efficacy and safety of treatment with BL-8040 and G-CSF. This part will be followed by a randomized, placebo-controlled, multi-center study in approximately 180 patients. The primary endpoint will be the proportion of subjects mobilizing 6.0 x 106CD34+ cells/kg with up to 2 apheresis sessions in preparation for autologous transplantation after a single administration of BL-8040 and G-CSF, as compared to placebo and G-CSF.

Philip Serlin, Chief Executive Officer of BioLineRx, stated, “We are excited to move forward with BL-8040 into a Phase 3 registration study. We have previously reported positive results supporting BL-8040 as a one-day dosing and up-to-two-day collection regimen for rapid mobilization of stem cells. This represents a significant improvement over the current treatment, which requires four-to-eight daily injections of G-CSF and one-to-four apheresis sessions. We therefore hope that this Phase 3 trial will further support these results and help improve the standard of care for multiple myeloma patients.”

“In parallel, we are continuing to expand the potential of our robust BL-8040 oncology platform, by advancing multiple clinical studies for additional indications that are ongoing or expected to commence during 2017. These include a large, randomized, controlled Phase 2b study in AML, as well as several Phase 2 combination studies with immune checkpoint inhibitors in solid tumors and hematological malignancies,” added Mr. Serlin.

About BL-8040

BL-8040 is a short peptide for the treatment of acute myeloid leukemia, solid tumors, and stem cell mobilization. It functions as a high-affinity antagonist for CXCR4, a chemokine receptor that is directly involved in tumor progression, angiogenesis, metastasis and cell survival. CXCR4 is over-expressed in more than 70% of human cancers and its expression often correlates with disease severity. In a number of clinical and pre-clinical studies, BL-8040 has shown robust mobilization of cancer cells from the bone marrow, thereby sensitizing these cells to chemo- and bio-based anti-cancer therapy, as well as a direct anti-cancer effect by inducing cell death (apoptosis). In addition, BL-8040 has also demonstrated robust stem-cell mobilization, including the mobilization of colony-forming cells, T, B and NK cells. BL-8040 was licensed by BioLineRx from Biokine Therapeutics and was previously developed under the name BKT-140.

About Stem Cell Mobilization

High-dose chemotherapy followed by stem cell transplantation has become an established treatment modality for a variety of hematologic malignancies, including multiple myeloma, as well as various forms of lymphoma and leukemia. Stem cells are mobilized from the bone marrow using granulocyte colony-stimulating factor (G-CSF), harvested from the peripheral blood by apheresis, and infused to the patient after chemotherapy. This type of treatment often replaces the use of traditional bone marrow transplantation, because the stem cells are easier to collect and the treatment allows for a quicker recovery time and fewer complications.

About BioLineRx

BioLineRx is a clinical-stage biopharmaceutical company focused on oncology and immunology. The Company in-licenses novel compounds, develops them through pre-clinical and/or clinical stages, and then partners with pharmaceutical companies for advanced clinical development and/or commercialization.

BioLineRx’s leading therapeutic candidates are: BL-8040, a cancer therapy platform, which has successfully completed a Phase 2a study for relapsed/refractory AML, is in the midst of a Phase 2b study as an AML consolidation treatment and is expected to initiate a Phase 3 study in stem cell mobilization for autologous transplantation; and AGI-134, an immunotherapy treatment in development for multiple solid tumors, which is expected to initiate a first-in-man study in the first half of 2018. In addition, BioLineRx has a strategic collaboration with Novartis for the co-development of selected Israeli-sourced novel drug candidates; a collaboration agreement with MSD (known as Merck in the US and Canada), on the basis of which the Company has initiated a Phase 2a study in pancreatic cancer using the combination of BL-8040 and Merck’s KEYTRUDA; and a collaboration agreement with Genentech, a member of the Roche Group, to investigate the combination of BL-8040 and Genentech’s Tecentriq (Atezolizumab) in several Phase 1b/2 studies for multiple solid tumor indications and AML.

For additional information on BioLineRx, please visit the Company’s website atwww.biolinerx.com, where you can review the Company’s SEC filings, press releases, announcements and events. BioLineRx industry updates are also regularly updated onFacebook,Twitter, andLinkedIn.

Various statements in this release concerning BioLineRx’s future expectations constitute “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995. These statements include words such as “may,” “expects,” “anticipates,” “believes,” and “intends,” and describe opinions about future events. These forward-looking statements involve known and unknown risks and uncertainties that may cause the actual results, performance or achievements of BioLineRx to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Some of these risks are: changes in relationships with collaborators; the impact of competitive products and technological changes; risks relating to the development of new products; and the ability to implement technological improvements. These and other factors are more fully discussed in the “Risk Factors” section of BioLineRx’s most recent annual report on Form 20-F filed with the Securities and Exchange Commission on March 23, 2017. In addition, any forward-looking statements represent BioLineRx’s views only as of the date of this release and should not be relied upon as representing its views as of any subsequent date. BioLineRx does not assume any obligation to update any forward-looking statements unless required by law.

Contacts:PCG AdvisoryVivian CervantesInvestor Relations+1-212-554-5482rel=”nofollow”>vivian@pcgadvisory.com

or

Tsipi HaitovskyPublic Relations+972-52-989892rel=”nofollow”>tsipihai5@gmail.com

View original content:http://www.prnewswire.com/news-releases/biolinerx-announces-regulatory-submission-of-phase-3-registrational-study-for-bl-8040-in-stem-cell-mobilization-300506916.html

SOURCE BioLineRx Ltd.

Read more here:
BioLineRx Announces Regulatory Submission of Phase 3 Registrational Study for BL-8040 in Stem Cell Mobilization – Markets Insider

Recommendation and review posted by sam

Woman who was a man to marry man who was a woman – Hindustan Times

Born a girl and now a man, Aarav Appukuttan, a 46-year-old from Kerala, says he was trapped inside a womans body for years. After undergoing a gender reassignment surgery at a Mumbai hospital, he fell in love with Sukanyeah Krishna 22, a man who underwent surgery at the same clinic to become a woman.

Aarav said he decided to eavesdrop while Sukanyeah was speaking to her family on the phone in Malayalam, as he knew the language. A casual conversation between the two led to them exchanging numbers. Their phone calls became more frequent in the coming months and cupid struck.

Neither of them has had an easy childhood. Aarav said he had long hair when he was 13. He would sit next to girls in his class, but felt unnerved by his attraction to them.

He confided in his mother, who took him to a doctor. The doctor said such problems were likely to happen at the onset of puberty, owing to hormonal imbalances. He asked Aarav to wait for a few years before opting for treatment.

However, Aarav, said his gender identity disorder (GID) only became more severe. In the next few years, he lost his mother and knew he had to take care of his siblings before he could focus on his own problems. My father remarried, he said.

I used to hate my body and wanted to cut it sometimes. But, I had to restrain myself and keep my feelings in check for 45 years. I always behaved like everything was normal, he added.

Sukanyeah said she also experienced GID during her childhood. After her father died, her mother took her to a doctor, who started her on male hormone therapy immediately. With the therapy, my facial and body structure changed. I started developing muscles, my shoulders became broader and I lost a lot of hair on my head, she said.

She said she was put on a high-protein diet, meant to aid her muscle development. No one understood what I was going through. During my Class 10 board exams, I fainted owing to the pressure, she said.She dropped out of school, studied software engineering and now works as a freelance web developer.

As the couple awaits their marriage ceremony, their friends say they expect a grand celebration. We wanted a small marriage ceremony, but our friends are asking for a treat. So, we will have a grand wedding. said Aarav.

He adds that he and Sukanyeah want to counsel those whose children are experiencing GID.

Dr Sanjay Pandey, from Kokilaben Dhirubhai Ambani Hospital, Andheri, who operated both of them said those who experience GID are just as normal and competent as we are. The only difference is that they feel trapped in the body of a gender they do not want to be. This is psychologically and emotionally tough, he said.

He said gender reassignment surgery costs between Rs18 lakh to Rs19 lakh in places such as Thailand, where it is popular. In India, it costs between Rs 4 lakh to Rs5 lakh.

More here:
Woman who was a man to marry man who was a woman – Hindustan Times

Recommendation and review posted by simmons

Pet Talk: A pyometra is a ‘true veterinary emergency’ – Champaign/Urbana News-Gazette

By HANNAH BEERSUI College of Veterinary Medicine

When a middle-aged, intact female dog comes into the clinic with complaints from her owner that she has been depressed and lethargic, one of the first concerns that likely pops into the veterinarian’s mind is a potential pyometra.

“A pyometra is a uterine infection, and it is a true veterinary emergency,” said Dr. Gary Brummet, the veterinarian who leads the primary care service at the UI Veterinary Teaching Hospital in Urbana.

What causes pyometras

Pyometras develop as a result of hormonal changes that take place in the reproductive tract during the normal hormonal cycle of a female. After an estrus (often referred to as “heat”), a hormone called progesterone remains elevated to assist the uterine lining in thickening in preparation for a potential pregnancy. Sometimes, if there are multiple cycles that persist without a pregnancy, the uterine lining can continue to thicken and secrete fluids, creating an environment that allows bacteria to grow quite well.

“Often pyometras become evident two to three months after the dog’s last heat cycle,” Brummet said.

Pyometras are categorized as “open” or “closed.” In an open pyometra, infectious material leaks from the uterus; owners may notice a bloody, yellow or cream-colored discharge on their dog’s fur near the uterine opening or on their bedding. A closed pyometra means that all the infectious material is trapped inside the uterus and builds up.

