Page 11234..1020..»

Archive for the ‘Cardiac Stem Cells’ Category

Metrion Biosciences and International Scientific Consortium Publish Data and New Recommendations for in Vitro Risk Assessment of the Cardiac Safety of…

CAMBRIDGE, England--(BUSINESS WIRE)--Metrion Biosciences Limited (Metrion), the specialist ion channel CRO and drug discovery company, today announced it has contributed to two new peer-reviewed papers under the U.S. Food and Drug Administrations (FDA) CiPA (Comprehensive in vitro Proarrhythmia Assay) initiative. The papers, in Nature Scientific Reports1 and Toxicology and Applied Pharmacology2, focus on application of improved cardiac safety testing protocols and recommendations for best practice for the drug discovery industry.

The CiPA Initiative (www.cipaproject.org), which began in July 2013 following a workshop at the US FDA, has the objective to revise and enhance the regulatory framework assessing cardiac safety of new chemical entities. Under current guidelines, new therapeutics undergo initial assessment of proarrhythmic risk by measuring activity against the hERG cardiac ion channel, before progressing to studies in preclinical animal models and ultimately, a Thorough QT interval study in the clinic. The CiPA initiative aims to extend the use of advances in early electrophysiology-based cardiac ion channel screening, in silico predictive modelling, and human induced pluripotent stem cell derived cardiomyocytes to improve the accuracy and reduce the cost of predicting the cardiac liability of new drug candidates. Metrions research forms part of the first stage of the proposed harmonisation work, to provide clarity on how to standardise cardiac ion channel assays to ensure they deliver consistent data for in silico models of clinical cardiac arrythmia risk.

The first paper1, published in Nature Scientific Reports on 27th March 2020 by an international group of authors drawn from 20 different commercial and academic laboratories, including Metrion Biosciences, was coordinated by the Health and Environmental Sciences Institute (HESI). It reviews data from a multi-year, multi-site collaboration across industry, academia and the FDA regulatory agency to optimize experimental protocols and reduce experimental variability and bias. The goal of the study was to guide the development of best practices for the use of automated patch clamp technologies in early cardiac safety screening. High quality in vitro cardiac ion channel data is required for accurate and reliable characterisation of the risk of delayed repolarisation and proarrhythmia in the human heart and to guide subsequent clinical studies and regulatory submissions.

The second paper2, to be published formally in Toxicology and Applied Pharmacology paper on 1st May 2020 but currently available online, uses automated patch clamp data from the CiPA consortium to address the lack of statistical quantification of variability, which hinders the use of primary hERG potency data to predict cardiac arrhythmia. The consortium establishes a more systematic approach to estimate hERG block potency and safety margins.

Dr Marc Rogers, CSO, Metrion Biosciences, said: The Metrion team has been a participant in the international CiPA Initiative since inception and we are now pleased to be able to announce the publication of our data from this global collaborative scientific effort. We believe these projects will make a significant contribution to the eventual revision of cardiac safety testing guidelines by the FDA and other international regulatory agencies. They also contribute to deepening our knowledge of the underlying causes of proarrhythmia, which will help prevent early attrition of potentially promising drugs.

Contributing organisations to the Nature Scientific Reports CiPA study include: Charles River Laboratories; Bayer AG; Sophion Bioscience A/S; Nanion Technologies; GlaxoSmithKline PLC; Pfizer; Sanofi R&D; Astra Zeneca; BSYS GmbH; Bristol-Myers Squibb Company; Eurofins Discovery; Merck; Metrion Biosciences Ltd.; Natural and Medical Science Institute at the University of Tbingen; Northwestern Feinberg School of Medicine, Chicago; Roche Innovation Center Basel; Novoheart; Health and Environmental Sciences Institute, Washington, DC; AbbVie.

Contributing organisations to the Toxicology and Applied Pharmacology hERG study include: Center for Drug Evaluation and Research, Food and Drug Administration; Eli Lilly and Company; AstraZeneca; CiPA LAB; NMI-TT GmbH; Sophion Bioscience A/S; B'SYS GmbH; The Ion Channel Company; F. Hoffmann-La Roche AG; Eurofins Discovery; Bristol-Myers Squibb; Merck & Co., Inc; Metrion Biosciences Ltd.; Nanion Technologies; Charles River Laboratories; Bayer AG; University of Nottingham; Universit de Lille.

For more information on Metrions fully integrated Cardiac Safety Screening / CiPA Screening service, please visit: https://www.metrionbiosciences.com/services/cardiac-safety-screening/

Merion Biosciences comprehensive cardiac safety testing White Paper The changing landscape of cardiac safety will also be available on the Companys website from 13th April 2020.

Read the rest here:
Metrion Biosciences and International Scientific Consortium Publish Data and New Recommendations for in Vitro Risk Assessment of the Cardiac Safety of...

Anti-IL-6 Monoclonal Antibodies as Antiarrhythmic Treatment for HF – The Cardiology Advisor

, which were found to produce high levels of Interleukin-6 (IL-6), was abated in the presence of anti-IL-6 monoclonal antibodies, according to study results intended to be presented at the annual meeting of the American College of Cardiology (ACC.20).

In a diseased state, cardiacmesenchymal stromal cells (cMSCs) remodel and secrete inflammatory cytokines,including IL-6. IL-6 has been shown to be a potent inducer of Ca2+-mediatedarrhythmia substrates in human myocytes. While anti-IL-6 monoclonal antibodies havean established role in the treatment of autoimmune diseases and malignancies, theiruse in the treatment of cardiac disease has not been well studied.

Using extracted device leads and explanted hearts from patients with and without heart failure, investigators isolated cMSCs (failing and non-failing cMSCs, respectively), and quantified IL-6 using an enzyme-linked immunosorbent assay. Myocytes were derived from induced pluripotent stem cells (iPSCs) from individuals without heart failure and cultured in monolayers. Myocytes were treated with exogenous IL-6 or cocultured with failing cMSCs with and without anti-IL-6 monoclonal antibody. Fluorescent indicators were used to detect the presence of Ca2+ alternans during steady state pacing.

The secretion of IL-6 was found tobe 5.6 times higher in failing vs nonfailing cMSCs (n=4; P <.005) and 66 times higher in cMSCs vs iPSC-derived humanmyocytes (n=5; P <.002). Myocytes thatwere cocultured with failing cMSCs or were exposed to exogenous IL-6 had largeincreases in Ca2+ alternans compared with myocytes cultured alone (343%,n=12, P <.001 and 300%, n=5, P <.002, respectively). These Ca2+alternans were reduced to baseline levels in myocyte/cMSC cocultures treated vsnot treated with IL-6 (reduction, 400%; n=18, P <.001).

These results suggest anovel anti-arrhythmic therapeutic strategy in heart failure using anti-IL-6drugs such as tocilizumab, sarilumab, or siltuximab, concluded theresearchers.

Reference

Vasireddi S, Sattayaprasert P,Moravec C, et al. Targeted anti-inflammatory treatment with anti-Il-6monoclonal antibody for calcium-mediated arrhythmia substrates in heartfailure. Intended to be presented at: American College of Cardiologys 69thAnnual Scientific Session; March 28-30, 2020; Chicago, IL. Presentation 915-09.

Here is the original post:
Anti-IL-6 Monoclonal Antibodies as Antiarrhythmic Treatment for HF - The Cardiology Advisor

Health Tech: Dallas-based American Heart Association Awards $14M in Research Grants for Heart, Brain, and COVID-19 Innovation – dallasinnovates.com

Dallas-based American Heart Association (AHA) awarded more than $14 million in scientific research grants for health technology solutions focused on heart and brain health, including special projects related to COVID-19, last week. The grants went to four multidisciplinary teams around the country to create the AHAs 10th Strategically Focused Research Network. The newest network centers on Health Technologies and Innovation.

Consumer adoption of healthcare technology on digital mediums like tablets, smartphones, and wearable devices offer a unique outlet to find new solutions to improve health outcomes, American Heart Association president Robert A. Harrington said in a statement.

The AHA peer review team moved forward with its selection of the centers for its latest strategically focused research network when the COVID-19 pandemic in the U.S. broke. The nonprofit science-based organization knows the times are challenging as it works towards its mission of a culture of health.

It felt this was an incredible opportunity for us to provide additional support in harnessing new innovations to tackle the challenges that are crippling the nation, and frankly the globe, Harrington said.

Grantees that will create the 10th network are research teams at Cincinnati Childrens Hospital, The Johns Hopkins University, Stanford University School of Medicine and the University of Michigan. Each team will receive $2.5 million each for their individual projects aimed at reducing health care disparities, empowering people to better manage their health and wellness, and enhancing patient/provider connectivity, the AHA said.

Collectively the teams will also receive $4 million to work on at least one highly impactful project and form a national Health Technology Research Collaborative, it said. The Collaborative may ultimately serve as an American Heart Association research think tank to assist with identifying, creating, testing and bringing to scale future innovative health technologies.

In addition, each research team also can apply for supplemental research grants of up to $200,000 for rapid action projects to develop technology solutions to address the COVID-19 pandemic, the AHA said. Those projects might provide aid for health care systems, doctors or care providers, first responders, patients or consumers.

These supplemental grants are part of the AHAs $2.5 million commitment to research efforts to better understand this unique coronavirus and its interaction with the bodys cardiovascular and cerebrovascular systems.

The peer review committee has assembled an exceptional network to move this work forward and I want to recognize the dedication and commitment of that panel of many renowned experts, Harrington said. The Association uses an intense, multi-stage review process in selecting the centers for our focused research networks and were very appreciative of the committee members who lend their time and expertise to this critical process.

The AHA program brings together basic, clinical, and population researchers with engineers, IT developers, policy leaders, health care clinicians and patients. That lets the teams improve existing technology, and also identify new and innovative ways to put technology to work in addressing heart and brain health, American Heart Association volunteer James A. Weyhenmeyer, Ph.D. said.

Weyhenmeyer is vice president for research and economic development at Auburn University and chair of the Associations peer review team for the selection of the new grant recipients. Its especially important that all of these projects be focused with an equity-first lens to ensure our most vulnerable populations are being served, he noted.

The AHA is currently funding seven Strategically Focused Research Networks (SFRN) with focuses on Go Red For Women, Heart Failure, Obesity, Children, Vascular Disease, Atrial Fibrillation, and Arrhythmias & Sudden Cardiac Death. Three of AHAs networksPrevention, Hypertension, and Disparitieshave been completed. Locally, the University of Texas Southwestern was a grantee in the completed Prevention SFRN.

With the launch of its newest network, the American Heart Association has invested more than $190 million to establish 12 SFRNs since the program was launched in 2010-2011. The idea behind the science networks is the collaboration of scientists to focus research to address key strategic issues that were identified by the AHAs Board of Directors, in areas such as hypertension, womens health, heart failure, obesity, children, vascular disease, atrial fibrillation, sudden cardiac death, and type 2 diabetes. Each established network centers around the understanding, prevention, diagnosis and treatment of a key research topic. Four to six research centers make up each network, AHA said, which brings together investigators with expertise.

More networks can be expected in 2020 and beyond, AHA said.

The latest projects funded by the $14.5 million in grants commenced on April 1. Here they are, per the AHA:

Active Detection and Decentralized Dynamic Registry to Improve Uptake of Rheumatic Heart Disease Secondary Prevention (ADD-RHD) at Cincinnati Childrens HospitalLed by Andrea Beaton, M.D., a pediatric cardiologist at Cincinnati Childrens Hospital, this team will address the global health issue of rheumatic heart disease which affects more than 40 million people, most living in poor countries or poor areas in wealthier countries. The team will concentrate on getting more people living with rheumatic heart disease into guideline-based care using technology to find more people with rheumatic heart disease, keep them in care and generate the investment case to scale up national rheumatic heart disease action plans in low-income countries. Additionally, theyll be looking for early career doctors and scientists who want to help people get better care using technology and educate this next generation in solutions developed to improve global health in the future. The team consists of a collaborative with the Rheumatic Heart Disease Research Collaborative in Uganda (RRCU) including the Uganda Heart Institute, Childrens National Medical Center and the University of Washington in Seattle; the Cincinnati Childrens Digital Experience and Bioinformatics Centers; Northern Kentucky Universitys Biostatistics Department, Health Innovation Center and Health Sciences Institute; REACH (a global technical organization in rheumatic heart disease) and an industry partnership with Caption Health. While the project and solutions will be made for people living in developing countries, the team hopes to learn a lot about how to help people have better health in the United States.

Center for Mobile Technologies to Achieve Equity in Cardiovascular Health at The Johns Hopkins University in BaltimoreLed by cardiologist Seth Martin, M.D., M.H.S., and neurologist David Newman-Toker, M.D., Ph.D., this teams mission is to leverage mobile and wearable technologies to empower patients and clinicians, enhance the quality of care, increase value and improve the diagnosis and management of heart diseases and stroke. Early and accurate diagnoses are essential to ensure the appropriate delivery of guideline-recommended management to engage patients and their caregivers to achieve the best patient outcomes possible. The collaborative project will span the patient experience from diagnosis to management to improve patient care throughout the patient journey. Specifically, the team will develop and test a smartphone application for stroke diagnosis, following their experience with a goggle-based eye-tracking technology in the Armstrong Institute Center for Diagnostic Excellence. On the management side, the team will work on a virtual cardiovascular rehab that builds on their Corrie Health platform to empower patients in guideline-based prevention. Patients and their families from demographically diverse backgrounds will join as partners in the technology advancement process.

Center for Heart Health Technology (H2T): Innovation to Implementation at Stanford University Led by Mintu Turakhia, M.D. M.A.S., Executive Director of Stanfords Center for Digital Health, associate professor of medicine and a cardiac electrophysiologist at the VA Palo Alto Health Care System, the H2T Centers mission is to rapidly develop technologies that address unmet needs for heart health, evaluate them quickly and then implement these solutions at scale. The team will address the issue of high blood pressure, which affects more than 115 million Americans and costs the U.S. health care system more than $22 billion each year. The team will develop a clinician- and patient-facing digital health system for semi-automated management and evidence-based titration of blood pressure medications. The app will be tested in a randomized trial conducted in Northern California and New Jersey in people of different races, educations, and backgrounds and in a population of gig economy workers (rideshare drivers), who can be at increased risk of heart disease.

Wearables In Reducing Risk and Enhancing Daily Lifestyle (WIRED-L) at the University of MichiganLed by Brahmajee Nallamothu, M.D., M.P.H., a professor in the Division of Cardiovascular Diseases at the University of Michigan, this team plans to establish the Wearables In Reducing risk and Enhancing Daily Lifestyle (WIRED-L) Center dedicated to building and testing mobile health (mHealth) apps that leverage wearables like smartwatches to improve physical activity and nutrition in hypertensive patients. The apps will use just-in-time-adaptive digital interventions to deliver notifications to participants when they are most likely to be responsive using contextual information obtained from their devices. WIRED-L will enroll diverse communities that include African Americans and older adults rarely included in mHealth studies, to better close the digital divide between rich and poor. Additionally, WIRED-L will train a diverse and inclusive set of future leaders in mHealth through a highly integrated program that focuses on the key and complementary areas of clinical trials, data science, and health equity research.

Sign up to keep your eye on whats new and next in Dallas-Fort Worth, every day.

Hubert Zajicek wants to tap the strong innovation community in North Texas to share know-how, combat shortages, and come up with new solutions during the COVID-19 pandemic.