Symptoms of pyometras

Pyometras are most often found in dogs of any breed between the age of 6 and 10 and may be more common in dogs that have never had puppies. They do not occur in spayed animals, since a spay surgery involves removing the uterus. In extremely rare instances, pyometras can occur in cats.

“Along with appearing fatigued and depressed, dogs may stop eating, spike fever, have an abdomen that is distended and painful to touch, and urinate and drink more frequently,” Brummet said.

Bacteria may release toxins that alter kidney function and impair the kidney’s ability to manage and retain fluid. This can cause the increased urine production that is often seen and in turn the increased drinking may be the dog’s attempt to compensate for the loss in fluid.

If a pup is showing any of these signs, she should be taken to the veterinarian immediately. There is a risk of sepsis with an untreated pyometra. Sepsis is when bacteria from an infection gets into the blood and thus is spread throughout the body via the circulatory system.

Diagnosis and treatment of pyometras

Your veterinarian may elect to do blood work, take a radiograph (X-ray) and/or perform an ultrasound to diagnose the pyometra. Pyometras are most often treated by surgical removal of the uterus.

“Surgery for removing a uterus that has a pyometra is much more risky than a spay. The uterine wall will be fragile, and there is a chance that it could rupture and introduce infectious material into the dog’s abdomen during the procedure,” Brummet said.

The only sure way to prevent this emergency is to spay the dog.

“The risk of a pyometra is one of the factors owners need to weigh when making the decision to spay or leave the female intact,” Brummet said.

An archive of pet columns from the UI College of Veterinary Medicine is available at vetmed.illinois.edu/petcolumns/. Requests for reprints of this article may be directed to Chris Beuoy at beuoy@illinois.edu.

Link:
Pet Talk: A pyometra is a ‘true veterinary emergency’ – Champaign/Urbana News-Gazette

Recommendation and review posted by sam

Potential therapy for eye condition – WTAJ

Imagine only being able to see the things in front of you in soft focus, and just in black and white. For people with the genetic eye condition achromatopsia those are just some of the side effects. But, researchers are testing a new treatment designed to cure the condition by fixing the gene responsible.

Each time Tara Cataldo prepares to leave her house, she has to make sure her face is completely shielded from the sun.

“I need to have very dark, very tinted sunglasses to feel comfortable outside and to see really well.” Tara said.

Tara has achromatopsia, a genetic condition that makes her eyes incredibly sensitive to light. She is also very nearsighted; even while wearing glasses or contacts, she can only see clearly at a very short distance.

“I cannot drive a car so I rely on public transportation and my bike to get around.” she explained.

Christine Kay, MD, a surgical ophthalmologist at the University of Florida said, “There are currently no approved and no effective treatments for achromatopsia.”

Surgical ophthalmologist Christine Kay is working to change that. She is one of a handful of experts testing a gene therapy

“For achromatopsia the cells we have to target are cone cells responsible for decreased vision and color vision and those are cells at the very bottom layer of the retina.” Dr. Kay explained.

Using a tiny cannula, surgeons deliver a normal copy of one of two mutated genes; the CNGA3 or CNGB3 gene, directly into the eye restoring vision.

Tara’s myopia is so severe that her risk of retinal detachment from any retinal surgery is high, which rules her out for the current trial. In the meantime, Tara says she’s learned to adapt to achromatopsia and live without limitations.

“And I hope all young achromats learn the same thing,” Cataldo said.

Doctor Kay says if the gene could eventually be delivered to the surface of the retina; additional patients, like Tara, could be treated. The biotech company that developed the therapies and several U.S. universities have successfully tested this therapy in dogs and sheep.

See more here:
Potential therapy for eye condition – WTAJ

Recommendation and review posted by Bethany Smith

Life Lessons: Next generation testing – WFMZ Allentown

VIDEO Life Lessons: Next generation…

When Audrey Lapidus 10-month old son, Calvin, didnt reach normal milestones like rolling over or crawling, she knew something was wrong.

He was certainly different from our first child, said Lapidus, of Los Angeles. He had a lot of gastrointestinal issues and we were taking him to the doctor quite a bit.

Four specialists saw Calvin and batteries of tests proved inconclusive. Still, Lapidus persisted.

I was pushing for even more testing, and our geneticist at UCLA said, If you can wait one more month, were going to be launching a brand new test called exome sequencing, she said. We were lucky to be in the right place at the right time and get the information we did.

In 2012, Calvin Lapidus became the first patient to undergo exome sequencing at UCLA. He was subsequently diagnosed with a rare genetic condition known as Pitt-Hopkins Syndrome, which is most commonly characterized by developmental delays, possible breathing problems, seizures and gastrointestinal problems.

Though there is no cure for Pitt-Hopkins, finally having a diagnosis allowed Calvin to begin therapy.

The diagnosis gave us a point to move forward from, rather than just existing in that scary no-mans land where we knew nothing, Lapidus said.

Unfortunately, there are a lot of people living in that no-mans land, desperate for any type of answers to their medical conditions, said Dr. Stanley Nelson, professor of human genetics and pathology and laboratory medicine at the David Geffen School of Medicine at UCLA. Many families suffer for years without so much as a name for their condition.

What exome sequencing allows doctors to do is to analyze more than 20,000 genes at once, with one simple blood test.

In the past, genetic testing was done one gene at a time, which is time-consuming and expensive.

Rather than testing one sequential gene after another, exome sequencing saves time, money and effort, said Dr. Julian Martinez-Agosto, a pediatrician and researcher at the Resnick Neuropsychiatric Hospital at UCLA.

The exome consists of all the genomes exons, which are the coding portion of genes. Clinical exome sequencing is a test for identifying disease-causing DNA variants within the 1 percent of the genome which codes for proteins, the exons, or flanks the regions which code for proteins, called splice junctions.

To date, mutations in the protein-coding parts of genes accounts for nearly 85 percent of all mutations known to cause genetic diseases, so surveying just this portion of the genome is an efficient and powerful diagnostic tool. Exome sequencing can help detect rare disorders like spinocerebellar ataxia, which progressively diminishes a persons movements, and suggest the likelihood of more common conditions like autism spectrum disorder and epilepsy.

More than 4,000 adults and children have undergone exome testing at UCLA since 2012. Of difficult to solve cases, more than 30 percent are solved through this process, which is a dramatic improvement over prior technologies. Thus, Nelson and his team support wider use of genome-sequencing techniques and better insurance coverage, which would further benefit patients and resolve diagnostically difficult cases at much younger ages.

Since her sons diagnosis, Lapidus helped found the Pitt-Hopkins Syndrome Research Foundation. Having Calvins diagnosis gave us a roadmap of where to start, where to go and whats realistic as far as therapies and treatments, she said. None of that would have been possible without that test.

Next, experts at UCLA are testing the relative merits of broader whole genome sequencing to analyze all 6 billion bases that make up a persons genome. The team is exploring integration of this DNA sequencing with state-of-the-art RNA or gene expression analysis to improve the diagnostic rate.

The entire human genome was first sequenced in 1990 at a cost of $2.7 billion. Today, doctors can perform the same test at a tiny fraction of that cost, and believe that sequencing whole genomes of individuals could vastly improve disease diagnoses and medical care.

Read the original:
Life Lessons: Next generation testing – WFMZ Allentown

Recommendation and review posted by simmons

DHK – Representative Chris Walsh, 66, non-Hodgkin lymphoma (a white blood cell cancer), Framingham, with Dr … – WEEI.com

Christopher Walsh can still remember the day he found a suspicious lump on his groin. He immediately went to the doctor to have the lump biopsied, and results confirmed that Chris had non-Hodgkin lymphoma. He was diagnosed in June 2015, and immediately decided to go to Dana-Farber because he wanted the best to take care of it. As the cancer began to get a bit more complicated, Dr. Davids started Chris on a clinical trial involving chemotherapy a targeted gene therapy. That treatment has not worked to satisfaction, so Chris is now launching into a newer form of treatment: immunotherapy.

He has been married for almost 33 years and has 2 adult children. He is a state legislator representing the 6th Middlesex district in Framingham. Prior to that, he served as an architect for 30 years.Chris says that one of the things that has been incredible is the community support he has experienced. He had a few reservations about publicly coming out with this cancer, but given his role in the community, he did so and he has found that people appreciate the process and struggles he has endured. He has ultimate confidence in Dana-Farbers continued fight for a cure.

After obtaining an A.B. in chemistry at Harvard College, Dr. Davids completed his M.D. at Yale University School of Medicine. He served as an intern, resident, and assistant chief resident in internal medicine at New York-Presbyterian Weill Cornell Medical Center and Memorial Sloan-Kettering Cancer Center in New York City. He then completed his fellowship in hematology and oncology in Dana-Farber/Partners CancerCare, and a Masters in Medical Science (MMSc) at Harvard Medical School.

He is an attending physician in the Lymphoma Program of the Division of Hematologic Malignancies at Dana-Farber, an Assistant Professor of Medicine at Harvard Medical School, and is the Associate Director of the Dana-Farber CLL Center.

Read more from the original source:
DHK – Representative Chris Walsh, 66, non-Hodgkin lymphoma (a white blood cell cancer), Framingham, with Dr … – WEEI.com

Recommendation and review posted by sam

UCLA scientists identify a new way to activate stem cells to make hair grow – UCLA Newsroom

UCLA researchers have discovered a new way to activate the stem cells in the hair follicle to make hair grow. The research, led by scientists Heather Christofk and William Lowry, may lead to new drugs that could promote hair growth for people with baldness or alopecia, which is hair loss associated with such factors as hormonal imbalance, stress, aging or chemotherapy treatment.

The research was published in the journal Nature Cell Biology.

Hair follicle stem cells are long-lived cells in the hair follicle; they are present in the skin and produce hair throughout a persons lifetime. They are quiescent, meaning they are normally inactive, but they quickly activate during a new hair cycle, which is when new hair growth occurs. The quiescence of hair follicle stem cells is regulated by many factors. In certain cases they fail to activate, which is what causes hair loss.

In this study, Christofk and Lowry, of Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, found that hair follicle stem cell metabolism is different from other cells of the skin. Cellular metabolism involves the breakdown of the nutrients needed for cells to divide, make energy and respond to their environment. The process of metabolism uses enzymes that alter these nutrients to produce metabolites. As hair follicle stem cells consume the nutrient glucose a form of sugar from the bloodstream, they process the glucose to eventually produce a metabolite called pyruvate. The cells then can either send pyruvate to their mitochondria the part of the cell that creates energy or can convert pyruvate into another metabolite called lactate.

Our observations about hair follicle stem cell metabolism prompted us to examine whether genetically diminishing the entry of pyruvate into the mitochondria would force hair follicle stem cells to make more lactate, and if that would activate the cells and grow hair more quickly, said Christofk, an associate professor of biological chemistry and molecular and medical pharmacology.

The research team first blocked the production of lactate genetically in mice and showed that this prevented hair follicle stem cell activation. Conversely, in collaboration with the Rutter lab at University of Utah, they increased lactate production genetically in the mice and this accelerated hair follicle stem cell activation, increasing the hair cycle.

Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells, said Lowry, a professor of molecular, cell and developmental biology. Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.

The team identified two drugs that, when applied to the skin of mice, influenced hair follicle stem cells in distinct ways to promote lactate production. The first drug, called RCGD423, activates a cellular signaling pathway called JAK-Stat, which transmits information from outside the cell to the nucleus of the cell. The research showed that JAK-Stat activation leads to the increased production of lactate and this in turn drives hair follicle stem cell activation and quicker hair growth. The other drug, called UK5099, blocks pyruvate from entering the mitochondria, which forces the production of lactate in the hair follicle stem cells and accelerates hair growth in mice.

Through this study, we gained a lot of interesting insight into new ways to activate stem cells, said Aimee Flores, a predoctoral trainee in Lowrys lab and first author of the study. The idea of using drugs to stimulate hair growth through hair follicle stem cells is very promising given how many millions of people, both men and women, deal with hair loss. I think weve only just begun to understand the critical role metabolism plays in hair growth and stem cells in general; Im looking forward to the potential application of these new findings for hair loss and beyond.

The use of RCGD423 to promote hair growth is covered by a provisional patent application filed by the UCLA Technology Development Group on behalf of UC Regents. The use of UK5099 to promote hair growth is covered by a separate provisional patent filed by the UCLA Technology Development Group on behalf of UC Regents, with Lowry and Christofk as inventors.

The experimental drugs described above were used in preclinical tests only and have not been tested in humans or approved by the Food and Drug Administration as safe and effective for use in humans.

The research was supported by a California Institute for Regenerative Medicine training grant, a New Idea Award from the Leukemia and Lymphoma Society, the National Cancer Institute (R25T CA098010), the National Institute of General Medical Sciences (R01-GM081686 and R01-GM0866465), the National Institutes of Health (RO1GM094232), an American Cancer Society Research Scholar Grant (RSG-16-111-01-MPC), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (5R01AR57409), a Rose Hills Foundation Research Award and the Gaba Fund. The Rose Hills award and the Gaba Fund are administered through the UCLA Broad Stem Cell Research Center.

Further research on the use of UK5099 is being funded by the UCLA Technology Development Group through funds from California State Assembly Bill 2664.

Continue reading here:
UCLA scientists identify a new way to activate stem cells to make hair grow – UCLA Newsroom

Recommendation and review posted by Bethany Smith

Suffering from hair loss? Scientists may have found a solution – TheCable

Researchers say they have discovered a new way to activate the stem cells in the hair follicle to stimulate hair growth.

According to researchers at the University of California, Los Angeles, the experiment, conducted on mice, may lead to new drugs that could promote hair growth for people with baldness or alopecia.

After initially blocking, and subsequently increasing the production of lactate genetically in mice, the researchers identified two drugs that, when applied to the skin of mice, influenced hair follicle stem cells in distinct ways to promote lactate production.

According to them, the first drug, called RCGD423, activates a cellular signaling pathway called JAK-Stat, which transmits information from outside the cell to the nucleus of the cell.

The findings showed that JAK-Stat activation leads to the increased production of lactate and this, in turn, drives hair follicle stem cell activation and quicker hair growth.

The other drug, called UK5099, blocks pyruvate from entering the mitochondria, which forces the production of lactate in the hair follicle stem cells and accelerates hair growth in mice.

Before this, no one knew that increasing or decreasing the lactate would have an effect on hair follicle stem cells, said William Lowry, a professor of molecular, cell and developmental biology.

Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect.

The researchers explained that the experimental drugs were used in preclinical tests only and have not been tested in humans or approved by the food and drug administration as safe and effective for use in humans

The research was published in the journal Nature Cell Biology.

Follow us on twitter @Thecablestyle

Go here to see the original:
Suffering from hair loss? Scientists may have found a solution – TheCable

Recommendation and review posted by simmons

White supremacists are embracing genetic testing – but they aren’t always that keen on the results – New Statesman

The brutal heatwave affecting southern Europe this summer has become known among locals as Lucifer. Having just returned from Italy, I fully understand the nickname. An early excursion caused the beginnings of sunstroke, so we abandoned plans to explore the cultural heritage of the Amalfi region and strayed no further than five metres from the hotel pool for the rest of the week.

The children were delighted, particularly my 12-year-old stepdaughter, Gracie, who proceeded to spend hours at a time playing in the water. Towelling herself after one long session, she noticed something odd.

Whats happened there? she asked, holding her foot aloft in front of my face.

I inspected the proffered appendage: on the underside of her big toe was an oblong area of glistening red flesh that looked like a chunk of raw steak.

Did you injure it?

She shook her head. It doesnt hurt at all.

I shrugged and said she must have grazed it. She wasnt convinced, pointing out that she would remember if she had done that. She has great faith in plasters, though, and once it was dressed she forgot all about it. I dismissed it, too, assuming it was one of those things.

By the end of the next day, the pulp on the underside of all of her toes looked the same. As the doctor in the family, I felt under some pressure to come up with an explanation. I made up something about burns from the hot paving slabs around the pool. Gracie didnt say as much, but her look suggested a dawning scepticism over my claims to hold a medical degree.

The next day, Gracie and her new-found holiday playmate, Eve, abruptly terminated a marathon piggy-in-the-middle session in the pool with Eves dad. Our feet are bleeding, they announced, somewhat incredulously. Sure enough, bright-red blood was flowing, apparently painlessly, from the bottoms of their big toes.

Doctors are used to contending with Google. Often, what patients discover on the internet causes them undue alarm, and our role is to provide context and reassurance. But not infrequently, people come across information that outstrips our knowledge. On my return from our room with fresh supplies of plasters, my wife looked up from her sun lounger with an air of quiet amusement.

Its called pool toe, she said, handing me her iPhone. The page she had tracked down described the girls situation exactly: friction burns, most commonly seen in children, caused by repetitive hopping about on the abrasive floors of swimming pools. Doctors practising in hot countries must see it all the time. I doubt it presents often to British GPs.

I remained puzzled about the lack of pain. The injuries looked bad, but neither Gracie nor Eve was particularly bothered. Here the internet drew a blank, but I suspect it has to do with the pruning of our skin that were all familiar with after a soak in the bath. This only occurs over the pulps of our fingers and toes. It was once thought to be caused by water diffusing into skin cells, making them swell, but the truth is far more fascinating.

The wrinkling is an active process, triggered by immersion, in which the blood supply to the pulp regions is switched off, causing the skin there to shrink and pucker. This creates the biological equivalent of tyre treads on our fingers and toes and markedly improves our grip of great evolutionary advantage when grasping slippery fish in a river, or if trying to maintain balance on slick wet rocks.

The flip side of this is much greater friction, leading to abrasion of the skin through repeated micro-trauma. And the lack of blood flow causes nerves to shut down, depriving us of the pain that would otherwise alert us to the ongoing tissue damage. An adaptation that helped our ancestors hunt in rivers proves considerably less use on a modern summer holiday.

I may not have seen much of the local heritage, but the trip to Italy taught me something new all the same.

Visit link:
White supremacists are embracing genetic testing – but they aren’t always that keen on the results – New Statesman

Recommendation and review posted by Bethany Smith

Genesis Healthcare, Pioneer in Genetic Health Testing, Announces … – Markets Insider

TOKYO, Aug. 21, 2017 /PRNewswire/ — Genesis Healthcare Co. has announced the completion of a new share issue worth 1.4 billion yen for allotment to Rakuten Inc. Furthermore, Rakuten’s Chairman and CEO will join Genesis Healthcare’s Board of Directors as an External Board Director. As a result of the new stock offering, Genesis Healthcare’s capital has increased to 2.1 billion yen, one of the largest paid-in-capital levels among genetic testing companies in Japan.

Genesis Healthcare, founded in 2004, already manages one of the largest genetic databases in Asia and Japan, with data of approximately 520,000 individuals as of August, 2017, and plans to increase its database size to one million by 2020. While Genesis Healthcare offers various genetic testing services to the government, medical community, academia, industry and consumers, it also offers healthcare and disease prevention test kits and IT services under the consumer brand “GeneLife” in order to enrich people’s lives through personalized genetic testing.