The Plano-based remote patient monitoring startup is now offering providers a no-cost solution for low-risk patients or those with mild symptoms simply by answering a series of questions.

The collaboration will allow physicians to virtually diagnose medical conditions, heightening safety for everyone.

A professor at the University of North Texas Health Science Center is collaborating with an international team to test whether stem cells can combat COVID-19 pneumonia.

Due to the effects of COVID-19, Southlake-based SmartCounseling is working to reduce costs for mental health services. The company's new platform also allows licensed professionals to expand their services online quickly.

Continue reading here:
Health Tech: Dallas-based American Heart Association Awards $14M in Research Grants for Heart, Brain, and COVID-19 Innovation - dallasinnovates.com

Global Autologous Cell Therapy Market 2020-2024 | Evolving Opportunities with Bayer AG and Brainstorm Cell Therapeutics Inc. | Technavio – Business…

LONDON--(BUSINESS WIRE)--The global autologous cell therapy market is poised to grow by USD 1.97 billion during 2020-2024, progressing at a CAGR of almost 22% during the forecast period. Request free sample pages

Read the 120-page report with TOC on "Autologous Cell Therapy Market Analysis Report by Therapy (Autologous stem cell therapy and Autologous cellular immunotherapies), Application (Oncology, Musculoskeletal disorders, and Dermatology), Geography (North America, APAC, Europe, South America, and MEA), and the Segment Forecasts, 2020-2024".

https://www.technavio.com/report/autologous-cell-therapy-market-industry-analysis

The market is driven by the increasing demand for effective drugs for cardiac and degenerative disorders. In addition, the limitations in traditional organ transplantations are fueling the demand for stem cell therapies. All these factors are anticipated to boost the growth of the autologous cell therapy market.

The demand for effective drugs for cardiac and degenerative disorders has been increasing across the world. In addition, the discovery of possible cardiac autologous cells has enabled vendors to develop novel drugs for the treatment of various cardiac diseases. For instance, Mesoblast is developing MPC-150-IM. It is a Phase III candidate for the treatment of advanced and end-stage chronic heart failure. Similarly, Shire has been developing autologous stem cell therapies for chronic myocardial ischemia. These products are expected to be launched during the forecast period and will have a positive impact on the growth of the global autologous cell therapy market.

Buy 1 Technavio report and get the second for 50% off. Buy 2 Technavio reports and get the third for free.

View market snapshot before purchasing

Major Five Autologous Cell Therapy Market Companies:

Bayer AG

Bayer AG operates its business through segments such as Pharmaceuticals, Crop Science, Consumer Health, and Animal Health. The company offers induced pluripotent stem cells. They are developed by reprogramming mature body cells to behave like embryonic stem cells that are injected to restore diseased tissue in patients.

Brainstorm Cell Therapeutics Inc.

Brainstorm Cell Therapeutics Inc. operates its business through an unified business segment. NurOwn is the key offering of the company. It is a cell therapy platform, which develops mesenchymal stem cells for the treatment of human diseases such as immune and inflammatory diseases.

Daiichi Sankyo Co. Ltd.

Daiichi Sankyo Co. Ltd. operates its business through segments such as Innovative Pharmaceuticals, Generic, Vaccine, and OTC Related. Heartcel is the key offering of the company. It is an immune-modulatory progenitor cell therapeutic agent, which is used for ischemic heart failure.

FUJIFILM Holdings Corp.

FUJIFILM Holdings Corp. operates its business through segments such as Imaging solutions, Healthcare and material solutions, and Document solutions. The company uses induced pluripotent stem cells to derive differentiated cells, which are used in researching various diseases and conditions.

Holostem Terapie Avanzate Srl

Holostem Terapie Avanzate Srl operates its business through an unified business segment. Holoclar is the key offering of the company. It is an advanced therapy medicinal product containing stem cells indicated to repair the cornea after injury.

Register for a free trial today and gain instant access to 17,000+ market research reports.

Technavio's SUBSCRIPTION platform

Autologous Cell Therapy Market Therapy Outlook (Revenue, USD Billion, 2020-2024)

Autologous Cell Therapy Market Application Outlook (Revenue, USD Billion, 2020-2024)

Autologous Cell Therapy Market Regional Outlook (Revenue, USD Billion, 2020-2024)

Technavios sample reports are free of charge and contain multiple sections of the report, such as the market size and forecast, drivers, challenges, trends, and more.

Request a free sample report

Related Reports on Healthcare Include:

Global Cancer Stem Cell Therapeutics Market Global cancer stem cell therapy market by type (allogeneic stem cell transplant and autologous stem cell transplant) and geography (Asia, Europe, North America, and ROW).

Global Mantle Cell Lymphoma Therapeutics Market Global mantle cell lymphoma therapeutics market by product (combination therapy and monotherapy) and geography (Asia, Europe, North America, and ROW).

About Technavio

Technavio is a leading global technology research and advisory company. Their research and analysis focus on emerging market trends and provides actionable insights to help businesses identify market opportunities and develop effective strategies to optimize their market positions.

With over 500 specialized analysts, Technavios report library consists of more than 17,000 reports and counting, covering 800 technologies, spanning across 50 countries. Their client base consists of enterprises of all sizes, including more than 100 Fortune 500 companies. This growing client base relies on Technavios comprehensive coverage, extensive research, and actionable market insights to identify opportunities in existing and potential markets and assess their competitive positions within changing market scenarios.

Visit link:
Global Autologous Cell Therapy Market 2020-2024 | Evolving Opportunities with Bayer AG and Brainstorm Cell Therapeutics Inc. | Technavio - Business...

While we were stockpiling, here’s what astronauts were up to in space last week – CNN

While many of us are practicing social distancing, working from home or living in quarantine-like and isolated situations, life goes on as normal for the space station-dwelling astronauts.

They're aware of the pandemic and have been sharing their support for people across the globe through their Twitter accounts. NASA astronaut Jessica Meir shared her perspective: "From up here, it is easy to see that we are truly all in this together. #EarthStrong."

But the astronauts aren't just floating around and taking cool pictures of Earth. Each week, hundreds of science experiments are in progress on the station. In addition to working on these experiments, the astronauts study themselves to better understand the human body in space.

Here's a look at the cool science they've been doing 254 miles from Earth.

Space pants

Living in space is an adjustment for the human body as it adapts to the lack of gravity.

Over the years, astronauts have noticed changes in their vision as a response to the headward fluid shift they experience. This also increases pressure in the head.

Last week, NASA astronauts Jessica Meir and Andrew Morgan, as well as Russian cosmonaut Oleg Skripochka, tested out the Russian Chibis hardware, also known as the Russian Space Agency's Lower Body Negative Pressure experiment.

It's basically a pair of pants housed in the Russian Orbital Segment of the space station.

The rubber pants use suction to draw fluids back down towards the legs and feet, just like we experience walking on Earth.

Researchers hope that hardware to reverse the fluid shift astronauts experience in space could also help with their vision changes.

While Morgan was wearing the Chibis pants, Meir used a tonometer to measure his eye pressure, with doctors on Earth watching in real time. Morgan's head and chest were also scanned to monitor blood flow.

The astronauts also tested their hearing as part of the European Space Agency's Acoustic Diagnostics experiment to monitor if the astronauts' hearing changes in response to noise and lack of gravity on the station.

Heart, muscle and bone

Multiple experiments are currently occurring on the station that could not only benefit the health of astronauts, but human life on Earth as well.

These cells could treat astronauts who experience heart abnormalities and be used to treat people and children with cardiac diseases and disorders on Earth. The cells can also be used to investigate the development of new pharmaceuticals.

One experiment, called Engineered Heart Tissues, allows the astronauts to watch heart cell muscle contractions in real time.

Meir and Morgan have been taking care of the heart cells, watching how they react to the lack of gravity. When the heart cells return to Earth, the results of the space experiment will be compared with a similar control experiment on Earth.

The astronauts have also been studying bone samples to understand and develop bone treatments for astronauts who suffer bone loss in space, as well as people diagnosed with osteoporosis on Earth. The goal is to determine new treatments for both.

Mice are also sharing space on the station with the astronauts in a mouse habitat so they can study how the mice and their gene expression reacts to zero gravity.

Understanding how their gene expression is altered can help NASA better prepare for long-term human spaceflight. The study also serves a secondary purpose of allowing them to determine countermeasures for muscle atrophy, which can occur in space or for patients on bed rest.

It's all in your gut

Astronauts don't get much of a chance to vary their diets in space. That means they could also be missing out on vital nutrients and other added benefits of the fresh food we consume on Earth.

The Japanese space agency's Probiotics investigation is studying how good gut bacteria could improve the human microbiome on long-term missions.

Meanwhile, the astronauts are also participating in an experiment called Food Acceptability, looking at the "menu fatigue" that happens when they eat based on limited options over months on the station. This usually causes them to lose weight by the time they return to Earth.

Continued here:
While we were stockpiling, here's what astronauts were up to in space last week - CNN

Regenerative Medicine Market Demand, Growth, Opportunities and Analysis Of Top Key Player Forecast To 2025 – Daily Science

Regenerative Medicine Market: Snapshot

Regenerative medicine is a part of translational research in the fields of molecular biology and tissue engineering. This type of medicine involves replacing and regenerating human cells, organs, and tissues with the help of specific processes. Doing this may involve a partial or complete reengineering of human cells so that they start to function normally.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1889

Regenerative medicine also involves the attempts to grow tissues and organs in a laboratory environment, wherein they can be put in a body that cannot heal a particular part. Such implants are mainly preferred to be derived from the patients own tissues and cells, particularly stem cells. Looking at the promising nature of stem cells to heal and regenerative various parts of the body, this field is certainly expected to see a bright future. Doing this can help avoid opting for organ donation, thus saving costs. Some healthcare centers might showcase a shortage of organ donations, and this is where tissues regenerated using patients own cells are highly helpful.

There are several source materials from which regeneration can be facilitated. Extracellular matrix materials are commonly used source substances all over the globe. They are mainly used for reconstructive surgery, chronic wound healing, and orthopedic surgeries. In recent times, these materials have also been used in heart surgeries, specifically aimed at repairing damaged portions.

Cells derived from the umbilical cord also have the potential to be used as source material for bringing about regeneration in a patient. A vast research has also been conducted in this context. Treatment of diabetes, organ failure, and other chronic diseases is highly possible by using cord blood cells. Apart from these cells, Whartons jelly and cord lining have also been shortlisted as possible sources for mesenchymal stem cells. Extensive research has conducted to study how these cells can be used to treat lung diseases, lung injury, leukemia, liver diseases, diabetes, and immunity-based disorders, among others.

Global Regenerative Medicine Market: Overview

The global market for regenerative medicine market is expected to grow at a significant pace throughout the forecast period. The rising preference of patients for personalized medicines and the advancements in technology are estimated to accelerate the growth of the global regenerative medicine market in the next few years. As a result, this market is likely to witness a healthy growth and attract a large number of players in the next few years. The development of novel regenerative medicine is estimated to benefit the key players and supplement the markets growth in the near future.

Global Regenerative Medicine Market: Key Trends

The rising prevalence of chronic diseases and the rising focus on cell therapy products are the key factors that are estimated to fuel the growth of the global regenerative medicine market in the next few years. In addition, the increasing funding by government bodies and development of new and innovative products are anticipated to supplement the growth of the overall market in the next few years.

On the flip side, the ethical challenges in the stem cell research are likely to restrict the growth of the global regenerative medicine market throughout the forecast period. In addition, the stringent regulatory rules and regulations are predicted to impact the approvals of new products, thus hampering the growth of the overall market in the near future.

Global Regenerative Medicine Market: Market Potential

The growing demand for organ transplantation across the globe is anticipated to boost the demand for regenerative medicines in the next few years. In addition, the rapid growth in the geriatric population and the significant rise in the global healthcare expenditure is predicted to encourage the growth of the market. The presence of a strong pipeline is likely to contribute towards the markets growth in the near future.

Global Regenerative Medicine Market: Regional Outlook

In the past few years, North America led the global regenerative medicine market and is likely to remain in the topmost position throughout the forecast period. This region is expected to account for a massive share of the global market, owing to the rising prevalence of cancer, cardiac diseases, and autoimmunity. In addition, the rising demand for regenerative medicines from the U.S. and the rising government funding are some of the other key aspects that are likely to fuel the growth of the North America market in the near future.

Furthermore, Asia Pacific is expected to register a substantial growth rate in the next few years. The high growth of this region can be attributed to the availability of funding for research and the development of research centers. In addition, the increasing contribution from India, China, and Japan is likely to supplement the growth of the market in the near future.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1889

Global Regenerative Medicine Market: Competitive Analysis

The global market for regenerative medicines is extremely fragmented and competitive in nature, thanks to the presence of a large number of players operating in it. In order to gain a competitive edge in the global market, the key players in the market are focusing on technological developments and research and development activities. In addition, the rising number of mergers and acquisitions and collaborations is likely to benefit the prominent players in the market and encourage the overall growth in the next few years.

Some of the key players operating in the regenerative medicine market across the globe areVericel Corporation, Japan Tissue Engineering Co., Ltd., Stryker Corporation, Acelity L.P. Inc. (KCI Licensing), Organogenesis Inc., Medtronic PLC, Cook Biotech Incorporated, Osiris Therapeutics, Inc., Integra Lifesciences Corporation, and Nuvasive, Inc.A large number of players are anticipated to enter the global market throughout the forecast period.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

See original here:
Regenerative Medicine Market Demand, Growth, Opportunities and Analysis Of Top Key Player Forecast To 2025 - Daily Science

The Progress & Ongoing Challenge of 3D Bioprinting Cardiac Tissue – 3DPrint.com

In the recently published 3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective, authors Ravi K. Birla and Stuart K. Williams explore the potential for tissue engineering in cardiac medicine, and the eventual assembly of a bioprinted heart.

While heart failure usually requires a transplant, it can be challenging to find a suitable donor. Once a transplant is completed, there is a long road ahead too via a permanent need for immune suppression therapytreatment that is hard on patients. The usual survival rate for patients is typically under 13 years.

There are currently more than 6.2 million patients in the US with heart failure, and heart failure accounted for 78,356 mortalities in 2016, stated the authors.

In this study, the researchers review the challenges of bioprinting for the creation of heart tissue, as well as the logical and systematic process to bioprint human heart.

While medical science is full of progressive tools, treatments, and devicesespecially for heart patientsno technology has been more promising for the eventual fabrication of organs than tissue engineering. With the potential to yield a biofabricated heart, made up of both biologic and artificial construct, a total heart could feasibly emerge with modular parts for easy replacing.

Definition of tissue engineeringthe building blocks of tissue engineering are cells, biomaterials, and bioreactors. Cells are the functional elements of all tissue and organs, while biomaterials are designed to simulate the mammalian extracellular matrix and provide structural support. Bioreactors are custom devices to deliver physiological cues for 3D tissue/organ development and maturation. Electrical stimulation is delivered by parallel electrodes, while uniaxial stretch, illustrated by the single arrow, is designed to apply cyclic movement of the bioengineered tissue.

Cardiac tissue engineering encompasses:

The ability to bioengineer components of the heart or the entire bioartificial heart, both have applications in changing the standard of care for patients with heart disorders, explained the authors. Depending on the severity of the patient, a cardiac patch may be sufficient to augment lost contractile function, while in cases of chronic heart failure, a total bioartificial heart may be required.