Genesis Healthcare’s Co-Founder and President, Dr. Iri Sato Baran, commented: “The investment by Rakuten, a Japan leader in Internet services, will allow us to increase awareness of genetic information technology through digital healthcare for the betterment of personalized health and self-medication.”

“Forward-thinking technologies like Genesis Healthcare’s genetic health analysis and a deeper understanding of responsible self-medication are essential to finding innovative responses to increasing health costs and the rising awareness of health issues in Japan,” commented the Rakuten Chairman and CEO, Hiroshi “Mickey” Mikitani. “With this investment, we would like to see Genesis Healthcare take a leading role in furthering the understanding and adoption of genetic health testing in Japan.”

Genesis Healthcare plans to use the new funding mainly to promote genetic testing and investment into IT and R&D. It will also continue to accelerate its marketing programs, as well as strengthening recruiting and training efforts. Genesis Healthcare will continue to contribute to improving the quality of life through genetic diagnostic technologies.

About Genesis Healthcare Co.

Co-Founder and President: Dr. Iri Sato BaranCorporate site: http://genesis-healthcare.jp/en/

View original content:http://www.prnewswire.com/news-releases/genesis-healthcare-pioneer-in-genetic-health-testing-announces-14-bil-yen-new-share-issue-to-rakuten-300506891.html

SOURCE Genesis Healthcare Co.

Original post:
Genesis Healthcare, Pioneer in Genetic Health Testing, Announces … – Markets Insider

Recommendation and review posted by simmons

Audio: Many breast, ovarian cancer survivors should take this … – 89.3 KPCC

More than 1 million American women who have had breast or ovarian cancer are not getting a simple genetic test that will determine whether they carry a mutation that puts them at higher risk of a recurrence, according to a UCLA study published Friday.

Up to 10 percent of women who have, or have had, breast cancer, and up to 15 percent of those with a history of ovarian cancer, carry inheritable mutations that put them at higher risk of the cancer returning, says the study, which was published Friday in the Journal of Clinical Oncology.

The test to detect the mutations involves taking blood or saliva, but the study found that 70 percent of eligible breast cancer patients and 80 percent of patients with ovarian cancer have never taken the initial step of discussing testing with their health care provider.

“We want to figure out who are the women in this country that have those genetic changes,” says lead author Dr. Christopher Childers, a resident physician at UCLA’s David Geffen School of Medicine. That information, he says, can inform decisions about their treatment and surgery. It can also help family members detect cancer early and make lifestyle changes to try to prevent the disease.

National Cancer Center Network guidelines recommend genetic testing for women in these categories:

The study, based on surveys of more than 47,000 women nationwide, asked whether women were discussing the test or had taken it. It did not assess why patients aren’t discussing or undergoing testing, but Childers says both providers and patients must play a role in closing the gap. He says all providers should ask women about their cancer history, inquire about prior genetic testing and be aware of the latest testing guidelines.

“Genetic testing is not just something that is under the care of an oncologist, it’s something that all health care providers, from surgeons to primary care doctors to cardiologists, should be thinking about when we see patients with a history of cancer,” he says.

Patients with a history of breast or ovarian cancer should see their doctors and inquire about genetic testing, even if they were diagnosed many years earlier, says Childers. The mutations detected by the test can affect the BRCA1 and BRCA2 genes. Tests for the mutations have been around since the mid-1990s, but science, testing guidelines and test availability have evolved since then.

“It’s not something that you can just assume was taken care of when you had the diagnosis five or 10 years ago,” he says. “This is something that is as important 10 years, 20 years, 30 years after your cancer, because it can not only affect your own health, but can also affect the health of your family members.”

From her experience as a genetic counselor at Providence Health & Services Southern California, study co-author Kimberly Childers says some patients want to know the potential risks for themselves and their family so they can take steps to prevent future cancers, while others say ignorance is bliss.

Those patients typically say, “I’d rather just see what happens and not worry about it, and if something happens, I’ll deal with it when it happens,” says Childers, who is married to the study’s lead author. She notes that testing might not be right for these people.

On the flip side, Kimberly Childers also sees women who have breast cancer in their history, but learn through testing that they didnt inherit the gene mutation.

“While our focus is on identifying those at risk who can benefit from early prevention and detection, it also can help give people peace of mind who might be living with a cancer cloud,” she says.

The genetic test is covered by Medicare, Medi-Cal and most private insurance plans, says Kimberly Childers.

Originally posted here:
Audio: Many breast, ovarian cancer survivors should take this … – 89.3 KPCC

Recommendation and review posted by simmons

Vitamin C may help genes to kill blood cancer stem cells – ETHealthworld.com

Representational image

Washington D.C. : A study has recently revealed that vitamin C may tell faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers.

According to researchers, certain genetic changes are known to reduce the ability of an enzyme called TET2 to encourage stem cells to become mature blood cells, which eventually die, in many patients with certain kinds of leukemia.

The new study found that vitamin C activated TET2 function in mice engineered to be deficient in the enzyme.

Corresponding study author Benjamin G. Neel said, “We’re excited by the prospect that high-dose vitamin C might become a safe treatment for blood diseases caused by TET2-deficient leukemia stem cells, most likely in combination with other targeted therapies.”

The results suggested that changes in the genetic code (mutations) that reduce TET2 function are found in 10 percent of patients with acute myeloid leukemia (AML), 30 percent of those with a form of pre-leukemia called myelodysplastic syndrome, and in nearly 50 percent of patients with chronic myelomonocytic leukemia.

The study results revolve around the relationship between TET2 and cytosine, one of the four nucleic acid “letters” that comprise the DNA code in genes.

To determine the effect of mutations that reduce TET2 function in abnormal stem cells, the team genetically engineered mice such that the scientists could switch the TET2 gene on or off.

The findings indicated that vitamin C did the same thing as restoring TET2 function genetically. By promoting DNA demethylation, high-dose vitamin C treatment induced stem cells to mature, and also suppressed the growth of leukemia cancer stem cells from human patients implanted in mice.

“Interestingly, we also found that vitamin C treatment had an effect on leukemic stem cells that resembled damage to their DNA,” said first study author Luisa Cimmino.

“For this reason, we decided to combine vitamin C with a PARP inhibitor, a drug type known to cause cancer cell death by blocking the repair of DNA damage, and already approved for treating certain patients with ovarian cancer,” Cimmino added.

The findings appear in journal Cell.

See the article here:
Vitamin C may help genes to kill blood cancer stem cells – ETHealthworld.com

Recommendation and review posted by Bethany Smith

Forever Labs preserves young stem cells to prevent your older self … – TechCrunch

Forever Labs, a startup in Y Combinators latest batch, is preserving adult stem cells with the aim to help you live longer and healthier.

Stem cells have the potential to become any type of cell needed in the body. Its very helpful to have younger stem cells from your own body on hand should you ever need some type of medical intervention, like a bone marrow transplant as the risk of rejection is greatly reduced when the cells are yours.

Mark Katakowski spent the last 15 years studying stem cells. What he found is that not only do we have less of them the older we get, but they also lose their function as we age.So, he and his co-founders Edward Cibor and Steve Clausnitzer started looking at how to bank them while they were young.

Clausnitzer banked his cells two years ago at the age of 38. So, while he is biologically now age 40, his cells remain the age in which they were harvested or as he calls it, stem cell time travel.

Steven Clausnitzer with his 38-year-old banked stem cells.

Stem cell banking isnt new. In fact, a lot of parents are now opting to store their babys stem cells through cord blood banking. But thats for newborns. For adults, its not so common, and theres a lot of snake oil out there, Clausnitzer cautions.

There are places offering stem cell therapy and Botox, he said.

Forever Labs is backed by a team of Ivy League-trained scientists with decades of experience between them. Jason Camm, chief medical officer for Thiel Capital, is also one of the companys medical advisors however, the startup is quick to point out it is not associated with Thiel Capital.

The process involves using a patented device to collect the cells. Forever Labs can then grow and bank your cells for $2,500, plus another $250 for storage per year (or a flat fee of $7,000 for life).

The startup is FDA-approved to bank these cells and is offering the service in seven states. What it does not have FDA approval for is the modification of those cells for rejuvenation therapy.

Katakowski refers to what the company is doing as longevity as a service, with the goal being to eventually take your banked cells and modify them to reverse the biological clock.

But that may take a few years. There are hundreds of clinical trials looking at stem cell uses right now. Forever Labs has also proposed its own clinical trial to take your stem cells and give them to your older cells.

Youll essentially young-blood effect yourself, Katakowski joked of course, in this case, youd be using your own blood made from your own stem cells, not the blood of random teens.

Read more here:
Forever Labs preserves young stem cells to prevent your older self … – TechCrunch

Recommendation and review posted by Bethany Smith

Striking a cord: Is it worth saving stem cells? Yes, if you plan to share – Hindustan Times

New parents are beginning to bank their babys cord blood cells in the hope that they can be used to treat serious diseases later on in the childs life.

Many of them have been told that the cells can already be used to treat about 80 blood and immunological conditions. So they fork out thousands a year for the service.

What they are not told is that the tiny amounts saved at birth would not be sufficient to treat a serious condition in an adult.

Stem cells are currently being used to treat

In the future, they are expected to help in the treatment of

Globally, around 50,000 cases of cancer have been treated with stem cells from cord blood, but banking is not a feasible solution because the amount preserved is not enough for bone marrow transplants in adults, says Dr Dharama Choudhary, bone-marrow transplant specialist at BLK Super Speciality Hospital.