In addition to spatial regulation of the cells, bioprinting also allows accurate placement of the biomaterials. This is where 3D bioprinting provides a powerful tool that allows us to accurately position different cell types in a very specific pattern, thereby allowing tight control over the heart bioengineering process.

Overview of cardiac tissue engineeringthe field of cardiac tissue engineering includes methods to bioengineer contractile 3D heart muscle, biological pulsating pumps, bioengineered left ventricles, bioartificial valves and vascular grafts, and biofabricated hearts. Contractile 3D heart muscle is designed to replicate the properties of mammalian heart muscle tissue and can be used as a patch to augment left ventricle pressure after myocardial infarction. Pulsating pumps are designed to generate intra-luminal pressure and can be used as biological pumps. Left ventricles can be used as a component of the heart or to replace under-performing ventricles in pediatric cases of hypoplastic left heart syndrome. Valves and vascular grafts can be used to replaced mammalian valves and blood vessels or as components of the bioengineered heart.

Major components of the human heartthe human heart consists of four chambers, four valves, the cardiac conduction system, contractile cardiomyocytes, and a complex vasculature. The four chambers are the left and right ventricle and aorta, while the four valves are the aortic and mitral valves and pulmonary and tricuspid valves. The cardiac conduction system consists of the SAN, AVN, bundle of His, and the Purkinje fibers. Cardiac vasculature consists of the greater vessels as well as the smaller micro-circulation. Cardiomyocytes are the cells responsible for heart muscle contraction.

So far, most research involving bioprinting of cardiac tissue has shown the initial feasibility of bioprinting hearts. With the amount of research and tools available today, such progress is inevitable.

Based on the current state of the art in whole heart bioengineering, we can safely say that human hearts will be available for clinical transplantation though we cannot assign a specific timeframe for this fate to be accomplished, state the authors.

Bioprinting of the human heart has its beginnings in the initial history of tissue engineering in 2003, and then further in research a few years later.

The 3D bioprinting processisolated cells are suspended in a custom formulated bioink and loaded into a syringe. Examples of cells required to bioprint hearts include contractile cardiomyocytes, conducting pacemaker and Purkinje cells, structural fibroblast cells and vascular smooth muscle cells, and endothelial cells. Pneumatic pressure is used to extrude the cell-loaded bioink through the printing tip, and a layer by layer approach is used to build tissue and/or organ

Scientific breakthroughs for 3D bioprinting human hearts.

There has continued to be rapidly growing success in bioprinting and the subsequent fabrication of heart tissue, allowing scientists to realize less of fantasy in such exercisesand more of a reality.

Process for bioprinting human heartspatient MRI images are used to model the heart. Dermal fibroblasts are isolated from patient skin biopsies and converted to iPS cells and then to cardiomyocytes. Cardiomyocytes are combined with bioinks and used to bioprint patient-specific human hearts. Bioprinted hearts are conditioned in bioreactors and used for transplantation.

The roadmap for bioprinting a heart includes:

The single most important challenge that needs to be overcome in the field, and one that in general staggers the field of cardiac stem cell therapy, is the immaturity of reprogrammed cardiomyocytes, conclude the researchers. Conversion of iPS cells to cardiomyocytes is now standard and reproducible, the differentiated cells resemble an embryonic phenotype, and driving these cells to an adult phenotype remains a critical challenge in the field of cardiac stem cell therapy.

Once reproduced by independent research labs, coupled with the availability of commercial bioreactors for electromechanical stimulation, the availability of mature cardiomyocytes will provide a clear pathway to 3D bioprint human hearts for clinical transplantation.

Bioprinting is used in a wide variety of applications today, from cardiac patches and cellularized hearts to the creation of heart valves, and more, ultimately shaping an overall transformation of cell culture. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Go here to see the original:
The Progress & Ongoing Challenge of 3D Bioprinting Cardiac Tissue - 3DPrint.com

The therapeutic options are still insufficient – Bandera County Courier

How many sufferers are currently on the Covid 19 Charit stations, and what is the treatment of the patients who come to you?

We have on our Covid 19 ward currently has nine patients, including some who are doing reasonably well but cannot be well cared for at home, and those who are a little more serious and who need support from one to two liters of oxygen per minute. Some of them also have to be checked repeatedly to determine whether they need to be transferred to the intensive care unit and mechanically ventilated. And finally there are eleven ventilated patients in our Covid intensive care unit today.

When should ventilation be?

What is important is the respiratory rate, i.e. the frequency with which the patient breathes and the saturation of his blood with oxygen . We observe: How much oxygen do I give, how much is received? This is a good parameter for the extent of lung damage. The patient experiences exhaustion at a certain point, then we have to ventilate. Covid 19 has something very destructive to the lung cells.

[Die neuesten Entwicklungen und Hintergrnde zum Coronavirus knnen Siehier in unserem Newsblog mitverfolgen.]

If everything goes well, the situation will improve within three days, so that we can weave the patient, ie wean from the ventilator, but it can also take a week or two last. This type of ventilation is not enough for a subgroup, here we use a kind of replacement lung outside the body. All of this is not new territory for intensive care medicine, but it is very complex and personnel-intensive.

Sick every year 750. 000 People with pneumonia, 290. 000 from them to the hospital. So there is plenty of experience with pneumonia. What is special about the current situation?

If you look at the classic bacterial pneumonia, then come against the bacteria use antibiotics. In these cases, you can often see a black-and-white effect: seriously ill people quickly get well with medication. That is now different in the treatment of the Covid virus infection 19 Antibiotics play no role at first, they may come into play later with complications caused by bacteria. What we have so far against Covid 19 is insufficient.

Which drugs are used?

First there is an old preparation from HIV treatment, Kaletra, which contains the active substances against retroviruses lopinavir and retonavir contains. However, the effect and possible side effects have to be weighed here, because the agent can, for example, increase liver values. In the New England Journal of Medicine (NEJM), a paper from China has just appeared in which its use made no difference. However, there was only very late, namely twelve to 13 days after Beginning of the disease, therapy started.

Then there is a candidate from Ebola research, the active ingredient Remdesivir. According to the first findings, it seems to be rather effective, but of course the experiences are not endless. Studies are ongoing and you can use it as part of an individual healing attempt. However, it is currently difficult to get hold of the drug, it is not supplied in large quantities. It is very important that you can only have it within the framework of a formalized process. There is a narrow treatment window: the patient must be intubated, but he must not have circulatory failure.

What about the malaria drug hydroxychloroquine, about which a violent dispute has arisen between the virologists in France after a small, uncontrolled study?

Hydroxycloroquine appears with every new virus infection because it has a certain effectiveness. However, this active ingredient also has side effects, especially on the cardiac conduction system. It is therefore important to monitor the patient's ECG. A large randomized clinical trial of hydroxychloroquine is currently underway under the direction of the University Hospital in Tbingen.

What about clinical studies, science comes In view of the tense situation in everyday clinical practice, rightly so?

Yes, we will do better than a few years ago at EHEC! In the end, there were no really new insights. This is changing this time, we are closely networked, randomized clinical studies are being carried out that span several centers, and the procedures are being coordinated. Not everyone can do what they want. We have come together in competence networks. Physicians, large clinics and scientists from basic research have been working well together for years in the CAP network for pneumonia acquired outside the hospital, which was funded by the Federal Ministry of Research and is now working as a foundation. Large international clinical trials are now underway.

The French national research institution Inserm announced yesterday that its Aegis the substances Kaletra, Remedesvir and Hydrochloroquine, which we have just spoken about to be compared in a large international study called Discovery, the WHO launched the large-scale study Solidarity. Agents that are already being used against other diseases are being tested. How about the ACE2 inhibitor, of which there is currently a lot of talk ?

We have Access to the inhibitor that attaches to ACE2 and its associated protease and can thus block virus uptake into the cell, and we will also test it in a study. However, this ACE2 inhibitor has so far only proven its effectiveness in cell culture. The question remains whether and in what dose it works in humans. I know of a dozen other drug candidates whose investigation is planned as part of studies in our clinic. This also includes some experimental approaches that are used to block signaling pathways in the cell so that the virus cannot replicate, or in which stem cells are used. Another approach is to restore the tightness of the vessels. With severe pneumonia, there is water in the lungs where there used to be air. The lungs look white on the x-ray.

What about the idea , use blood plasma from people who have survived the disease to heal the sick?

This is obvious and is currently being pursued. If you think about it further, you could use antibody-based therapy. The cells that made the antibody in a previous patient are isolated beforehand and ultimately let them produce large amounts of antibody.

In addition to this search for new therapies Research on other questions is also important: In the BMBF-funded project PROGRESS-net, we have been dealing with the genetic differences between patients with severe pneumonia for some time. We want to understand why some of them have to go to intensive care later because they develop lung failure and possibly sepsis. And we want to be able to predict it.

What situation are we in now and how will it go on? Currently the therapeutic instruments are very modestly equipped. It is now the phase of science and clinical trials. However, unlike Italy at the moment, we have the chance not from Covid 19 to be overwhelmed if we test sensibly and know where we stand.

We are in a different situation from the plague in the Middle Ages, where people are were smart enough to use contact blocks, but the epidemic only came to a halt after there were no longer enough victims. We can hope that in the end a new therapeutic or a new vaccine will put an end to the spook.

View original post here:
The therapeutic options are still insufficient - Bandera County Courier

The Sound of Science – ‘Nina Tandon’ | WNIJ and WNIU – WNIJ and WNIU

The Sound of Science - 'Nina Tandon' (March 20, 2020)

Alexis: Welcome to the Sound of Science on WNIJ. Im Alexis from NIUSTEM Outreach.

Idalia: And Im Idalia. Todaywe will be discussing American biomedical engineer, Nina Tandon.

Alexis:Dr. Tandongrew upin New York City with two siblings with visual impairments. Its no wonder why she chose toinvestigatethe electrical currents that underline the nervous system.

Idalia:As a kid, she often took apart electronics to try to understand them from the inside out.

Alexis:Tandon went on to study Biomedical Engineering and earned her PhD from Columbia. She focused her research on studying electrical signals in engineered tissues, such as cardiac, skin, bone, and neural tissues.

Idalia:Her studies in both bioengineering and business came together as she and a colleague created EpiBone, the worlds first company to grow living human bones for skeletal reconstruction. EpiBoneuses stem cells from patients in need of new bones to produce skeletal structures based on each individual DNA profile.This decreases rejection, simplifies surgeries, and shortens recovery time.

Alexis:SinceDr. Tandon madesuch a giant leap for bioengineering innovation, its clear why she received awards such as "One of the 100 Most Creative People in Business" byFast Companyand "Global Thinker" byForeignPolicy.

Idalia:She is an inspirational woman who completed what was once thought to be impossible.Yet, sheis far from being done.Her companys bioengineered tissues are being used for testing pharmaceuticals without using rats or humans. She says Our process is essentially transforming biotechnology and pharmacology into information technology, helping us discover and evaluate drugs faster, more cheaply and more effectively.

Alexis: Tune in next week where wego into detail aboutmore women in STEM.This has been the Sound of Science on WNIJ.

Idalia: Where you learn something new every day.

The rest is here:
The Sound of Science - 'Nina Tandon' | WNIJ and WNIU - WNIJ and WNIU

Stem cell therapy revives cardiac muscle damaged during heart attacks – Cardiovascular Business

For their study, Terzic and colleagues analyzed the hearts of mice that received cardiopoietic stem cell therapy as well as those that did not. They used an algorithmic approach to map the proteins in the heart muscle, identifying 4,000 proteins. Ten percent of these were damaged during a heart attack.

The investigators found that the therapy either fully or partially reversed two-thirds of the changes caused by the event. And about 85% of cellular functional categories impacted by infarction responded positively to treatment, the authors wrote. They also noted that new blood vessels and heart tissue began to grow as a result of the intervention.

In the United States, someone has a heart attack every 40 seconds, according to the study, which kills this precious cardiac tissue and leads to a significantly weaker heart. Although cardiopoietic stem cells are still being investigated in advanced clinical trials in human patients, this most recent study is a big step in the right direction.

The current findings will enrich the base of knowledge pertinent to stem cell therapies and may have the potential to guide therapeutic regimens in the future," Terzic concluded.

Visit link:
Stem cell therapy revives cardiac muscle damaged during heart attacks - Cardiovascular Business

Stem cells to help the heart – Science Magazine

Shinya Yamanaka's 2006 discovery of induced pluripotent stem cells (iPSCs) ignited a revolution in the field of stem cell biology (1). For the first time, nearly all human somatic tissues could be produced from iPSCs reprogrammed from blood or skin cells, in a process that took only weeks. This advance was particularly crucial for obtaining surrogate tissues from cell types that are otherwise difficult to procure and do not readily expand in vitro, such as cardiac or neural cells. Additionally, many ethical concerns are avoided, because this technology uses a patient's own genetic material to create iPSCs rather than relying on embryonic stem cells. In the aftermath of Yamanaka's discovery, entire biomedical industries have developed around the promise of using human iPSCs (hiPSCs) and their derivatives for in vitro disease modeling, drug screening, and cell therapy (2).

The hiPSC technology has had a particularly notable impact in cardiac regenerative medicine, a field where scientists and clinicians have been working to devise new methods to better understand how cardiovascular disease manifests and how to restore cardiovascular function after disease strikes (3). The heart is limited in its ability to regenerate lost cardiomyocytes (beating heart muscle cells), following an adverse event such as a heart attack (4). Cardiomyocytes derived from hiPSCs (hiPSC-CMs) may represent a potential replacement option for dead cells in such a scenario. However, certain issues remain to be addressed, such as whether hiPSC-CMs can integrate with host myocardial tissue in the long term (5).

While using hiPSC-CMs for in vivo cell therapy may become practical in the future, employing hiPSC-CMs for high-throughput drug discovery and screening is becoming a reality in the present (6). Cardiovascular diseases can be recapitulated in a dish with patient-specific hiPSC-CMs. For example, if a patient exhibits a cardiac arrhythmia caused by a genetic abnormality in a sarcomeric protein or ion channel, that same rhythm problem can be recapitulated in vitro (7). Thanks to advances in hiPSC differentiation protocols, hiPSC-CMs can now be mass-produced to study cardiovascular disease mechanisms in vitro (8).

My graduate thesis in the laboratories of Joseph Wu and Sean Wu at Stanford University focused on in vitro applications of hiPSC-CMs for cardiovascular disease modeling and for high-throughput screening of chemotherapeutic compounds to predict cardiotoxicity. I initially embarked on a project using hiPSC-CMs to model viral myocarditis, a viral infection of the heart, caused by the B3 strain of coxsackievirus (9). I began by demonstrating that hiPSC-CMs express the receptors necessary for viral internalization and subsequently found that hiPSC-CMs were highly susceptible to coxsackievirus infection, exhibiting viral cytopathic effect within hours of infection. I also identified compounds that could alleviate coxsackievirus infection on hiPSC-CMs, a translationally relevant finding, as there remains a shortage of treatments for viral myocarditis.

Using a genetically modified variant of coxsackievirus B3 expressing luciferase, I developed a screening platform for assessing the efficacy of antiviral compounds. Pretreatment with interferon-, ribavirin, or pyrrolidine dithiocarbamate markedly suppressed viral replication on hiPSC-CMs by activating intracellular antiviral response and viral protein clearance pathways. These compounds alleviated viral replication in a dose-dependent fashion at low concentrations without causing cellular toxicity.