For example, if one child has leukemia and has a newborn sibling, instead of using the cord blood doctors would rather wait for a couple of years and use the bone marrow of the younger child for transplant, adds Dr IC Verma, senior consultant of medical genetics and genomics at Delhis Sir Ganga Ram Hospital.

Even if you have enough, using cord blood cells is more costly and the recovery period is longer, Dr Choudhary adds.

FROM SOLO TO POOL

How umbilical cord stem cells are saved

Currently, cord blood is preserved in less than 1% of deliveries in urban centres, with the number being a higher 2% in private tertiary-care hospitals. The percentage is higher in Hyderabad, Bangalore and Pune, although we have not been able to ascertain the reason, says Upamannyue Roy Choudhury, CEO of CordLife India, a private cord blood bank.

The idea of public registries run by charitable organisations never really took off. That registry was meant so that anyone could purchase stem cells from a shared bank, but it has only about 5,000 units of cord blood banked across India. Private banks have about 500,000, says Mayur Abhaya, executive director at Life Cell International, one such private bank.

To help more people get treated using stem cells from cord blood, private banks should now promote sharing within their own pool, doctors add. We have underutilised assets, so pools would benefit people who have not banked cord blood, says Abhaya.

His company charges an initial fee of Rs 17,000 for the processing of banked cord blood and then Rs 4,000 a year for banking it. We have now started a sharing system where, for the same amount, the baby, its parents and both sets of grandparents can draw cord blood too from the shared pool at no extra cost, he says.

Life Cell estimates that even with the sharing of saved cord blood, utilisation would be only around 10%, because of the low incidence of the conditions that cord blood can be used to treat.

In the four months since starting the community pool, 99% of new customers have opted for the sharing model. We are now going back to older customers and trying to bring them into this pool as well, Abhaya says.

FRACTIONAL BENEFITS

Case study: Family matters

On average, only about 0.004% to 0.005% of people who store cord blood end up using it for their own treatment, says Dr Choudhary of BLK.

In addition to the problem of too little cord blood being harvested for treatment of serious diseases in adults, there is the issue of incorrect storage. Storage is not done correctly in many Indian banks. The cord blood is cryopreserved, and when it is thawed, the number of viable cells drops drastically, Dr Choudhary says.

Public cord blood banking, though, has a future. Storing cord blood in a public banking system, where it may be used by others in need, is more feasible, says Dr IC Verma. It will take another couple of decades before people will be able to meaningfully use their own cord blood.

Read more here:
Striking a cord: Is it worth saving stem cells? Yes, if you plan to share – Hindustan Times

Recommendation and review posted by sam

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Preserving Life Through Cryonics

Cryonics is the practice of deep-freezing recently deceased bodies(or even just the brains of those who have recently died)in the hopes of one day reviving them. It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumors of Walt Disney being cryogenically frozen have, unfortunately, cast a speculative shadow over the field of cryonics.

But recently, for the first time ever in China, a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure. Bothhe and his late wife wanted to donate her body to science to give back to society. He told Mirror UKthat hewas initially pitched the idea of cryonics with it being described as a life preservation project.

This procedure which has Wenlians body restingfacedownin 2,000 liters of liquid nitrogen was completed at theYinfeng Biological Group in Jinan. This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants from Alcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics is all about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating. Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues. Rapid cooling, rather than freezing, is a more accuratedescription of the process. A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed. The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation. Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This first case inChina is a major step forward for everyone researching inthe field of cryonics and those of us who may, one day, hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, with such wild scientific advancements underway, technology could one day allow it to be possible. Whether or not it does in our lifetimes, this most recent development is certainly a positive one.

Originally posted here:
For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Recommendation and review posted by Bethany Smith

How to live forever – TechRadar

Humans have wanted to live forever for as long as we’ve lived at all. It’s an obsession that stretches back so far that it feels like it’s somehow hard-coded into our DNA. Over the years, immortality (to a greater or lesser extent) has been promised by everyone from religions and cults to the cosmetics industry, big tech companies and questionable food blogs.

It’s also a staple of fiction, all the way back to the earliest surviving great work of literature. The Epic of Gilgamesh, carved onto stone tablets in 2100 BC, depicts its titular king hunting for the secret of eternal life, which he finds in a plant that lives at at the bottom of the sea. He collects the plant by roping stones to his feet, but then a snake steals it while he’s having a pre-immortality bath. Gilgamesh has a little cry, then gives up.

A cuneiform tablet containing part of The Epic of Gilgamesh.

The reason why we age is still the subject of major scientific debate, but it basically boils down to damage accumulating in our cells throughout our lives, which eventually kills us. By slowing that damage – first by making tools, then controlling fire, inventing writing, trade, agriculture, logic, the scientific method, the industrial revolution, democracy and so on, we’ve managed to massively increase human life expectancy.

There’s a common misconception that to live forever we need to somehow pause the ageing process. We don’t. We just need to increase the rate at which our lifespans are lengthening. Human lifespan has been lengthening at a constant rate of about two years per decade for the last 200 years. If we can speed that up past the rate at which we age then we hit what futurist Aubrey de Grey calls “longevity escape velocity” – the point we become immortal.

There’s a common misconception that to live forever we need to somehow pause the ageing process. We don’t. We just need to increase the rate at which our lifespans are lengthening.

That all sounds rather easy, and of course it’s not quite that simple. It’s all we can do at the moment to keep up with the Moore’s Law of increasing lifespans. But with a major research effort, coordinated around the world, who knows? Scientific history is filled with fields that ticked along slowly and then suddenly, massively, accelerated. Computer science is one. Genetics is another recent example.

To understand what we need to do to hit longevity escape velocity, it’s worth looking at how life expectancy has increased in recent history. The late statistician Hans Rosling made a powerful case that average lifespans rise alongside per capita income. Take a couple of minutes to watch this video and you’ll be convinced:

Reducing the gap between the global rich and poor, therefore, is probably the fastest way to boost the world average life expectancy figure, but it’s limited. And it won’t do much for people in rich countries.

To boost the lifespans of the people living in countries that are already pretty wealthy, we need to look closer at the countries that are forecast to have the highest life expectancies in the coming years. A study published earlier this year in the Lancet shows what life expectancy might look like in 2030 in 35 industrialised countries, using an amalgamation of 21 different forecasting models.

South Korea tops the chart with women living on average beyond 90, while France, Japan, Switzerland and Australia are not far behind. Most of the countries at the top of the chart have high-quality healthcare provision, low infant deaths, and low smoking and road traffic injury rates. Fewer people are overweight or obese. The US, meanwhile, is projected to see only a modest rise – due to a lack of healthcare access, and high rates of obesity, child mortality and homicides.

The study results are interesting, not only because they’re the best possible guess at our future but because they clearly show how social policies make a massive difference to how long people live. There are unknowns, of course – no-one could have predicted the 80s AIDS epidemic, for example, and no doubt further pandemics lurk in humanity’s future. But ban smoking, fight obesity, and introduce autonomous cars and personalised medicine, and you’ll see lifespans rise.

The US is projected to see only a modest rise in lifespan – due to a lack of healthcare access, and high rates of obesity, child mortality and homicides.

The other interesting thing is that the study’s results are a shot across the bows of scientists who claim that there are hard limits to human lifespan.

“As recently as the turn of the century, many researchers believed that life expectancy would never surpass 90 years, lead author Majid Ezzati of Imperial College London told the Guardian back in February.

That prediction mirrors another, published in Nature in October 2016, that concluded that the upper limit of human age is stuck at about 115 years.

“By analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the worlds oldest person has not increased since the 1990s,” wrote the authors – Xiao Dong, Brandon Milholland & Jan Vijg.

“Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.”

The maximum length of a human lifespan remains up for debate.

Other researchers, however, disagree. Bryan G. Hughes & Siegfried Hekimi wrote in the same journal a few months later that their analysis showed that there are many possible maximum lifespan trajectories.

We just dont know what the age limit might be. In fact, by extending trend lines, we can show that maximum and average lifespans, could continue to increase far into the foreseeable future, Hekimi said.

Three hundred years ago, many people lived only short lives. If we would have told them that one day most humans might live up to 100, they would have said we were crazy.

That’s all big-picture stuff, so let’s dive down to a more personal level. Assuming that you can’t change your genetics or your life up until the point that you’re currently at, what can you personally do to live longer?

Here’s the list: Don’t smoke. Exercise your body and mind on a daily basis. Eat foods rich in whole grains, vegetables, fruits, and unsaturated fat. Don’t drink too much alcohol. Get your blood pressure checked. Chop out sources of stress and anxiety in your life. Travel by train. Stay in school. Think positive. Cultivate a strong social group. Don’t sit for long periods of time. Make sure you get enough calcium and vitamin D. Keep your weight at a healthy level. And don’t go to hospital if you can help it – hospitals are dangerous places.

All of those things have been correlated with increased lifespan in scientific studies. And they’re all pretty easy and cheap to do. If you want to maximise your longevity, then that’s your to-do list. But there are also strategies that have a little less scientific merit. The ones that people with too much money pursue when they realise they haven’t been following any of the above for most of their life.

Inside the Cryonics Institute.

Cryonics is probably the most popular. First proposed in the 1960s by US academic Robert Ettinger in his book “The Prospect of Immortality”, it involves freezing the body as soon as possible after death in a tube kept at -196C, along with detailed notes of what they died of. The idea is that when medicine has invented a cure for that ailment, the corpse can be thawed and reanimated.