I next sought to use hiPSC-CMs to screen anticancer chemotherapeutic compounds for their off-target cardiovascular toxicities (10). Cardiotoxicity represents a major cause of drug withdrawal from the pharmaceutical market, and several chemotherapeutic agents can cause unintended cardiovascular damage (11). Using cultured hiPSC-CMs, I evaluated 21 U.S. Food and Drug Administrationapproved tyrosine kinase inhibitors (TKIs), commonly prescribed anticancer compounds, for their cardiotoxic potential. HiPSC-CMs express the major tyrosine kinase receptor proteins such as the insulin, insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) receptors, lending validity to this cellular model.

Initially, human induced pluripotent stem cells (hiPSCs) can be produced by reprogramming skin or blood cells by nonviral or viral reprogramming methods. Cardiac differentiation protocols allow for the creation of cardiomyocytes derived from hiPSCs (hiPSC-CMs) for downstream applications, including in vitro disease modeling, drug screening, and regenerative cell therapy.

With data from a battery of cellular apoptosis, contractility, electrophysiology, and signaling assays, I generated a cardiac safety index to help align in vitro toxicity data to clinical drug safety guidelines (12). From the safety index, I determined that a subclass of VEGF receptor 2/PDGF receptorinhibiting tyrosine kinase inhibitors, some of which exhibit toxicity clinically, also elicited cardiotoxicities in hiPSC-CMs. These manifested as substantial alterations in cellular electrophysiology, contractility, and viability when administered at clinically relevant concentrations. I also discovered that cotreatment with either IGF or insulin partially rescued TKI-induced toxicity by up-regulating antiapoptotic signaling pathways. This work could prove useful for groups aiming to develop effective screening platforms to assess new chemotherapeutic compounds for cardiotoxic side effects.

I also collaborated with the Center for the Advancement of Science in Space (CASIS) to send a sample of hiPSC-CMs to the International Space Station. As humankind ventures beyond our home planet, it is imperative that we better understand how the heart functions for long periods of time in microgravity. Analysis of these hiPSC-CMs revealed microgravity-induced alterations in metabolic gene expression and calcium handling (13).

In recent years, the stem cell field has experienced an explosion of studies using hiPSC-CMs as a model cellular system to study cardiovascular biology. As improvements in hiPSC-CM mass production continue, we will see a rise in studies using these cells for disease modeling and drug screening. Thus, although hiPSC-CM technology is in its infancy, it holds great potential to improve cardiovascular health.

PHOTO: COURTESY OF A. SHARMA

FINALIST

Arun Sharma

Arun Sharma received his undergraduate degree from Duke University and a Ph.D. from Stanford University. Having completed a postdoctoral fellowship at the Harvard Medical School, Sharma is now a senior research fellow jointly appointed at the Smidt Heart Institute and Board of Governors Regenerative Medicine Institute at the Cedars-Sinai Medical Center in Los Angeles. His research seeks to develop in vitro platforms for cardiovascular disease modeling and drug cardiotoxicity assessment. http://www.sciencemag.org/content/367/6483/1206.1

More here:
Stem cells to help the heart - Science Magazine

Worldwide Cell Therapy Market Projections to 2028 – The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular…

DUBLIN, March 12, 2020 /PRNewswire/ -- The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cell-based markets was analyzed for 2018, and projected to 2028. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 309 of these are profiled in part II of the report along with tabulation of 302 alliances. Of these companies, 170 are involved in stem cells.

Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 67 Tables and 25 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

This report contains information on the following:

The report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

Key Topics Covered

Part I: Technologies, Ethics & RegulationsExecutive Summary 1. Introduction to Cell Therapy2. Cell Therapy Technologies3. Stem Cells4. Clinical Applications of Cell Therapy5. Cell Therapy for Cardiovascular Disorders6. Cell Therapy for Cancer7. Cell Therapy for Neurological Disorders8. Ethical, Legal and Political Aspects of Cell therapy9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions10. Markets and Future Prospects for Cell Therapy11. Companies Involved in Cell Therapy12. Academic Institutions13. References

For more information about this report visit https://www.researchandmarkets.com/r/sy4g72

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Read more:
Worldwide Cell Therapy Market Projections to 2028 - The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular...

Gene Therapy Reverses Heart Failure in Animal Model of Barth Syndrome – BioSpace

Boston Children's Hospital researchers used an investigational gene therapy to treat heart failure in a mouse model of Barth syndrome. Barth syndrome is a rare genetic disorder in boys that results in life-threatening heart failure. It also causes weakness of the skeletal muscles and the immune system. The disease is caused by a mutation of a gene known as tafazzin or TAZ.

In 2014, William Pu and researchers at Boston Childrens Hospital collaborated with the Wyss Institute to develop a beating heart on a chip model of Barth syndrome. It used heart-muscle cells with the TAZ mutation that came from patients own skin cells. This was able to prove that TAZ was the cause of the cardiac problems. The heart muscle cells did not organize normally and the mitochondria, the cells energy engines, were disorganized, resulting in the heart muscle contracting weakly. By adding healthy TAZ genes, the cells behaved more normally.

The next step was an animal model. The results of the research were published in the journal Circulation Research.

The animal model was a hurdle in the field for a long time, Pu said. Pu is director of Basic and Translational Cardiovascular Research at Boston Childrens and a member of the Harvard Stem Cell Institute. Efforts to make a mouse model using traditional methods had been unsuccessful.

Douglas Strathdees research team at the Beatson Institute for Cancer Research in the UK recently developed animal models of Barth syndrome. Pu, research fellow Suya Wang, and colleagues characterized the knockout mice into two types. One had the TAZ gene deleted throughout the body; the other had the TAZ gene deleted just in the heart.

Most of the mice that had TAZ deleted throughout their whole bodies died before birth, likely from skeletal muscle weakness. Of those that survived, they developed progressive cardiomyopathy, where the heart muscle enlarges and is less able to pump blood. The heart also showed signs of scarring similar to humans with dilated cardiomyopathy, where the hearts left ventricle is dilated and thin-walled.

The mice that lacked TAZ only in their heart tissue that survived to birth had the same features. Electron microscopy indicated that the heart muscle cells and mitochondria were poorly organized.

Pu and Wang and their team then used gene therapy to replace TAZ in the newborn mice and in older mice, using slightly different techniques. In the newborn mice the engineered virus was injected under the skin; in the older mice it was injected intravenously. The mice who had no TAZ in their bodies and received the gene therapy survived to adulthood.

In the newborn mice receiving the gene therapy, the therapy prevented cardiac dysfunction and scarring. In the older mice receiving the therapy, it reversed the cardiac dysfunction.

The study also showed that TAZ gene therapy offered durable treatment of the cardiomyocytes and skeletal muscle cells, but only when at least 70% of the heart muscle cells had taken up the gene via the therapy. Which the researchers point out that when the therapy is developed for humans, that will be the most challenging problem. You cant just scale up the dose because of inflammatory immune responses, and multiple doses wont work either because the body develops an immune response. Maintaining the gene-corrected cell is also a problem. In the heart muscles of the treated mice, the corrected TAZ gene stayed relatively stable, but slowly dropped in skeletal muscles.

The biggest takeaway was that the gene therapy was highly effective, Pu said. We have some things to think about to maximize the percentage of muscle cell transduction, and to make sure the gene therapy is durable, particularly in skeletal muscle.

Here is the original post:
Gene Therapy Reverses Heart Failure in Animal Model of Barth Syndrome - BioSpace

Looking to the future with Dr. Francis Collins – UAB News

In a talk at UAB on March 6, the NIH director shared his thoughts on exceptional opportunities for science and young scientists and highlighted several exciting UAB projects.

NIH Director Francis Collins, M.D., Ph.D., visited UAB on March 6. In addition to his public talk, Collins had breakfast with UAB medical students and met with groups of young researchers and other investigators across campus.Speaking to a packed University of Alabama at Birmingham audience March 6, Francis Collins, M.D., Ph.D., director of the National Institutes of Health, shared his picks of 10 areas of particular excitement and promise in biomedical research.

In nearly every area, UAB scientists are helping to lead the way as Collins himself noted in several cases. At the conclusion of his talk, Collins addedhis advice for young scientists. Here is Collins top 10 list, annotated with some of the UAB work ongoing in each area and ways that faculty, staff and students can get involved.

I am so jazzed with what has become possible with the ability to study single cells and see what they are doing, Collins said. They have been out of our reach now we have reached in. Whether you are studying rheumatoid arthritis, diabetes or the brain, you have the chance to ask each cell what it is doing.

Single-cell sequencing and UAB:Collins noted that Robert Carter, M.D., the acting director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, was a longtime faculty member at UAB (serving as director of the Division of Clinical Immunology and Rheumatology). For the past several years, UAB researchers have been studying gene expression in subpopulations of immune cells inpatients with rheumatoid arthritis.

Join in:Researchers can take advantage of the single-cell sequencing core facility in UABsComprehensive Flow Cytometry Core, directed by John Mountz, M.D., Ph.D., Goodwin-Blackburn Research Chair in Immunology and professor in the Department of Medicine Division of Clinical Immunology and Rheumatology.

Learn more:Mountz and other heavy users of single-cell sequencing explain how the techniqueslet them travel back in time and morein this UAB Reporter story.

The NIHsBRAIN Initiativeis making this the era where we are going to figure out how the brain works all 86 billion neurons between your ears, Collins said. The linchpin of this advance will be the development of tools to identify new brain cell types and circuits that will improve diagnosis, treatment and prevention of autism, schizophrenia, Parkinsons and other neurological conditions, he said.

Brain tech and UAB:Collins highlighted thework of BRAIN Initiative granteeHarrison Walker, M.D., an associate professor in the Department of Neurology, whose lab has been developing a more sophisticated way to understand the benefits of deep brain stimulation for people with Parkinsons and maybe other conditions, Collins said.

Join in:UABs planned new doctoral program in neuroengineering would be the first of its kind in the country.

Learn more:Find out why neuroengineering is asmart career choicein this UAB Reporter story.

Researchers can now take a blood cell or skin cell and, by adding four magic genes, Collins explained, induce the cells to become stem cells. These induced pluripotent stem (iPS) cells can then in turn be differentiated into any number of different cell types, including nerve cells, heart muscle cells or pancreatic beta cells. The NIH has invested in technology to put iPS-derived cells on specialized tissue chips. Youve got you on a chip, Collins explained. Some of us dream of a day where this might be the best way to figure out whether a drug intervention is going to work for you or youre going to be one of those people that has a bad consequence.

iPS cells at UAB:Collins displayed images of thecutting-edge cardiac tissue chipdeveloped by a UAB team led by Palaniappan Sethu, Ph.D., an associate professor in the Department of Biomedical Engineering and the Division of Cardiovascular Disease. The work allows the development of cardiomyocytes that can be used to study heart failure and other conditions, Collins said.

Join in:UABs biomedical engineering department, one of the leading recipients of NIH funding nationally, is a joint department of the School of Engineering and School of Medicine. Learn more about UABsundergraduate and graduate programs in biomedical engineering, and potential careers, here.

Learn more:See howthis novel bioprinterdeveloped by UAB biomedical researchers is speeding up tissue engineering in this story from UAB News.

We have kind of ignored the fact that we have all these microbes living on us and in us until fairly recently, Collins said. But now it is clear that we are not an organism we are a superorganism formed with the trillions of microbes present in and on our bodies, he said. This microbiome plays a significant role not just in skin and intestinal diseases but much more broadly.

Microbiome at UAB:Collins explained that work led by Casey Morrow, Ph.D., and Casey Weaver, M.D., co-directors of theMicrobiome/Gnotobiotics Shared Facility, has revealed intriguing information abouthow antibiotics affect the gut microbiome. Their approach has potential implications for understanding, preserving and improving health, Collins said.

Join in:Several ongoing clinical trials at UAB are studying the microbiome, including a studymodifying diet to improve gut microbiotaand an investigation of the microbiomes ofpostmenopausal women looking for outcomes and response to estrogen therapy.

Learn more:This UAB News storyexplains the UAB researchthat Collins highlighted.

Another deadly influenza outbreak is likely in the future, Collins said. What we need is not an influenza vaccine that you have to redesign every year, but something that would actually block influenza viruses, he said. Is that even possible? It just might be.

Influenza research at UAB:Were probably at least a decade away from a universal influenza vaccine. But work ongoing at UAB in the NIH-fundedAntiviral Drug Discovery and Development Center(AD3C), led by Distinguished Professor Richard Whitley, M.D., is focused on such an influenza breakthrough.

Join in:For now, the most important thing you can do to stop the flu is to get a flu vaccination. Employees can schedule afree flu vaccination here.

Learn more:Why get the flu shot? What is it like? How can you disinfect your home after the flu? Get all the information atthis comprehensive sitefrom UAB News.

The NIH has a role to play in tackling the crisis of opioid addiction and deaths, Collins said. The NIHs Helping to End Addiction Long-term (HEAL) initiative is an all-hands-on-deck effort, he said, involving almost every NIH institute and center, with the goal of uncovering new targets for preventing addiction and improving pain treatment by developing non-addictive pain medicines.

Addiction prevention at UAB:A big part of this initiative involves education to help professionals and the public understand what to do, Collins said. The NIH Centers of Excellence in Pain Education (CoEPE), including one at UAB, are hubs for the development, evaluation and distribution of pain-management curriculum resources to enhance pain education for health care professionals.

Join in:Find out how to tell if you or a loved one has a substance or alcohol use problem, connect with classes and resources or schedule an individualized assessment and treatment through theUAB Medicine Addiction Recovery Program.

Learn more:Discover some of the many ways that UAB faculty and staff aremaking an impact on the opioid crisisin this story from UAB News.

We are all pretty darn jazzed about whats happened in the past few years in terms of developing a new modality for treating cancer we had surgery, we had radiation, we had chemotherapy, but now weve got immunotherapy, Collins said.

Educating immune system cells to go after cancer in therapies such as CAR-T cell therapy is the hottest science in cancer, he said. I would argue this is a really exciting moment where the oncologists and the immunologists together are doing amazing things.

Immunotherapy at UAB:I had to say something about immunology since Im at UAB given that Max Cooper, whojust got the Lasker Awardfor [his] B and T cell discoveries, was here, Collins said. This is a place I would hope where lots of interesting ideas are going to continue to emerge.

Join in:The ONeal Comprehensive Cancer Center at UAB is participating in a number of clinical trials of immunotherapies.Search the latest trials at the Cancer Centerhere.

Learn more:Luciano Costa, M.D., Ph.D., medical director of clinical trials at the ONeal Cancer Center, discusses the promise ofCAR-T cell therapy in this UAB MedCast podcast.

Assistant Professor Ben Larimer, Ph.D., is pursuing a new kind of PET imaging test that could give clinicians afast, accurate picture of whether immunotherapy is workingfor a patient in this UAB Reporter article.

The All of Us Research Program from NIH aims to enroll a million Americans to move away from the one-size-fits-all approach to medicine and really understand individual differences, Collins said. The program, which launched in 2018 and is already one-third of the way to its enrollment goal, has a prevention rather than a disease treatment approach; it is collecting information on environmental exposures, health practices, diet, exercise and more, in addition to genetics, from those participants.

All of Us at UAB:UAB has been doing a fantastic job of enrolling participants, Collins noted. In fact, the Southern Network of the All of Us Research Program, led by UAB, has consistently been at the top in terms of nationwide enrollment, as School of Medicine Dean Selwyn Vickers, M.D., noted in introducing Collins.

Join in:Sign up forAll of Usat UAB today.