Calling someone dead is merely medicines way of excusing itself from resuscitation problems it cannot fix today, reads the website of top cryogenics firm Alcor.

The problem is the brain. First, it’s so dense and well-protected that it’s extremely difficult for the cryonics chemicals to penetrate it. It’s almost impossible that it doesn’t get damaged in the freezing process.

The 21,000,000,000 neurons and ~1,000,000,000,000,000 synapses in the human brain means that it’ll be a while until we have the computational resources to map it.

Secondly, your neurons die quickly – even if you’re immersed within minutes of death, you’re still likely to suffer substantial brain damage. To which cryonics proponents argue: “What do I have to lose?” If the choice is between probably never waking up again and never waking up again, and it’s your money to spend, then why not give it a shot?

An alternative to deep freeze is storing your brain in a computer. Not literally a lump of grey matter, but a database detailing in full all of the connections between the neurons in your brain that make you you (known as your connectome). Future doctors could then either rewire a real or artificial brain to match that data, resurrecting you in a new body (or perhaps even as an artificial intelligence).

A close look at a slice of mouse brain. Credit: Robert Cudmore

So far, we’ve only managed to map the full connectome of one animal – the roundworm C. elegans. Despite the worm’s mere 302 neurons and 7,500 or so synapses, the resulting data is about 12GB in size – you can download it in full at the Open Connectome Project, and even install it in a robot, which will then act like a worm.

Unfortunately the human brain is a somewhat larger undertaking. The Human Connectome Project is making a start, and AI is helping, but the 21,000,000,000 neurons and ~1,000,000,000,000,000 synapses in the human brain means that it’ll be a while until we have the computational resources to get it done. It’s worth noting that this isn’t an unassailable goal, especially if we can somehow figure out which bits are actually important to our personality and who we are as individuals and which bits are just used to remember the lyrics of Spice Girls songs.

For now, though, my recommendation would be to stick to the list of simple life extension strategies above. It’s probable that in time we’ll have new ways of augmenting our bodies that will extend our lifespans (we’ve already started with cyborg technology – just look at pacemakers and artificial hips).

But if you want to be at the front of the waiting list then you’ll need to arrive at that point with as youthful a body as possible.

Visit link:
How to live forever – TechRadar

Recommendation and review posted by simmons

Cedar Ridge Genetics Home of America’s Elite Sowherd

Cedar Ridge Farms was established in 1954 by the late Fred and Betty Grohmann. Their six sons, Bob, Dennis, Stan, Mike, Randy, and Freddie, now own and operate the farm. We invite you to view the information throughout the site and contact us about you in what we have to offer.

Thank you!

At Cedar Ridge Genetics, we are confident that when you consider all things including productivity, longevity, growth rate, feed efficiency, carcass yield, loin depth and lean muscle content into an overall evaluation, our genetic program will excel and provide maximum profit potential for any modern production system. Put us to the test!

Our complete program consists of purebred, nucleus-level grandparent boars and gilts of the following breeds: Landrace, Yorkshire, Duroc and Hampshire. These genetics can be accessed through live animal purchase, fresh semen sales or pre-ordered bred gilts.

Our terminal program consists of our ProfitMAX parent-stock females bred to our high-caliber ProfitMAX terminal boars. Access to the ProfitMAX terminal lines are available from our two home studs, and, Eastern A.I. in Indiana, or by direct purchase of young elite A.I.- quality boars or natural service boars.

The rest is here:
Cedar Ridge Genetics Home of America’s Elite Sowherd

Recommendation and review posted by simmons

Heifer donated for 2018 Angus Foundation package – Farmers Advance

Farmers Advance Published 10:21 a.m. ET Aug. 20, 2017

The Angus Foundation is pleased to announce that Jim Coleman, Vintage Angus Ranch, Modesto, CA, is donating the heifer that will anchor the Angus Foundation Heifer Package.

It is an honor for Vintage Angus Ranch to donate the 2018 Angus Foundation heifer, says Jim Coleman, Vintage Angus Ranch owner. We are selecting a very elite female to represent the very best of Vintage Angus Ranch that truly delivers upon our goal of producing ultimate Angus genetics. Again, we are humbled by this prestigious invitation from the Angus Foundation, and consider it a privilege to give back to the Angus breed.

The Angus Foundation Heifer Package will be auctioned on January 10, 2018, at the National Western Stock Show in Denver, Colo.

We are honored that Vintage Angus Ranch has stepped up to donate the female for the 2018 Angus Foundation Heifer Package, says Milford Jenkins, Angus Foundation President. This heifer will provide the lucky buyer with some of the best genetics in the Angus breed while simultaneously generating funds for educational, research and youth activities advancing the Angus breed.

The 2018 Angus Foundation heifer is a February 2017 female out of Blackbird 8809 and sired by Discovery X 8809, one of the most sought-after sires in the Angus breed today. Discovery progeny are known for displaying light birth weights and exceptional growth. The heifers dam is the famous dam of Foreman, Generation, Index, Ranger, Frontier, Complete 1209, Commander, Reserve and Rubicon.

Coleman and Vintage Angus Ranch General Manager Doug Worthington are responsible for Vintage Angus Ranchs proven Angus genetics, as the pair work together to make all of the herds breeding decisions. Vintage Angus Ranch raises their 450 females on year-round grass covering three different hill ranches in the Modesto area. Coleman started Vintage Angus in 1976, expanding the program to a national scale. Worthington received the 1985 National Herdsman Award from the American Angus Association and Coleman hired him in 1989.

Check the Angus Foundation website for more updates on the Angus Foundation Heifer Package atwww.angusfoundation.org.

Read or Share this story: http://www.farmersadvance.com/story/news/2017/08/20/heifer-donated-2018-angus-foundation-package/564451001/

See the rest here:
Heifer donated for 2018 Angus Foundation package – Farmers Advance

Recommendation and review posted by Bethany Smith

Kenilworth cow wins supreme dairy title – Queensland Country Life

ADADALE Tequila Primrose 7, anall-class fouryear old Jersey, has clinched top honours at the Ekka, named the supreme champion cow of the Royal Queensland Show.

Exhibited by the Paulger family from Kenilworth, the in-milk female by Tower Vue Prime Tequila was earlier judged to have the best udder of the show.

Primrose came in ahead just one point of the Illawarra and three points ahead of the Holstein in the six breed competition.

Nicola Paulger and Gary Goss with Adadale Tequila Primrose 7, the champion udder of the show.

The top Illawarra cow was Allendale Virgin 13, The top Holstein cow was the Barron familys Grantley Allen Flora, which won the five to seven year old class.

In the intermediate class the same five cows also contested the title for best udder. The supremewas the Holstein, Arabella Smokin, shown by Arabella Farming Co, Brookstead. Smokin was the winner of the 2.5-3 year old class.

The supreme junior female title went to the Illawarra, which initially won six to 10 month old class winner before being named the breeds junior champion female. Allenvale Blossom 41 was shown by Allen and Denise Whatman, Oakey.

Life member Warren Gibson, Glencrest Guenseys, Gympie, Bradley Frohloff, Sunshine Guenseys, Yarra, Vic, and federal Guensey president Darby Norris, Rockford Park, Lancaster, Vic.

Daniel Holmes, Brookstead, with Arabella Miss Olivia, Dean Malcolm, Shepherdton, Vic, with Albion Park Shotgun Pam, Wayne Barron, Ardylbar, Cambooya, with Grantley Allen Flora, and judge Glen Gordon, Cohuna, Vic.

Steward Alan Trim holding the John and Ida Scott Memorial Shield with family member John Edwards, Toogoolawah, and with Allen Whatman, Allenvale, Oakey, and the supreme junior champion female Allenvale Blossom 41.

Repeat Brown Swiss champion cow – Melalukea Magnafic Jolly 1 – with Callum McPhee and Melissa Tompson, Melalukea, Toogoolawah.

EKKA WINNER: Adadale Tequila Primrose 7, the supreme champion cow of Royal Queensland Show with Tony Burnett from Dairy Farmers Milk Cooperative, Shane Paulger, sisters Julia and Nicola Paulger and RNA president David Thomas.

Alan Trim, Windaroo, Annette Pickering, Mt Mee, and Michelle Hewitt, Delaneys Creek.

Nicola Paulger and Gary Goss with Adadale Tequila Primrose 7, the champion udder of the show.

RNA councillor Ian Galloway and the supreme champion intermediate female Eacham Vale Precious 7 (Illawarra) with Greg English.

Wade Johnston, Craiglea Sud, Obi Obi, and Tim Nicholls, Sunnyview, Kenilworth.

Georgia Finlay and Hannah Hardy checking out the dairy judging.

Shane Burke, Myrtleholme, Gladfield, and Allen Whatman, Allenvale, Oakey.

Christine and Doug Bartkowski, Hillcrest, Meringandan, and Wayne Phillips, Sunny View, Toowoomba.

Duncan McInnes, Dairy Farmers, and Daniel Holmes, Brookstead, with the intermediate Holstein winner Arabella Smokin Ilma.

Kevin Smith, Hillcrest Ayrshires, Boonah, and Eric Ross, Rosellinos, Carbrook.

Ben Hickey and Phil Vitale, Templemore Ayrshires, Bunya.

Krystle Johnston, Jondene Illawarras, Imbil, and Nathan Arnold, Craiglea Stud, Kenilworth.

Warren and Heather Nicholls, Sandy Flats, Fernvale.

Wayne Barron, Ardylbar, Cambooya, with the champion Holstein cow Grantley Allen Flora, and judge Glen Gordon, Cohuna, Vic.

Michell Greenslade, Nambour, and Denise Whatman with Allenvale Blossom 34.

Todd Rothe, Woodchester, SA, judge Caitlin Liebich, Glencoe, SA, Ray Zerner, Pineville Ayrshires, Gympie, and Sue Hood, Redcliffe.

Ayshire. Junior female: Pineville Thistle Burdette Awaiting, RG&RO Zerner. Reserve: Auchen Plumb Titans Tatiana, Ariah Edwards. Honourable mention: Tailors Grove Ebenee, LA&MA Schneider.

Brown Swiss.Senior female: Melalukea Magnafic Jolly 1, M Thompson and S Childs. Reserve: Mountain View Velvet 2. Honourable mention: Elavesor Zaster Exciting, Quicksilver Brown Swiss. Intermediatefemale:Elavesor Shebang Sheiba. Reserve: Melalukea banker Jackie Jak. Honourable mention: Mountain View Leesa 10, Radel Discretionary Trust. Junior female: Mountain View Velvet. Reserve: Elavesor Bosephus Nikola. Honourable mention: MelalukeaBlooming Denmark.

Guernsey:Senior female: Sunny Valley Mentor Bess, Clarke Partnership. Reserve: Sunny Valley Bevan Caleen. Honourable mention: Sunny Valley Showtime Monica. Intermediatefemale: Shadow Valley Chads Lulu, JT&JM ODonohoe. Reserve: Sunny Valley Ninja Rennie. Honourable mention: Fernybank Banjo Edina, LP&DA Dunne. Junior female: Fernybank Reuben Kalleen. Reserve: Fernybank Banjos Netta.

Holstein:Senior female: Grantley Allen Flora, AD&SL Barron. Reserve: Albion Park Shotgun Pam, Bernice Jannusch. Arabella Miss Olivia ET, Arabella Farming Co. Intermediatefemale: Arabella Smokin Ilma. Reserve: Ardylbar Atwood Gracious, AD&SL Barron.Junior female: Arabella Fever Frances. Reserve: Adadale Attic Kooyong, Paulger family, Kenilworth.Honourable mention: Arabella Broke Tam.

Illawarra: Senior female: Allenvale Virgin 13, Damen Phillips Nichols Barren. Reserve: Sunny View Duchess.Honourable mention: Allenvale Blossom 41, Allen and Denise Whatman, Oakey.Intermediatefemale: Eacham Vale Precious 7, Ledger family. Reserve: Myrtleholme Lemon Empress 66, JP Bourke and Co. Honourable mention:Allenvale Blossom 44. Junior female: Allenvale Blossom 41. Reserve: Sunny View Barbwire Pamela.Honourable mention:Sunny View Barbwire Pauline.

Jersey:Senior female: Adadale Tequila Primrose 7, Paulger family, Kenilworth. Reserve: Adadale GP Rowena. Honourable mention: Adadale HG Narcissus. Intermediatefemale: Ascot Park Unreal Lora 2, SG&JA McCarthy, Budgee. Reserve: Adadale Wattle HL Rowena.Honourable mention: Adadale FP Lynn. Junior female: Adadale HG Avalon. Reserve: Nobbyview Comericas Locket, Nobbyview Partnership.Honourable mention: Glen Echo Barba Muriel 3443, CR&CM Parker.

Read more from the original source:
Kenilworth cow wins supreme dairy title – Queensland Country Life

Recommendation and review posted by simmons

In World First, Scientists Reverse Aging in Old Hearts by Injecting Younger Cells – Wall Street Pit

How long do you expect to live?

Thats a question that can make a lot of people feel suddenly lost for an answer.

In fact, its not a question that anybody would like to answer.

However, for scientific, socio-economic, and other legitimate reasons, average life expectancy per region are being documented. According to the World Factbook by the Central Intelligence Agency, the average life expectancy at birth of the following countries as of 2016 are as follows:

The rest of the world has an average life expectancy of 80 years downwards, with Chad ranking the lowest at 50.20 years.

Life is short, too short.

Its the reason why the pursuit of anything and everything under the sun that can stop aging is mankinds obsession.

We want to live longer; if possible, forever.

Forever is definitely too, too far away. But, longer, yes. Its more probable.

Heres the latest news on anti-aging, and this time its about stem cells. Stem cells from a young heart may help in regaining vitality which we lose as we grow old.

Researchers from the Cedars-Sinai Heart Institute have recently discovered that upon application of Cardiosphere-derived cells (CDC), which they took from newborn mice and injected into the hearts of 22-month-old mice, had resulted to better heart functionality, hair regrowth at a faster rate, 20 percent longer exercise endurance, and longer cardiac telomeres.

The findings on the effect of CDC cells on telomeres is very significant since these compound structures located at the tip of chromosomes function as the cells time-keepers. In fact, another study is focusing on methods to lengthen telomeres to fight the effects of progeria and help prolong life.

Our previous lab studies and human clinical trials have shown promise in treating heart failure usingcardiac stem cell infusions, saidCedars-Sinai Heart Institute and lead researcher Eduardo Marbn, MD, PhD, Now we find that these specialized stem cells could turn out to reverse problems associated with aging of the heart.

According to Dr. Marban, the CDC cells work on reversing the aging process by secreting very small vesicles that are full of signaling molecules like proteins and ribonucleic acid (RNA). The vesicles appear to have all the necessary information in producing cardiac and systemic rejuvenation.

In 2009, the LA-based team achieved the worlds first stem cell infusion which they hope to use in treating patients with Duchenne muscular dystrophy and cases of heart failure with preserved ejection fraction. However, this was the first time that they have observed this kind of rejuvenating effects of CDC cells.

Nevertheless, Dr. Marban and his team acknowledge that they still have a lot to do and figure out. They havent determined yet if the CDC cells could lengthen life, or just produce a younger heart in an aged physique. They also have to find out if the cells must come from younger hearts for the stem cell treatment to be effective.They will obviously need more time and tests to find the right answers to these very important questions.

But, if Dr. Marban and his team succeed, CDC cells may be a key to restoring youth and vigor. It will also help globally the large number of people who suffer from cardiovascular diseases-heart disease is the worlds number 1 killer and accounts for 17.3 million deaths per year.

The study was published on theEuropean Heart Journal.

View original post here:
In World First, Scientists Reverse Aging in Old Hearts by Injecting Younger Cells – Wall Street Pit

Recommendation and review posted by simmons

Mayo Clinic, University of Minnesota develop ‘robocop’ stem cells to fight cancer – Minneapolis Star Tribune

Researchers at the Mayo Clinic and the University of Minnesota say theyre on the brink of a new era in cancer care one in which doctors extract a patients white blood cells, have them genetically engineered in a lab, and put them back to become personalized cancer-fighting machines.

The so-called CAR T cellular therapies are expected to receive federal approval this fall for certain rare blood cancers B-cell forms of lymphoma and leukemia. But scientists at the Minnesota institutions hope thats just the first step that will lead to better treatment of solid tumor cancers as well.

This is really the first approval of a genetically modified product for cancer therapy, said Dr. Jeffrey Miller, deputy director of the Masonic Cancer Center at the University of Minnesota. If the proof of concept works, he said, we might be on the right track to get away from all of that toxic chemotherapy that people hate.

Participating in industry-funded clinical trials, the Minnesota researchers hoped to determine if patients with leukemia or lymphoma would be more likely to survive if their own stem cells were extracted to grow cancer-fighting T-cells that were then infused back into their bodies.

One analysis, involving trials by Kite Pharmaceuticals at Mayo and other institutions, found a sevenfold increase in lymphoma patients whose cancers disappeared when they received CAR T instead of traditional chemo-based treatment.

I often tell patients that T-cells are like super robocops, said Dr. Yi Lin, a Mayo hematologist in Rochester. Were now directing those cells to really target cancer.

The U.S. Food and Drug Administration is widely expected this fall to approve CAR T products made by Kite and Novartis, which genetically engineer T-cells to target so-called CD19 proteins found on the surface of leukemia and lymphoma cells.

The side effects can be harsh, because the T-cell infusions trigger an immune system response that can produce fever, weakness, racing heart and kidney problems. Short-term memory and cognitive problems also have occurred. Brain swelling led to five deaths of cancer patients who took part in a CAR T trial by Juno Pharmaceuticals. The trial was shut down as a result.

Lin said brain swelling appeared mostly in adults with leukemia. For now, she expects Kites CAR T therapy to be approved for diffuse large B-cell lymphoma and the Novartis therapy to be approved for acute lymphoblastic leukemia in children. Federal regulations also might restrict CAR T for patients whose cancers survived traditional treatments.

Current practice to treat these cancers generally involves chemotherapy and radiation. Physicians then transplant stem cells, often from donor bone marrow, to regrow the patients immune systems, which are weakened in the process of treatment.

CAR T differs in that patients will receive infusions of their own T-cells, genetically modified, which their bodies will be less likely to reject.

Its individualized medicine, Lin said.

Im on my way

Before he tried CAR T at Mayo as part of a clinical trial, John Renze of Carroll, Iowa, had received two rounds of chemo, two rounds of radiation, and an experimental drug that did nothing to stop the spread of lymphoma.

After you fail about four times, you start to wonder if anything is going to work, the 58-year-old said.

At first, there was no room for him in the Mayo trial which has been a problem nationwide as desperate cancer patients have searched for treatment alternatives. But then he got the call one morning last summer while ordering coffee at his local cafe.

Can you get up here by one? the Mayo official asked.

Im on my way, Renze replied.