Learn more:UABs success in enrolling participants has led to anew pilot study aimed at increasing participant retention rates.

Rare Disease Day, on Feb. 29, brought together hundreds of rare disease research advocates at the NIH, Collins said. NIH needs to play a special role because many diseases are so rare that pharmaceutical companies will not focus on them, he said. We need to find answers that are scalable, so you dont have to come up with a strategy for all 6,500 rare diseases.

Rare diseases at UAB: The Undiagnosed Diseases Network, which includes aUAB siteled by Chief Genomics Officer Bruce Korf, M.D., Ph.D., is a national network that brings together experts in a wide range of conditions to help patients, Collins said.

Participants in theAlabama Genomic Health Initiative, also led by Korf, donate a small blood sample that is tested for the presence of specific genetic variants. Individuals with indications of genetic disease receive whole-genome sequencing. Collins noted that lessons from the AGHI helped guide development of the All of Us Research Program.

Collins also credited UABs Tim Townes, Ph.D., professor emeritus in the Department of Biochemistry and Molecular Genetics, for developing the most significantly accurate model of sickle cell disease in a mouse which has been a great service to the [research] community. UAB is now participating in anexciting clinical trial of a gene-editing technique to treat sickle cellalong with other new targeted therapies for the devastating blood disease.

Join in:In addition to UABs Undiagnosed Diseases Program (which requires a physician referral) and the AGHI, patients and providers can contact theUAB Precision Medicine Institute, led by Director Matt Might, Ph.D. The institute develops precisely targeted treatments based on a patients unique genetic makeup.

Learn more:Discover how UAB experts solved medical puzzles for patients by uncovering anever-before-described mutationandcracking a vomiting mysteryin these UAB News stories.

We know that science, like everything else, is more productive when teams are diverse than if they are all looking the same, Collins said. My number one priority as NIH director is to be sure we are doing everything we can to nurture and encourage the best and brightest to join this effort.

Research diversity at UAB:TheNeuroscience Roadmap Scholars Programat UAB, supported by an NIH R25 grant, is designed to enhance engagement and retention of under-represented graduate trainees in the neuroscience workforce. This is one of several UAB initiatives to increased under-represented groups and celebrate diversity. These include several programs from theMinority Health and Health Disparities Research Centerthat support minority students from the undergraduate level to postdocs; thePartnership Research Summer Training Program, which provides undergraduates and especially minority students with the opportunity to work in UAB cancer research labs; theDeans Excellence Award in Diversityin the School of Medicine; and the newly announcedUnderrepresented in Medicine Senior Scholarship Programfor fourth-year medical students.

Join in:The Roadmap program engages career coaches and peer-to-peer mentors to support scholars. To volunteer your expertise, contact Madison Bamman atmdbamman@uab.eduorvisit the program site.

Learn more:Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and co-director of the Roadmap Scholars Program,shares the words and deeds that can save science careersin this Reporter story. In another story, Upender Manne, Ph.D., professor in the Department of Pathology and a senior scientist in the ONeal Comprehensive Cancer Center, explains how students in the Partnership Research Summer Training Program gethooked on cancer research.

In answer to a students question, Collins also shared his advice to young scientists. One suggestion: Every investigator needs to be pretty comfortable with some of the computational approaches to science, Collins said. Big data is here artificial intelligence, machine-learning. We can all get into that space. But its going to take some training, and it will be really helpful to have those skills.

Join in:UAB launched aMaster of Science in Data Scienceprogram in fall 2018.

Learn more:Discover how UAB researchers areusing machine-learning in their labsand toimprove cancer treatment. Those looking for a free introduction cantake advantage of the Data Science Clubfrom UAB IT Research Computing.

See more here:
Looking to the future with Dr. Francis Collins - UAB News

A new therapeutic approach against COVID-19 Pneumonia – Institute for Ethics and Emerging Technologies

The novel coronavirus disease 2019 (COVID-19) has grown to become a global public health emergency. Currently, no specific drugs or vaccines are available to cure the patients with COVID-19 infection. Hence, there is a large unmet need for a safe and effective treatment for COVID-19 infected patients, especially the severe cases. A new study offers a promising pathway for developing such a treatment.

The new approach involves intravenous transplantation of mesenchymal stem cells (MSCs) into the patients. It was successfully tested in 7 COVID-19 patients, in Beijing YouAn Hospital, Capital Medical University, China. The results are published in the scientific journal Aging and Disease, entitled "Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia".

http://www.aginganddisease.org/article/0000/2152-5250/ad-0-0-216.shtml

The study was conducted by a team led by Dr. Robert Chunhua Zhao, with Shanghai University and Chinese Academy of Medical Sciences & Peking Union Medical College, China.

Moreover the study was reviewed by a scientific committee of the International Society on Aging and Disease (ISOAD) and the recently established UNESCO-affiliated committee on Anti-Aging and Disease Prevention http://www.aginganddisease.org/article/2020/2152-5250/ad-11-1-212.shtml

Based on the 14 days observation, MSCs could cure or significantly improve the functional outcomes of all the seven tested patients without observed adverse effects, contrary to 3 controls. The pulmonary function and symptoms of these seven patients were significantly improved after MSC transplantation. Among them, one severe and two common patients recovered and were discharged in 10 days after the treatment. The improvement was particularly dramatic for an elderly (65 y.o.) male patient in severe critical condition. All of his primary and secondary outcomes improved: the inflammation status, the oxygen saturation, and the functional biochemical indicators returned to normal reference values in 2~4 days after the treatment.

The presented evidence suggests that the therapeutic effects are based on the immunomodulatory capacity of mesenchymal stem cells (restoring the balance of the immune system). The coronavirus infection can stimulate a terrible cytokine storm in the lung, disrupting the balance of cytokines (signaling molecules of the immune system) such as IL-2, IL-6, IL-7, GSCF, IP10, MCP1, MIP1A and TNF cytokines, followed by the edema, dysfunction of the air exchange, acute respiratory distress syndrome, acute cardiac injury and the secondary infection, which may lead to death. The bone-marrow derived MSCs could inhibit the over-activation of the immune system and promote endogenous repair by improving the microenvironment, thus they could represent a safe and effective treatment for patients with COVID-19 pneumonia, especially for the patients in critically severe conditions. A larger validation study is required and is already underway, yet the initial results are encouraging.

Notably, the coronavirus-infected pneumonia is more likely to affect older individuals, especially older males, with comorbidities, resulting in their severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In other words, aging appears to be the main risk factor for bad outcomes. However, the cure essentially depends on the patient's own immune system. When the overactivated immune system kills the virus, it produces a large number of inflammatory factors, leading to the severe cytokine storms. This suggests that the main reason for the organs damage may be the virus-induced cytokine storm. Older subjects may be much easier to be affected due to immunosenescence. The study showed remarkable recovery of the elderly patients thanks to restoring their immune function.

Thus, the study may have a broader significance, even beyond the treatment of the severe coronavirus disease. This study exemplifies that the general therapeutic improvement of the immune system in the elderly can improve outcome and survival, which may have more general relevance for other aging-related communicable diseases. Thus, this study may inspire and pave the way for further promising directions to investigate the connection between aging and disease, and to treat both communicable and non-communicable aging-related diseases.

The Romanian journalist Laura tefnu spoke with Dr. Ilia Stambler about the broader implications of this research. Ilia Stambler is a co-author in this study who was involved in the study review, interpretation and discussion. He serves as the Outreach Coordinator of the International Society on Aging and Disease (ISOAD) and Director of Research and Development at Shmuel Harofe Geriatric Medical Center in Israel.

Q: How does it feel to be part of the team which discovered a groundbreaking treatment for what is currently considered one of the biggest global challenges?

A: I feel very honored to be included in this extended international team. I hope this team continues its work that will also involve additional collaborations.

Q: As a researcher, what did you find most interesting about this novel coronavirus? What seems most threatening about this new virus?

A: The spreading ability of this virus is relatively high and it has the capacity to affect the entire global population. This is what makes this virus a particularly strong concern for global public health. The social effects of this epidemic are also of great importance. In a sense, this virus is testing the strength of our public health systems. Will the immunity of our public healthcare be strong enough to contain it? I hope it is.

Q: Did the discovery of this groundbreaking new therapeutic approach make you more optimistic (when it comes to containing and limiting the damage of Covid-19)? In which sense (where was your optimism before the discovery)?

A: I was optimistic before, as I believe that, same as for many infectious diseases in the past, also for this disease, effective therapeutic and preventive measures will be found and used. This work further increased my optimism. Of course, this is an initial study, and this is only one of the potential means in the therapeutic, preventive and hygienic arsenal. More research and confirmation will be needed. Yet, even at this stage, the clear positive result of this study shows that it is indeed possible to improve the outcomes for COVID-19 patients even in severe conditions. Moreover, it gives more hope that effective treatments can be sought and found also for other aging-related infectious diseases and conditions.

Q: Is there an explanation regarding the reasons why Covid-19 seems to pardon children and affects the most elder individuals, especially men?

A: There is yet no clear or fully agreed explanation. But a plausible cause may be due to the so called immuno-senescence phenomenon, or the inability of the aging immune system to cope with new threats and restore the immune balance following the infection. In men the immuno-senescence effects are often more strongly present than in women. Thus, aging appears to be the main risk factor for this disease and if we really wish to defeat this epidemic, we need to address this main risk factor, in other words, we need to therapeutically intervene and ameliorate the degenerative aging process. The proposed mesenchymal stem cell therapy shows the so-called immuno-modulation effects or the ability to generally improve the immune system, help restore the immune balance after disturbances, especially for the elderly. And this can be the more general explanation for its effects against the aging-related COVID-19 pneumonia, as well as potentially other aging-related diseases.

Q: How did you manage to find so fast a treatment that is responding so well?

A: The mesenchymal stem cell treatment has been researched and developed by Dr. Zhao and his team for many years, and indicated positive effects for multiple health conditions. It is exactly because of the common and critical role of the immune system impairment in all these conditions, that the treatment developed by Dr. Zhaos team was already in place and could be immediately used also for this condition dependent on the immune function. Moreover, the success of this therapy against COVID-19 can further boost the research and therapy of other immunity-dependent health conditions and diseases, especially aging-related diseases, due to the common mechanisms of action.

Q: How may this discovery change the game?

A: Unlike other public health measures, like quarantine and hygiene, that can be very quickly applied, the research, development, regulatory approval and application of new therapies is a much slower process. So we should first of all apply the public health measures to contain the epidemic. But the hope is that this therapy will undergo further research and validation as soon as possible, and in case of validated efficacy and safety, will be used in as many patients who need it as possible, as soon as possible. That is exactly why we need to accelerate the research, development and application of promising new therapies. When the new therapy enters wide clinical practice, there are grounds to believe it can improve the health and even save the lives of many patients, not only suffering from COVID-19, but also other conditions.

Q: Which was the response/reaction of authorities after you published the results of your research?

A: The outreach to the authorities in several countries has only started. Moreover, the study is only initial and it is too early to make policy recommendations. A larger validation study is required. Yet, if there is even a slight possibility this could become a life-saving therapy for COVID-19 patients and others, this opportunity should not be missed by the decision makers.

Q: Some treatments are more expensive than others. Will the treatment you discovered be accessible to people, or the cost for producing it will limit its accessibility?

A: The cells for this treatment can be mass produced and can be rather affordable. Of course, the actual price will depend both on the scale of production and pricing policies. And this is already a question that goes beyond pure technology, but becomes a question about the social means to make new therapies available to all. This should also be a crucial part of the public discussion about the social need to promote the rapid research and development as well as broad application of new therapies that are proven to be safe and effective.

Q: Which are the best measures a country can take to limit the spread and the consequences of the novel coronavirus?

The usual quarantine and public hygiene measures are the most feasible and effective: minimization of large gatherings, minimization of travel, cleanliness. We should hope and work for new effective therapies to arrive as soon as possible. But so far public health measures are the most effective and feasible.

Ilia Stambler is an IEET Affiliate Scholar. He completed his PhD degree at the Department of Science, Technology and Society, Bar-Ilan University. His thesis subject, and his main interest, is the History of Life-extensionism in the 20th Century.

See more here:
A new therapeutic approach against COVID-19 Pneumonia - Institute for Ethics and Emerging Technologies

Stem Cell Therapy Market Report on Recent Adoption 2025 3rd Watch News – 3rd Watch News

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read the original post:
Stem Cell Therapy Market Report on Recent Adoption 2025 3rd Watch News - 3rd Watch News

Notice of Capital and Business Alliance between Heartseed and MEDIPAL HOLDINGS | DNA RNA and Cells | News Channels – PipelineReview.com

DetailsCategory: DNA RNA and CellsPublished on Wednesday, 11 March 2020 09:50Hits: 723

-Cooperation in Product Development for Innovative Cardiac Regenerative Medicine-

March 10, 2020 I Tokyo-based Heartseed Inc. (Heartseed), a Keio University-originated biotechnology company developing induced pluripotent stem cell (iPSC)-derived cardiac regenerative medicine, and MEDIPAL HOLDINGS CORPORATION (MEDIPAL) today announced that they have entered into a capital and business alliance.

In conjunction with the alliance, MEDIPAL will acquire an equity stake in Heartseed. In addition, MEDIPAL and its wholly owned subsidiary SPLine Corporation (SPLine) will begin collaborative research with Heartseed on the logistics of Heartseeds clinical trial supplies.

Purpose of the Alliance

Heartseed is developing HS-001, allogeneic iPSC-derived cardiomyocyte spheroids for severe heart failure, which currently has no effective treatment other than heart transplantation. In preparation for the initiation of its clinical trial, Heartseed will outsource its manufacturing to Nikon CeLL innovation Co., Ltd., and are discussing transport of the cardiomyocyte spheroids with MEDIPAL.

MEDIPAL has established a distribution system in compliance with Japanese Good Distribution Practice (GDP) guidelines. MEDIPAL is a pioneer in logistics services in the growing field of regenerative medicine, and has an extensive track record to support development of regenerative medicine products and to build a logistics system for them using its ultra-low temperature transport system.

In this alliance, MEDIPAL will contribute to the improvement of patient care by promoting development of Heartseeds innovative products from the clinical trial stage with its experience and expertise in the distribution of regenerative medicine products.

Comment from Heartseed CEO Keiichi Fukuda, MD, PhD, FACC

The iPSC-derived cardiomyocyte spheroids we are developing are unique in the mechanism that cardiomyocytes are strengthened by turning them into microtissues. The spheroids will be retained and engrafted with the ventricular myocardium for a long-term and are expected to contribute sustained direct ventricular contraction (remuscularization). It is completely

different from conventional treatment methods. To deliver the treatment to patients, logistical considerations are also important, and we are pleased to partner with MEDIPAL, which has an extensive track record in distribution of cellular medicines.

Comment from MEDIPAL Representative Director, President and CEO Shuichi

Watanabe

Their investigational agent has the potential to be an innovative treatment option for patients with severe heart failure. Promoting the development and stable supply of specialty pharmaceuticals is our mission, based on MEDIPALs management philosophy of

contributing to peoples health and the advancement of society through the creation of value in distribution. In this alliance, SPLine, which performs logistical planning for specialty pharmaceuticals, will be involved from the clinical trial stage, and will also work with us in creating a distribution system to ensure safe and reliable delivery of the product to patients after its launch.

Development of HS-001

Heartseed has allogeneic iPSC-derived highly purified ventricular-specific cardiomyocyte spheroids (HS-001) as its lead pipeline candidate, and is conducting research and development for the early commercialization of cardiac regenerative medicine using iPSCs supplied by the Center for iPS Cell Research and Application (CiRA) at Kyoto University. HS-001 is the produced by differentiating into ventricular-specific cardiomyocytes from iPSCs with the most frequent human leukocyte antigen (HLA) type1 in Japanese people, and removing undifferentiated iPSCs and non-cardiomyocytes to achieve high purity. To improve the engraftment rate, these cardiomyocytes are formed into spheroids in which approximately 1,000 cardiomyocytes are aggregated.

Since 2016, Heartseed has had more than 10 meetings with the Pharmaceuticals and Medical Devices Agency (PMDA), with discussions mainly focused on details of nonclinical safety studies, manufacturing processes, and quality management that are required for initiating clinical trials. Heartseed is currently conducting the nonclinical safety studies under Good Laboratory Practice (GLP)2 standards under the agreement of the PMDA on their designs.

Prior to the company-sponsored clinical trials, investigator-initiated clinical trial plan of HS-001 at Keio University had been under review by the Keio University Certified Special Committee for Regenerative Medicine since May 2019 and was approved in February 2020. This plan will be submitted to the Health Science Council of Ministry of Health, Labor and Welfare after going through established procedures in Keio University Hospital. For 90 days from its submission to the Council, the plan will be examined for conformance with the regenerative medicine provision standards. If conformance is verified, Keio University will be notified and may then begin clinical research.

1. HLA type:White blood cell type, immune rejection is less likely when the HLA type matches.

2. GLP(Good Laboratory Practice):Standards for conducting studies to assess drug safety. These standards should be followed when conducting safety studies using animals in the preclinical stage.

Summary of HS-001

Severe heart failure, particularly heart failure with reduced ejection fraction

About Heartseed Inc.

About MEDIPAL HOLDINGS CORPORATION

As a holding company, MEDIPAL controls, administers and supports the operating activities of companies in which it holds shares in the Prescription Pharmaceutical Wholesale Business; the Cosmetics, Daily Necessities and

OTC Pharmaceutical Wholesale Business; and the Animal Health Products and

Food Processing Raw Materials Wholesale Business, and conducts business development for the MEDIPAL Group.

About SPLine Corporation

3.ALC: Area Logistics Center

4. FLC: Front Logistics Center

SOURCE: Heartseed

Continued here:
Notice of Capital and Business Alliance between Heartseed and MEDIPAL HOLDINGS | DNA RNA and Cells | News Channels - PipelineReview.com

3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 – 3rd Watch News

Global 3D Cardiac Mapping Systems Market: Overview

Cardiac mapping is a special type of technique which helps in gathering and displaying the information from cardiac electrograms. Such technique is mainly used in the diagnosis of heart rhythms. Therefore, cardiac mapping technique has gained immense popularity in case of arrhythmia. The cardiac mapping procedure involves the percutaneous insertion of catheter into the heart chamber and recording the cardiac electrograms sequentially. Such procedure helps in correlating the cardiac anatomy with the electrograms. The latest 3D cardiac mapping systems provide the three dimensional model of hearts chamber, which further helps in tracking the exact location of the catheter. Such advantages are majorly driving the global 3D cardiac mapping systems market.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=5324

From the perspective of technology, the global 3D cardiac mapping systems market is segmented into basket catheter mapping, electroanatomical mapping, and real-time positional management (Cardiac pathways) EP system. Among these segments, electroanatomical mapping segment accounts for the maximum share in the global 3D cardiac mapping systems market. This mapping are extensively used in several healthcare industry due to its potential in increasing the safety, accuracy, and efficiency of catheter. A research report by TMR Research (TMR) thoroughly explains the new growth opportunities in the global 3D cardiac mapping systems market. Additionally, the report also provides a comprehensive analysis of the markets competitive landscape.

Global 3D Cardiac Mapping Systems Market: Notable Developments

Some of the recent developments are contouring the shape of the global 3D cardiac mapping systems market in a big way:

Key players operating in the global 3D cardiac mapping systems market include BioScience Webster, Boston Scientific Corporation, and Abbott.

Global 3D Cardiac Mapping Systems Market: Key Growth Drivers

Rising Number of Patients with Cardiac Disorders and Arrhythmia Fillips Market

The global 3D cardiac mapping systems market has grown steadily over the years, owing to the convenience it provides to the patients with heart problem. Growing number of people with cardiovascular diseases and rising cases of arrhythmia are the major factors fueling growth in the global 3D cardiac mapping systems market. Along with this, increasing pressure for reducing diagnosis errors and rapidly rising healthcare expenditure are also responsible for boosting the global 3D cardiac mapping systems market. However, above all such factors, the global 3D cardiac mapping systems market is majorly fueled by the accuracy and patient safety provided through real-time monitoring. Such 3D cardiac mapping systems are mainly designed to improve the resolution. This system also helps in gaining prompt of cardiac activation maps. All such advantages are also providing impetus to the growth of the global 3D cardiac mapping systems market.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=5324

Furthermore, rising ageing population who are prone to heart-attack and several chronic heart disorders and increasing diagnosis rate of cardiac illness are the factors stoking demand in the global 3D cardiac mapping systems market. Moreover, this 3D cardiac mapping helps in reducing the diagnosis time. Such factor is also contributing to the growth of the global 3D cardiac mapping systems market.

Global 3D Cardiac Mapping Systems Market: Regional Outlook

On the regional front, North America is leading the global 3D cardiac mapping systems market as the region has seen rapid growth in healthcare industry. Along with this, increasing prevalence of heart attacks, rising healthcare expenditure, and burgeoning population is also responsible for fueling growth in the 3D cardiac mapping systems market in this region.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

See the article here:
3D Cardiac Mapping Systems Market Key Vendors, Analysis by Growth and Revolutionary Opportunities by 2028 - 3rd Watch News

NanoSurface Bio Executes Exclusive License of Heart-on-Chip Technology Launched Into Space – Yahoo Finance

NanoSurface Biomedical announced today that it has executed an exclusive IP license agreement related to innovative heart-on-chip technology developed by researchers at the University of Washington (UW). An experimental system built from the same heart-on-chip technology was launched into space on Friday, March 6, 2020 at 11:50 PM EST aboard SpaceX's 20th resupply mission to the International Space Station (ISS) as part of the Tissue Chips in Space initiative conducted in partnership between the National Center for Advancing Translational Sciences (NCATS) and the ISS U.S. National Laboratory (ISS National Lab). NanoSurface will commercialize the heart-on-chip platform for use by pharmaceutical companies in preclinical drug development.

The heart-on-chip system will spend 30 days aboard the ISS as part of a series of experiments intended to study the effects of microgravity on human cells and tissues. "In space we are using the heart-on-chip system in microgravity conditions to help improve our understanding of the aging process and cardiac biology, but this heart-on-chip system also has enormous potential for accelerating the discovery of new medicines back here on Earth," said Deok-Ho Kim, an Associate Professor of biomedical engineering and medicine at Johns Hopkins University, the principal investigator for the heart-on-chip experiment aboard the ISS, and the scientific founder of NanoSurface Bio.

The heart-on-chip platform uses three-dimensional engineered cardiac tissues (3D ECTs) grown from human cardiomyocytes, or beating heart cells, derived from induced pluripotent stem cells (iPSCs). As the 3D ECTs beat, researchers can measure the amount of force generated by each contraction, and then evaluate how that force changes after treating the tissues with candidate drugs. 3D ECTs can be made from cells from either healthy individuals or individuals with diseases, offering great promise in predictive preclinical testing of candidate drugs for safety and efficacy.

"I am incredibly excited that the talented team at NanoSurface will be carrying this technology forward for use in the drug development industry," said Nathan Sniadecki, one of the inventors of the heart-on-chip technology and a professor of mechanical engineering at UW. Last year, Professor Sniadecki joined NanoSurfaces board of scientific advisors to guide the commercial development of the technology.

NanoSurface Bios execution of this exclusive license adds significant value to the portfolio of IP it has already licensed from researchers at UW. "It is well recognized that the drug development process is extremely slow and expensive. At NanoSurface we are eager to develop technologies that enable the use of human iPSC-derived cells and tissues in preclinical drug development, ultimately leading to better prediction of how drugs will affect patients in the clinic, lowering costs, and speeding life-saving medicines to market," said NanoSurface CEO Michael Cho.

About NanoSurface Biomedical

NanoSurface Biomedical is a biotechnology company based in Seattle, WA that develops stem cell-based assay technologies to accelerate drug development. NanoSurfaces structurally matured cardiac tissue models, assay instruments, and discovery services leverage human stem cell technology to help pharmaceutical companies predictively assess the safety and efficacy of candidate drugs early during preclinical development. NanoSurfaces mission is to help bring life-saving medicines to market in less time and at lower cost. To learn more, visit http://www.nanosurfacebio.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200309005703/en/

Contacts

NanoSurface BiomedicalDirector of Sales & Marketing: Heejoon Choi, 800-913-4403 x702heejoon@nanosurfacebio.com

Read the original here:
NanoSurface Bio Executes Exclusive License of Heart-on-Chip Technology Launched Into Space - Yahoo Finance

The Aussie Biotech Companies Trying To Make A Buck From Coronavirus – D’Marge

This story originally appeared onStockhead.

As with the early medical cannabis plays, a cluster of ASX-listed stocks has wasted little time attaching itself to the c word. Were talking of course about the coronavirus COVID-19 but sadly not another c word: cure.

Or not yet.

According to broker Morgans daily tally, the virulent bug has so far infected 95,332 people, with 38,564 current cases (6,883 of them critical).

Of the remaining 56,768 cases with an outcome, 53,483 recovered and 6,883 achieved a definitive performance indicator. They died.

Okay, a circa 7 per cent mortality rate or even a 1 or 2 per cent rate is nothing to sneeze at, so to speak. But we do wish breathless TV reporters would cease referring to it as the deadly virus, but that would be like asking them to stop referring to a horror smash rather than a sad everyday road accident.

While were on it, we also implore folk to stop hoarding toilet paper: after all, its the coronavirus, not the Caroma-virus.

Named after its crown-like shape but not the Royal Family per se, the common coronavirus is responsible for past pestilences including Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS).

The virus may indeed fizzle out, as the earlier SARS plague did.

But for the time being, we need the best and brightest minds in the labs to come up with a treatment or more likely a vaccine.

There are some promising developments overseas, which your columnist will return to if he hasnt succumbed as well (he did shake hands with someone who went to a Chinese restaurant a couple of weeks back).

Among the local biotechs and we use the term loosely theres been no lack of endeavour in linking their efforts to the virus.

But to be fair, in some cases investors did it for them.

Take Biotron (ASX:BIT), which was an obvious subject of attention given the company is focused on developing antiviral drugs for HIV and hepatitis.

Biotron also has a program for pan respiratory viruses and mentioned corona in a June 2019 presentation. Some punters latched on to the fact that it wasnt referring to a 1970s Toyota or Mexican beer and the Hot Copper pundits were off and running.

Biotron CEO Dr Michelle Miller has been more circumspect.

Yes, she says, the company has some good advanced compounds to work on, but the reality is that theres nothing that would be ready to fight the current outbreak.

Dr Miller says while the companys work on pan respiratory viruses continues, theres not much to add at this stage.

Uscom (ASX:UCM) shares went on a run after the company reported increased orders for its haemodynamic monitoring devices in China.

Uscom stands for Ultra-Sonic Cardiac Output Monitors.

The Uscom 1A device is a non-invasive diagnostic that monitors cardiovascular functions, using Doppler ultrasound to detect abnormalities.

Chinese health authorities have recommended Uscom 1A as a monitoring device for severe coronavirus cases, while international guidelines also suggest using the device for paediatric sepsis.

Uscom reported that in the first five weeks of 2019, Chinese sales orders rose 124 per cent, from 17 units to 38 units.

Uscom chief Professor Rob Phillips says the company is well positioned with the virus, but notes that Uscom is not a coronavirus story as such: fatalities from cardiovascular pulmonary failure result from conditions such as pneumonia.

Happily for Uscom, the outbreak comes as the company hones-in on the Chinese market with a new direct sales model.

The molecular diagnostics house has a suite of approved tests that cover gastro-enteric strains, flavivirus/alphavirus, sexually-transmitted diseases and drum roll respiratory pathogens.

Genetic Signatures (ASX:GSS) Easyscreen tests cover pan coronaviruses, which until now has not been able to distinguish COVID-19 from, say, SARS.

But thats all changed, with the company introducing a supplementary test that does just that. Management is fast-tracking a validation program to obtain the data required for international regulatory approvals as rapidly as possible.

However, Genetic Signatures cant be accused of beating up its prospects: management says while the bug presents significant opportunities, the outcome of the emerging pandemic is uncertain.

While the early-stage coronavirus is detected by a blood test, chest x-rays are then used to gauge the severity of the illness and assess fluid in the lungs.

Micro-X (ASX:MX1) is all about developing lightweight and portable x-ray machines for medical applications, as well as other purposes such as defence and airports.

The companys first product, Carestream DRX Revolution Nano is approved in the US and Europe.

In mid-February the company said it had procured orders for $780,000 of machines from governments of two Asian countries, in response to the coronavirus threat. This week, another $1m of orders, all marked for urgent delivery, flooded in.

While these are terrible circumstances with the coronavirus spreading so quickly, we are pleased that our equipment will soon be able to assist medical teams with their responses in affected countries, Micro-X CEO Peter Rowland says.

Why waste a crisis? No fewer than four ASX stocks are capitalising on demand for hand and surface sanitisers to halt the bug in the first place.

Antimicrobial solutions house Zoono Group (ASX:ZNO) proclaims that its impressively-monikered Z-71 Microbe Shield, as used in its hand sanitisers, kills COVID-19 99.99 percent of the time.

Zoono is selling into China via a tie up with Eagle Health (ASX:EHH), which manufactures and distributes product into 26 provinces.

Aeris Environmental (ASX:AEI) goes one step better, claiming its Aeris Active product kills influenza and noroviruses in 99.999 percent of cases.

For those remaining 0.001 percent, bad luck and dont buy a lottery ticket.

Interestingly, that announcement did not refer specifically to the coronavirus. But earlier, Aeris announced the Singapore National Environment Agency had listed Aeris Active as one of the general disinfectants effective against the virus.

Meanwhile, fruit juice maker Food Revolution Group (ASX:FOD) has turned from filling its bottles with squeezed oranges to stuffing them with alcohol-based hand sanitiser under the Sanicare brand.

Who would have thought? The swift repositioning results from a 1,260sqm upgrade at the companys plant at Mill Park in outer Melbourne, which enables all sorts of gels, powders, oils and cosmetics to be bottled.

Mainstream sanitiser products such as Dettol and Lysol (made by multinational Reckitt and Benckiser) are flying off the shelves.

But is a good scrub with soap and water just as effective? Australian National University microbiologist Professor Peter Collignon opines theres little difference between hand washing and the alcohol-based sanitisers.

One is just more convenient than the other and contains alcohol, he says. You can put it in your pocket and dont have to be near a sink or basin to use it.

So whos actually tackling the disease? Offshore, theres a conga line of developers having a crack at a vaccine.

In Israel, scientists at the Galilee Research Institute claim to be on the cusp of finalising a product that is capable of getting regulatory assent within 90 days.

Thats what you call fast-track approval.

According to the Jerusalem Post, the same team of scientists has been developing a prophylactic against infectious bronchitis virus, which affects poultry.