Even before federal approval comes through, researchers such as Miller are looking beyond the first-line CAR T therapies, and wondering if the approach can be used on solid tumors. Roughly 80,000 blood cancers occur each year in the U.S. that could be treated with CAR T, but the total number of cancers diagnosed each year is nearly 1.7 million.

The challenge is that solid tumors dont have the same protein targets as blood cancers. And T-cells would have to be more discriminating if infused to eliminate tumors in solid organs, Miller said. If you destroy normal lung tissue (along with lung cancer), thats not going to work, he said.

Mayo researchers are studying whether CAR T can work against multiple myeloma, a cancer of the bone marrow, while U researchers are exploring ways to better control the CAR T-cells after they are infused in cancer patients.

Researchers also are trying to understand whether CAR T produces memory in the immune system, so it knows to react if cancers resurface.

In addition, Miller is studying whether NK cells, which also play a role in the human immune system, can be genetically modified and infused instead of T-cells to target cancer. The body doesnt reject NK cells from donors as much, he said. So NK cells from donor bone marrow or umbilical cord blood could be collected and mass produced to potentially provide faster and cheaper treatments.

Like many breakthrough therapies, CAR T will be expensive, with a price likely to exceed $200,000 per patient. How insurers plan to cover it remains unclear. Blue Cross and Blue Shield of Minnesota is evaluating evidence regarding CAR Ts effectiveness, and will set a coverage policy after it receives FDA approval, said Dr. Glenn Pomerantz, Blue Cross chief medical officer.

A surge for Mayo?

Mayo expects a surge of hundreds of cancer patients per year if CAR T is approved, because it will initially be provided by large medical centers that have experience with the therapy and its side effects. The Rochester hospital is planning to add staff and space dedicated to CAR T.

Miller said the U is developing advice for referring doctors and hospitals statewide, so they know what to do if CAR T patients show up with complex symptoms.

They can be a bit delayed and you cant just keep people in the hospital to see if they develop these things, he said.

Renzes stem cells were taken last July, and his modified T-cells were put back a month later. He lost weight and felt sick for weeks, and had to drive three hours to Mayo for frequent checkups.

But as of last Aug. 31, the cancer had vanished.

Every three months, he returns to Mayo to make sure the cancer hasnt re-emerged. Then he returns to Carroll, where he owns farmland and car dealerships and dotes on his grandchildren.

For people like me that have already failed a bunch of times, youre happy to try anything, he said. I mean, what else would I have done?

Read the original post:
Mayo Clinic, University of Minnesota develop ‘robocop’ stem cells to fight cancer – Minneapolis Star Tribune

Recommendation and review posted by simmons

Want to live longer? Forever Labs wants to help, using your stem cells – Digital Trends


Digital Trends
Want to live longer? Forever Labs wants to help, using your stem cells
Digital Trends
Using a patented device, Forever Labs collects stem cells from your blood marrow, which the team calls a wellspring for stem cells that replenish your blood, bone, immune system, and other vital tissues. The whole process is said to take around 15

Read this article:
Want to live longer? Forever Labs wants to help, using your stem cells – Digital Trends

Recommendation and review posted by simmons

Vitamin C could help genes kill blood cancer stem cells – Economic Times

WASHINGTON D.C: Good news! A study has recently revealed that vitamin C may tell faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers.

According to researchers, certain genetic changes are known to reduce the ability of an enzyme called TET2 to encourage stem cells to become mature blood cells, which eventually die, in many patients with certain kinds of leukemia.

The new study found that vitamin C activated TET2 function in mice engineered to be deficient in the enzyme.

Corresponding study author Benjamin G. Neel said, “We’re excited by the prospect that high-dose vitamin C might become a safe treatment for blood diseases caused by TET2-deficient leukemia stem cells, most likely in combination with other targeted therapies.”

The results suggested that changes in the genetic code (mutations) that reduce TET2 function are found in 10 percent of patients with acute myeloid leukemia (AML), 30 percent of those with a form of pre-leukemia called myelodysplastic syndrome, and in nearly 50 percent of patients with chronic myelomonocytic leukemia.

The study results revolve around the relationship between TET2 and cytosine, one of the four nucleic acid “letters” that comprise the DNA code in genes.

To determine the effect of mutations that reduce TET2 function in abnormal stem cells, the team genetically engineered mice such that the scientists could switch the TET2 gene on or off.

The findings indicated that vitamin C did the same thing as restoring TET2 function genetically. By promoting DNA demethylation, high-dose vitamin C treatment induced stem cells to mature, and also suppressed the growth of leukemia cancer stem cells from human patients implanted in mice.

“Interestingly, we also found that vitamin C treatment had an effect on leukemic stem cells that resembled damage to their DNA,” said first study author Luisa Cimmino.

“For this reason, we decided to combine vitamin C with a PARP inhibitor, a drug type known to cause cancer cell death by blocking the repair of DNA damage, and already approved for treating certain patients with ovarian cancer,” Cimmino added.

The findings appear in journal Cell.

Read the original:
Vitamin C could help genes kill blood cancer stem cells – Economic Times

Recommendation and review posted by simmons

Bone Marrow Transplant gives local cancer patient more time with his family – KTBS

ARZ050-051-059>061-070>073-LAZ001>006-010>014-017>022-OKZ077-TXZ097-112-126-137-138-150>153-165>167-201300-/O.CON.KSHV.HT.Y.0009.000000T0000Z-170821T0000Z/Sevier-Howard-Little River-Hempstead-Nevada-Miller-Lafayette-Columbia-Union-Caddo-Bossier-Webster-Claiborne-Lincoln-De Soto-Red River-Bienville-Jackson-Ouachita-Sabine-Natchitoches-Winn-Grant-Caldwell-La Salle-McCurtain-Bowie-Cass-Marion-Gregg-Harrison-Rusk-Panola-Nacogdoches-Shelby-Angelina-San Augustine-Including the cities of De Queen, Nashville, Mineral Springs, Dierks, Ashdown, Hope, Prescott, Texarkana, Stamps, Lewisville, Bradley, Magnolia, El Dorado, Shreveport, Bossier City, Minden, Springhill, Homer, Haynesville, Ruston, Farmerville, Bernice, Mansfield, Stonewall, Logansport, Coushatta, Martin, Arcadia, Ringgold, Gibsland, Jonesboro, Monroe, Many, Zwolle, Pleasant Hill, Natchitoches, Winnfield, Colfax, Montgomery, Dry Prong, Clarks, Grayson, Columbia, Jena, Midway, Olla, Idabel,Broken Bow, Atlanta, Linden, Hughes Springs, Queen City, Jefferson, Longview, Marshall, Henderson, Carthage, Nacogdoches, Center, Lufkin, San Augustine, Hemphill, and Pineland936 PM CDT Sat Aug 19 2017…HEAT ADVISORY REMAINS IN EFFECT UNTIL 7 PM CDT SUNDAY…* EVENT…High pressure aloft across the area will allow for temperatures to climb into the middle to upper nineties. These temperatures along with low level moisture will produce heat indices of 105 to 109 degrees. * TIMING…Heat indices will be near 105 to 109 in the afternoon and early evening before lowering. * IMPACT…Precautions should be taken to prevent heat related illnesses, including limiting outdoor work activities to the morning before temperatures rise and early evening after the readings lower. PRECAUTIONARY/PREPAREDNESS ACTIONS…Take extra precautions if you work or spend time outside. Whenpossible, reschedule strenuous activities to early morning orevening. Take frequent rest breaks in shaded or air conditionedenvironments. Know the signs and symptoms of heat exhaustion andheat stroke. Wear light weight and loose fitting clothing whenpossible and drink plenty of water.Heat stroke is an emergency, call 9 1 1.A heat advisory means that a period of hot temperatures isexpected. The combination of hot temperatures and high humiditywill combine to create a situation in which heat illnesses arepossible. Drink plenty of fluids, stay in an air-conditionedroom, stay out of the sun, and check up on relatives andneighbors.&&$$

Follow this link:
Bone Marrow Transplant gives local cancer patient more time with his family – KTBS

Recommendation and review posted by sam

Bone marrow transplants: SMS leads the way – Times of India

Jaipur: Sawai Man Singh (SMS) Hospital is showing the way to treat various types of blood cancer and other blood-related disorders, including aplastic anaemia, myeloma, lymphoma, leukaemia and thalassemia.

Despite the higher risk of infections in ICUs, the hospital has not reported a single mortality. Some 19 patients have undergone autologous bone marrow transplant since 2009 at the hospital. Patients who have done the transplant are vulnerable to infections as they have to stay in post-operative care in ICUs for 14 to 54 days.

While the high dose of chemotherapy put patients at the risk of death, the rejection of graft (bone marrow) remains a major concern for doctors.

Though patients are given immunosuppressive medicines to deal with the risk of rejection, they make patients more immune-compromised which in turn make them more vulnerable to infections.

But despite all these risk factors, the hospital has not witnessed a single death of patients who have undergone autologous bone marrow transplant.

“We maintain high standards and follow protocol of ICUs. We do not allow anyone to enter the ICUs. One attendant with one patient is allowed, but we allow him to enter the ICU only after he changes his clothes completely and follows all norms in ICUs to minimise the risk of infection,” said Dr Sandeep Jasuja, head of the department (medical oncology), SMS Medical College.

But still, 36% (7 patients) of these 19 patients contracted bacterial (due to Escherichia coli, enterobacter, pseudomonas), fungal and viral infections. However, the doctors brought the situation under control by providing them antibiotics and other drugs.

Read more here:
Bone marrow transplants: SMS leads the way – Times of India

Recommendation and review posted by Bethany Smith


Archives