The effectiveness of the vaccine has been proven in pre-clinical trials carried out at the countrys Veterinary Institute.

In the US, Gilead Sciences plans to recruit 1,000 patients with coronavirus for a clinical trial to test its experimental anti-viral drug remdesivir (as used to tackle Ebola virus).

With the backing of the World Health Organisation, the drug is also being trialed in China.

Maryland-based, Nasdaq-listed Novavax says it is cloning the coronavirus to develop a vaccine, in the same way it developed one for MERS in 2013.

Novavax is looking at several vaccine candidates for animals and hopes to find one for human testing by the end of May.

Our previous experience working with other coronaviruses, including both MERS and SARS, allowed us to mobilise quickly, Novavax CEO Stanley Eck said.

Fellow Nasdaq minnow Moderna has shipped an experimental vaccine to the National Institute of Allergy and Infectious Diseases for testing.

Backed by billionaire hedge fund founder Jim Simons, Long Island-based private outfit Codagenix expects to have a vaccine ready for animal testing in four to six weeks, with one suitable for testing about six weeks later.

The Codagenix know-how is based on recoding the genomes of viruses to render them harmless. The technique is not exactly unknown, as its been used to eradicate polio and small pox.

And who can forget Australias very own Relenza anti-influenza Biota, which became Alpharetta Georgias Nabi, changed its name to Aviragen and then was subsumed as a sub-division of San Franciscos Vaxart, popping its head above the parapet to also claim an anti-viral program for COVID-19.

The South China Morning Post reports that a 65-year-old woman on her COVID-19 deathbed walked out of Chinas Kunming Hospital after being given a stiff shot of mesenchymal stem cells (MSCs).

Two trials are also underway to test the therapy against pneumonia, at a Beijing Military Hospital and Zhongnan Hospital of Wuhan University (yep, in the coronavirus capital).

Could the excitement rub-off on our ASX-listed plays Mesoblast (ASX:MSB), Cynata Therapeutics (ASX:CYP), Orthocell (ASX:OCC) and Regeneus (ASX:RGS)?

Cynatas Dr Ross Macdonald says the reports look authentic; and he believes that MSCs could be an effective adjunct in managing patients with serious issues pertaining to COVID-19.

This is not because MSCs are inherently anti-viral or can act as a vaccine, but more because they have shown benefit in major pathologies associated with infection, he says.

Cynata, we stress, has not mentioned coronavirus in its dispatches and nor has any of the other non-China MSC plays or not yet anyway.

But still, what decent CEO would not give his company a plug?

The clear advantage of (Cynatas) Cymerus technology (is) the ability to make large quantities of consistent, robust MSCs without having to find gazillions of donors, Dr Macdonald says.

Your columnist stresses that the coronavirus influence on the sector is not all positive, with some biotechs likely to be affected by supply or other disruptions.

In mid-February, Cochlear (ASX:COH) quickly stepped off the mark by announcing its earnings for the 2019-20 year were likely to come in at $270-290m, compared with the previously guided $290-300m.

The reason is that hospitals in China and Hong Kong have delayed cochlear implant procedures to avoid the risk of infection.

The aforementioned Uscom notes that with labs preoccupied with the virus, short-term revenues are less predictable. In other words, the coronavirus is a distraction as well as an opportunity.

IDT Australias (ASX:IDT) Dr David Sparling told Biotech Daily that his company had no direct supply chain exposure to China at all, and was doubtful that even the companys gowns and protective gear had much to do with the Middle Kingdom.

Editors note: Dr. Tim Boreham, who wrote this article for Stockhead, is one of Australias best-known small cap analysts and business journalists.

If you throw enough money and resources at tackling a disease you will get a result, right?

Er, not quite: cures for well-researched ailments such as Alzheimers disease, multiple sclerosis and an array of cancers remain elusive.

But when youve got an ailment that is crippling the global economy, the imperative to find a solution is somewhat more intensive.

Our best guess is that like SARS and MERS, COVID-19 will hang around for years to come, but the ill-effects will be made more tolerable with an effective vaccine and/or improved immunity over time.

In other words, it will become just another disease in the pantheon of maladies blighting humanity.

In the race for a cure, Gileads Remdesivir looks interesting, given it has been used before.

As for the opportunists in the sanitiser game, the surge in demand means tangible revenue gains and good on them.

But lets be clear: theyre hardly breaking new ground technology-wise and their gains will only be short term as other suppliers enter the market.

As for a cure, or lack of one, we suggest that investors hedge their bets with an exposure to the funeral stocks Invocare (ASX:IVC) and Propel Funeral Partners (ASX:PFP).

After all, theyre the last people to let you down.

Stockheadcovers emerging ASX companies and investment opportunities. Get daily stock updates atStockhead.

More:
The Aussie Biotech Companies Trying To Make A Buck From Coronavirus - D'Marge

SpaceX Dragon to launch heart cell experiment and more to space station tonight – Space.com

CAPE CANAVERAL, Fla. SpaceX is preparing for its fifth launch of the year: a resupply mission to the International Space Station (ISS). The mission, which is scheduled to launch Friday (March 6) at 11:50 p.m. EST (0450 GMT on March 7), will bring a bevy of science material to the astronauts living and working in the orbiting laboratory.

This flight, dubbed CRS-20, marks the 20th and final mission for SpaceX under the company's first commercial cargo resupply services contract with NASA. Perched atop a Falcon 9 rocket will sit a cargo Dragon capsule filled with more than 4,300 lbs. (1,950 kilograms) of supplies, including more than 2,100 lbs. (950 kg) of science equipment.

The scientific cargo will support a host of experiments across Expeditions 62 and 63, focusing on a range of topics, from biological sciences (growing human heart cells in space), to water conservation methods, to particle-foam manufacturing and the addition of a new research platform on the ISS.

You can watch SpaceX's Dragon launch livehere on Space.com, courtesy of SpaceX, beginning at about 11:30 p.m. EST (0430 GMT), courtesy of NASA TV. You can alsowatch the launch directly from SpaceX here, beginning at 11:35 p.m. EST (0435 GMT).

Video: What's flying to the space station on SpaceX's CRS-20 mission?Related: SpaceX Dragon cargo ship launching tonight. How to watch live.

In its never-ending quest to create the best athletic shoe, Adidas has turned its sights to the International Space Station. The sportswear company has developed a performance midsole an additional shoe layer between the insole (next to your feet) and the sole (what touches the ground) that will enhance comfort.

To create its midsole, Adidas uses a process called particle foam molding, in which thousands of small pellets are blasted into a mold so they fuse together. To streamline the process and create the best shoe it can, Adidas is going to try this process in microgravity. The experiment, dubbed Adidas BOOST (Boost Orbital Operations on Spheroid Tessellation), will look at how the particles fuse together in space.

By removing gravity from the process, the team can take a closer look at individual pellet motion and location. The results of this investigation could show that the space station is a good platform for testing out new manufacturing methods and could lead to more-efficient means of packing and cushioning materials.

Related: Adidas launching new sneakers inspired by historic NASA spacesuits

Delta Faucet Co., a manufacturer of shower heads and other bathroom hardware, is launching a payload on CRS-20 that will seek to better understand how water droplets form. The company will use that knowledge to build a better shower head that lines up with Delta's ultimate goal: creating the sensation of increased pressure while using less water.

Conserving water is incredibly important, but one of the biggest drawbacks is that eco-friendly, low-flow shower heads do not perform as well as their less environmentally friendly counterparts. Users complain that the water pressure feels so low it's difficult to rinse off properly, which can result in longer showers and, ultimately, more water usage.

To help mitigate this issue, Delta has created a unique shower head, called the H2Okinetic, that controls the size and the speed of the water droplets with the help of an oscillating chip. That chip creates a better shower experience by breaking up the water flow into bigger droplets and shooting them out faster, giving the illusion of more water.

Related: Showering in space: Astronaut home video shows off 'hygiene corner'

"Water is a precious commodity," Garry Marty, principal engineer at Delta Faucet, said during a prelaunch briefing on Thursday (March 5). "We are trying to create a shower head to keep our customers happy while using less water."

He went on to explain that once the water leaves the pipes, it essentially doesn't have any pressure. What you're feeling are the droplets. With this new shower head, Delta Faucet is able to control the size and speed on each drop, revolutionizing the way a shower device delivers a shower.

"Lower-flow showers aren't really great to be under," Marty said. "But the more we understand, the more we can improve."

Marty added that, someday, humanity will be living on the moon or Mars and will need a way to take a shower. The lessons learned from this research go beyond conserving water and user experience, he said; it has implications for the space industry as well. But for now, the bigger concern is to better understand the fundamentals of water droplet formation.

Heart disease is the No. 1 cause of death in the U.S. A team of researchers from Emory University in Atlanta, led by Chunhui Xu, are sending an experiment up to the space station to explore how effectively stem cells can be turned into heart muscle cells.

The data collected could lead to new therapies and even speed up the development of new drugs that can better treat heart disease.

The microgravity environment found on the space station is known to have a profound effect on cell growth. Through this research, the team aims to understand the impact microgravity has on cardiac precursors (cardiac cells created from stem cells) and how effectively they produce cardiac muscle cells, called cardiomyocytes.

Related: Heart cells beat differently in microgravity, may benefit astronauts

Ground-based research shows that when cells are grown under simulated microgravity conditions, the production rate of cardiomyocytes is greater than if they were grown under the effects of gravity. By sending the experiment to the space station, Xu and her team will be able to determine if their results are accurate.

"Our goal is to help make stem cell-based therapy more readily available," Xu said during the briefing. "If successful, the demand for it will be tremendous, because heart disease is the No. 1 killer in America."

In order to have a successful therapy, Xu said that the team will need to produce a large number of high-quality cardiomyocytes. To do that, the researchers need to first understand the mechanisms behind cell transformation.

Bartolomeo is a new research platform that will be installed on the exterior of the space station. Placed outside the European Columbus module, this science balcony will host as many as 12 research experiments at one time.

Built by Airbus, the platform will enable researchers to conduct more experiments on the station's exterior. During a prelaunch briefing, NASA and Airbus explained that Bartolomeos potential uses include Earth observation, robotics, materials science and astrophysics.

"All of your [research] dreams can come true with Bartolomeo," said Andreas Schuette, program manager of Bartolomeo at Airbus.

And parking spots on the washing machine-sized platform are all-inclusive, which means that researchers can pay one price to launch, install, operate and even return to Earth. By working directly with agencies like NASA, ESA, and SpaceX, Airbus is able to offer a cost-effective means of conducting research on the space station.

The company is also working with the United Nations in an effort to entice those who wouldn't otherwise be able to afford to send payloads into space, Schuette told Space.com. The duo have teamed up with the United Nations Office for Outer Space (UNOOSA) to make that happen. (The agency works to make space more accessible.)

If all goes as scheduled, the Dragon will arrive at the International Space Station on Monday (March 9) at approximately 6 a.m. EDT (1000 GMT). From there, NASA astronauts Jessica Meir and Drew Morgan will use the station's Canadarm2 robotic arm to capture and attach the spacecraft, before beginning the unloading process.

Follow Amy Thompson on Twitter @astrogingersnap. Follow us on Twitter @Spacedotcom or Facebook.

Read this article:
SpaceX Dragon to launch heart cell experiment and more to space station tonight - Space.com

Beating heart cells catch a ride to the International Space Station – CNN

');$vidEndSlate.removeClass('video__end-slate--inactive').addClass('video__end-slate--active');}};CNN.autoPlayVideoExist = (CNN.autoPlayVideoExist === true) ? true : false;var configObj = {thumb: 'none',video: 'business/2020/01/14/living-robots-stem-cells-frogs-lon-orig-tp.cnn',width: '100%',height: '100%',section: 'domestic',profile: 'expansion',network: 'cnn',markupId: 'large-media_0',adsection: 'cnn.com_technology_scienceandspace_videopage',frameWidth: '100%',frameHeight: '100%',posterImageOverride: {"mini":{"width":220,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-small-169.jpg","height":124},"xsmall":{"width":307,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-medium-plus-169.jpg","height":173},"small":{"width":460,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-large-169.jpg","height":259},"medium":{"width":780,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-exlarge-169.jpg","height":438},"large":{"width":1100,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-super-169.jpg","height":619},"full16x9":{"width":1600,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-full-169.jpg","height":900},"mini1x1":{"width":120,"type":"jpg","uri":"//cdn.cnn.com/cnnnext/dam/assets/200114110026-02-xenobots-uvm-small-11.jpg","height":120}}},autoStartVideo = false,isVideoReplayClicked = false,callbackObj,containerEl,currentVideoCollection = [],currentVideoCollectionId = '',isLivePlayer = false,mediaMetadataCallbacks,mobilePinnedView = null,moveToNextTimeout,mutePlayerEnabled = false,nextVideoId = '',nextVideoUrl = '',turnOnFlashMessaging = false,videoPinner,videoEndSlateImpl;if (CNN.autoPlayVideoExist === false) {autoStartVideo = true;if (autoStartVideo === true) {if (turnOnFlashMessaging === true) {autoStartVideo = false;containerEl = jQuery(document.getElementById(configObj.markupId));CNN.VideoPlayer.showFlashSlate(containerEl);} else {CNN.autoPlayVideoExist = true;}}}configObj.autostart = CNN.Features.enableAutoplayBlock ? false : autoStartVideo;CNN.VideoPlayer.setPlayerProperties(configObj.markupId, autoStartVideo, isLivePlayer, isVideoReplayClicked, mutePlayerEnabled);CNN.VideoPlayer.setFirstVideoInCollection(currentVideoCollection, configObj.markupId);videoEndSlateImpl = new CNN.VideoEndSlate('large-media_0');function findNextVideo(currentVideoId) {var i,vidObj;if (currentVideoId && jQuery.isArray(currentVideoCollection) && currentVideoCollection.length > 0) {for (i = 0; i 0) {videoEndSlateImpl.showEndSlateForContainer();if (mobilePinnedView) {mobilePinnedView.disable();}}}}callbackObj = {onPlayerReady: function (containerId) {var playerInstance,containerClassId = '#' + containerId;CNN.VideoPlayer.handleInitialExpandableVideoState(containerId);CNN.VideoPlayer.handleAdOnCVPVisibilityChange(containerId, CNN.pageVis.isDocumentVisible());if (CNN.Features.enableMobileWebFloatingPlayer &&Modernizr &&(Modernizr.phone || Modernizr.mobile || Modernizr.tablet) &&CNN.VideoPlayer.getLibraryName(containerId) === 'fave' &&jQuery(containerClassId).parents('.js-pg-rail-tall__head').length > 0 &&CNN.contentModel.pageType === 'article') {playerInstance = FAVE.player.getInstance(containerId);mobilePinnedView = new CNN.MobilePinnedView({element: jQuery(containerClassId),enabled: false,transition: CNN.MobileWebFloatingPlayer.transition,onPin: function () {playerInstance.hideUI();},onUnpin: function () {playerInstance.showUI();},onPlayerClick: function () {if (mobilePinnedView) {playerInstance.enterFullscreen();playerInstance.showUI();}},onDismiss: function() {CNN.Videx.mobile.pinnedPlayer.disable();playerInstance.pause();}});/* Storing pinned view on CNN.Videx.mobile.pinnedPlayer So that all players can see the single pinned player */CNN.Videx = CNN.Videx || {};CNN.Videx.mobile = CNN.Videx.mobile || {};CNN.Videx.mobile.pinnedPlayer = mobilePinnedView;}if (Modernizr && !Modernizr.phone && !Modernizr.mobile && !Modernizr.tablet) {if (jQuery(containerClassId).parents('.js-pg-rail-tall__head').length) {videoPinner = new CNN.VideoPinner(containerClassId);videoPinner.init();} else {CNN.VideoPlayer.hideThumbnail(containerId);}}},onContentEntryLoad: function(containerId, playerId, contentid, isQueue) {CNN.VideoPlayer.showSpinner(containerId);},onContentPause: function (containerId, playerId, videoId, paused) {if (mobilePinnedView) {CNN.VideoPlayer.handleMobilePinnedPlayerStates(containerId, paused);}},onContentMetadata: function (containerId, playerId, metadata, contentId, duration, width, height) {var endSlateLen = jQuery(document.getElementById(containerId)).parent().find('.js-video__end-slate').eq(0).length;CNN.VideoSourceUtils.updateSource(containerId, metadata);if (endSlateLen > 0) {videoEndSlateImpl.fetchAndShowRecommendedVideos(metadata);}},onAdPlay: function (containerId, cvpId, token, mode, id, duration, blockId, adType) {/* Dismissing the pinnedPlayer if another video players plays an Ad */CNN.VideoPlayer.dismissMobilePinnedPlayer(containerId);clearTimeout(moveToNextTimeout);CNN.VideoPlayer.hideSpinner(containerId);if (Modernizr && !Modernizr.phone && !Modernizr.mobile && !Modernizr.tablet) {if (typeof videoPinner !== 'undefined' && videoPinner !== null) {videoPinner.setIsPlaying(true);videoPinner.animateDown();}}},onAdPause: function (containerId, playerId, token, mode, id, duration, blockId, adType, instance, isAdPause) {if (mobilePinnedView) {CNN.VideoPlayer.handleMobilePinnedPlayerStates(containerId, isAdPause);}},onTrackingFullscreen: function (containerId, PlayerId, dataObj) {CNN.VideoPlayer.handleFullscreenChange(containerId, dataObj);if (mobilePinnedView &&typeof dataObj === 'object' &&FAVE.Utils.os === 'iOS' && !dataObj.fullscreen) {jQuery(document).scrollTop(mobilePinnedView.getScrollPosition());playerInstance.hideUI();}},onContentPlay: function (containerId, cvpId, event) {var playerInstance,prevVideoId;if (CNN.companion && typeof CNN.companion.updateCompanionLayout === 'function') {CNN.companion.updateCompanionLayout('restoreEpicAds');}clearTimeout(moveToNextTimeout);CNN.VideoPlayer.hideSpinner(containerId);if (Modernizr && !Modernizr.phone && !Modernizr.mobile && !Modernizr.tablet) {if (typeof videoPinner !== 'undefined' && videoPinner !== null) {videoPinner.setIsPlaying(true);videoPinner.animateDown();}}},onContentReplayRequest: function (containerId, cvpId, contentId) {if (Modernizr && !Modernizr.phone && !Modernizr.mobile && !Modernizr.tablet) {if (typeof videoPinner !== 'undefined' && videoPinner !== null) {videoPinner.setIsPlaying(true);var $endSlate = jQuery(document.getElementById(containerId)).parent().find('.js-video__end-slate').eq(0);if ($endSlate.length > 0) {$endSlate.removeClass('video__end-slate--active').addClass('video__end-slate--inactive');}}}},onContentBegin: function (containerId, cvpId, contentId) {if (mobilePinnedView) {mobilePinnedView.enable();}/* Dismissing the pinnedPlayer if another video players plays a video. */CNN.VideoPlayer.dismissMobilePinnedPlayer(containerId);CNN.VideoPlayer.mutePlayer(containerId);if (CNN.companion && typeof CNN.companion.updateCompanionLayout === 'function') {CNN.companion.updateCompanionLayout('removeEpicAds');}CNN.VideoPlayer.hideSpinner(containerId);clearTimeout(moveToNextTimeout);CNN.VideoSourceUtils.clearSource(containerId);jQuery(document).triggerVideoContentStarted();},onContentComplete: function (containerId, cvpId, contentId) {if (CNN.companion && typeof CNN.companion.updateCompanionLayout === 'function') {CNN.companion.updateCompanionLayout('restoreFreewheel');}navigateToNextVideo(contentId, containerId);},onContentEnd: function (containerId, cvpId, contentId) {if (Modernizr && !Modernizr.phone && !Modernizr.mobile && !Modernizr.tablet) {if (typeof videoPinner !== 'undefined' && videoPinner !== null) {videoPinner.setIsPlaying(false);}}},onCVPVisibilityChange: function (containerId, cvpId, visible) {CNN.VideoPlayer.handleAdOnCVPVisibilityChange(containerId, visible);}};if (typeof configObj.context !== 'string' || configObj.context.length 0) {configObj.adsection = window.ssid;}CNN.autoPlayVideoExist = (CNN.autoPlayVideoExist === true) ? true : false;CNN.VideoPlayer.getLibrary(configObj, callbackObj, isLivePlayer);});CNN.INJECTOR.scriptComplete('videodemanddust');

Continued here:
Beating heart cells catch a ride to the International Space Station - CNN

Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Provides An In-Depth Insight Of Sales Analysis-US STEM CELL, INC. – Fashion…

This new report by Eon Market Research, titled Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020 Research Report, 2015 2025 offers a comprehensive analysis of Autologous Stem Cell and Non-Stem Cell Based Therapies industry at a global as well as regional and country level. Key facts analyzed in this report include the Autologous Stem Cell and Non-Stem Cell Based Therapies market size by players, regions, product types and end industries, history data 2014-2018 and forecast data 2020-2025. This report primarily focuses on the study of the competitive landscape, market drivers and trends, opportunities and challenges, risks and entry barriers, sales channels, distributors in global Autologous Stem Cell and Non-Stem Cell Based Therapies market.

Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market presents market size in terms of volume and value (or whichever applicable) for the entire forecast period and also offers CAGR for the forecast period under consideration.

Grab a sample of this report and get instant 10% discount @ https://www.eonmarketresearch.com/sample/55837

**If you have any special requirements, please let us know and we will offer you the report as you want.**

Key trends analyzed for the prospective readers of this Autologous Stem Cell and Non-Stem Cell Based Therapies market report include major demand drivers, restraints and key opportunities prevailing in the industry. Certain high-level analysis of Autologous Stem Cell and Non-Stem Cell Based Therapies market such as value chain analysis, Porters five forces analysis, SWOT analysis, and market attractiveness analysis to cover all the circumstances affecting this Autologous Stem Cell and Non-Stem Cell Based Therapies industry is also covered in this report. Portfolio analysis helps to understand the product mix of leading companies in the Autologous Stem Cell and Non-Stem Cell Based Therapies industry.

This report focuses on top manufacturers in the global Autologous Stem Cell and Non-Stem Cell Based Therapies market, with revenue production, sales, gross margin, and market share for each manufacturer, covering

U.S. STEM CELL, INC.Brainstorm Cell TherapeuticsCytoriDendreon CorporationFibrocellLion BiotechnologiesCaladrius BiosciencesOpexa TherapeuticsOrgenesisRegenexxGenzymeAntriaRegeneusMesoblastPluristem Therapeutics IncTigenixMed cell EuropeHolostemMiltenyi Biotec

Place An Inquiry Before Buying @ https://www.eonmarketresearch.com/enquiry/55837

Consumption, production, capacity, market share, growth rate, and prices are included for each product type segment of Autologous Stem Cell and Non-Stem Cell Based Therapies market

Embryonic Stem CellResident Cardiac Stem CellsAdult Bone MarrowDerived Stem CellsUmbilical Cord Blood Stem Cells

Consumption, market share and growth rate for each application segment of Autologous Stem Cell and Non-Stem Cell Based Therapies market

Neurodegenerative DisordersAutoimmune DiseasesCancer and TumorsCardiovascular Diseases

The Autologous Stem Cell and Non-Stem Cell Based Therapies market report presents all-inclusive information on raw materials suppliers, equipment suppliers, manufacturing cost, capacity, production, profit margin, capacity utilization rate, etc. The Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market report also covers a systematic geographical analysis.

Key regions analyzed in the global Autologous Stem Cell and Non-Stem Cell Based Therapies market include; North America, Latin America, Europe, Asia Pacific, and Middle East Africa. The country-level analysis included for U.S., UK, France, Germany, Russia, China, Japan, India, and Brazil. The Autologous Stem Cell and Non-Stem Cell Based Therapies industry report provides detailed bifurcation of each segment on global, regional and country level. In a word, the Autologous Stem Cell and Non-Stem Cell Based Therapies market report provides major statistics on the state of the industry and is a valuable source of direction and control for companies and individuals interested in the market.

About Us-

Eon Market Research is one of the unique research reports and service providers that help to find out the different research reports of Chemical, food and beverages, consumer goods, Energy, Medical devices and Pharmaceutical and Health Care.

Contact Us:

Eon Market ResearchPhone: +1 703 879 7090Email: sales@eonmarketresearch.com

Visit link:
Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Provides An In-Depth Insight Of Sales Analysis-US STEM CELL, INC. - Fashion...

Dr Borehams Crucible: The small cap biotechs trying to make a buck from coronavirus – Stockhead

As with the early medical cannabis plays, a cluster of ASX-listed stocks has wasted little time attaching itself to the c word. Were talking of course about the coronavirus COVID-19 but sadly not another c word: cure.

Or not yet.

According to broker Morgans daily tally, the virulent bug has so far infected 95,332 people, with 38,564 current cases (6,883 of them critical).

Of the remaining 56,768 cases with an outcome, 53,483 recovered and 6,883 achieved a definitive performance indicator.They died.

Okay, a circa 7 per cent mortality rate or even a 1 or 2 per cent rate is nothing to sneeze at, so to speak. But we do wish breathless TV reporters would cease referring to it as the deadly virus, but that would be like asking them to stop referring to a horror smash rather than a sad everyday road accident.

While were on it, we also implore folk to stop hoarding toilet paper: after all, its the coronavirus, not the Caroma-virus.

Named after its crown-like shape but not the Royal Family per se, the common coronavirus is responsible for past pestilences including Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS).

The virus may indeed fizzle out, as the earlier SARS plague did.

But for the time being, we need the best and brightest minds in the labs to come up with a treatment or more likely a vaccine.

There are some promising developments overseas, which your columnist will return to if he hasnt succumbed as well (he did shake hands with someone who went to a Chinese restaurant a couple of weeks back).

Among the local biotechs and we use the term loosely theres been no lack of endeavour in linking their efforts to the virus.

But to be fair, in some cases investors did it for them.

Take Biotron (ASX:BIT), which was an obvious subject of attention given the company is focused on developing antiviral drugs for HIV and hepatitis.

Biotron also has a program for pan respiratory viruses and mentioned corona in a June 2019 presentation. Some punters latched on to the fact that it wasnt referring to a 1970s Toyota or Mexican beer and the Hot Copper pundits were off and running.

Biotron CEO Dr Michelle Miller has been more circumspect.

Yes, she says, the company has some good advanced compounds to work on, but the reality is that theres nothing that would be ready to fight the current outbreak.

Dr Miller says while the companys work on pan respiratory viruses continues, theres not much to add at this stage.

LISTEN TO: Health Kick Podcast: Coronavirus, HIV and hepatitis are in the sights of Aussie biotech Biotron

Uscom (ASX:UCM) shares went on a run after the company reported increased orders for its haemodynamic monitoring devices in China.

Uscom stands for Ultra-Sonic Cardiac Output Monitors.

The Uscom 1A device is a non-invasive diagnostic that monitors cardiovascular functions, using Doppler ultrasound to detect abnormalities.

Chinese health authorities have recommended Uscom 1A as a monitoring device for severe coronavirus cases, while international guidelines also suggest using the device for paediatric sepsis.

Uscom reported that in the first five weeks of 2019, Chinese sales orders rose 124 per cent, from 17 units to 38 units.

Uscom chief Professor Rob Phillips says the company is well positioned with the virus, but notes that Uscom is not a coronavirus story as such: fatalities from cardiovascular pulmonary failure result from conditions such as pneumonia.

Happily for Uscom, the outbreak comes as the company hones-in on the Chinese market with a new direct sales model.

READ: Dr Borehams Crucible: Uscom gets an A+ for everything but its share price

The molecular diagnostics house has a suite of approved tests that cover gastro-enteric strains, flavivirus/alphavirus, sexually-transmitted diseases and drum roll respiratory pathogens.

Genetic Signatures (ASX:GSS) Easyscreen tests cover pan coronaviruses, which until now has not been able to distinguish COVID-19 from, say, SARS.

But thats all changed, with the company introducing a supplementary test that does just that. Management is fast-tracking a validation program to obtain the data required for international regulatory approvals as rapidly as possible.

However, Genetic Signatures cant be accused of beating up its prospects: management says while the bug presents significant opportunities, the outcome of the emerging pandemic is uncertain.

While the early-stage coronavirus is detected by a blood test, chest x-rays are then used to gauge the severity of the illness and assess fluid in the lungs.

Micro-X (ASX:MX1) is all about developing lightweight and portable x-ray machines for medical applications, as well as other purposes such as defence and airports.

The companys first product, Carestream DRX Revolution Nano is approved in the US and Europe.

In mid-February the company said it had procured orders for $780,000 of machines from governments of two Asian countries, in response to the coronavirus threat. This week, another $1m of orders, all marked for urgent delivery, flooded in.

While these are terrible circumstances with the coronavirus spreading so quickly, we are pleased that our equipment will soon be able to assist medical teams with their responses in affected countries, Micro-X CEO Peter Rowland says.

Why waste a crisis? No fewer than four ASX stocks are capitalising on demand for hand and surface sanitisers to halt the bug in the first place.

Antimicrobial solutions house Zoono Group (ASX:ZNO) proclaims that its impressively-monikered Z-71 Microbe Shield, as used in its hand sanitisers, kills COVID-19 99.99 percent of the time.

Zoono is selling into China via a tie up with Eagle Health (ASX:EHH), which manufactures and distributes product into 26 provinces.

READ: Health: Zoono is not one to waste a crisis as epidemics beef up revenue

Aeris Environmental (ASX:AEI) goes one step better, claiming its Aeris Active product kills influenza and noroviruses in 99.999 percent of cases.

For those remaining 0.001 percent, bad luck and dont buy a lottery ticket.

Interestingly, that announcement did not refer specifically to the coronavirus. But earlier, Aeris announced the Singapore National Environment Agency had listed Aeris Active as one of the general disinfectants effective against the virus.

Meanwhile, fruit juice maker Food Revolution Group (ASX:FOD) has turned from filling its bottles with squeezed oranges to stuffing them with alcohol-based hand sanitiser under the Sanicare brand.

Who would have thought? The swift repositioning results from a 1,260sqm upgrade at the companys plant at Mill Park in outer Melbourne, which enables all sorts of gels, powders, oils and cosmetics to be bottled.

Mainstream sanitiser products such as Dettol and Lysol (made by multinational Reckitt and Benckiser) are flying off the shelves.

But is a good scrub with soap and water just as effective? Australian National University microbiologist Professor Peter Collignon opines theres little difference between hand washing and the alcohol-based sanitisers.

One is just more convenient than the other and contains alcohol, he says. You can put it in your pocket and dont have to be near a sink or basin to use it.

So whos actually tackling the disease? Offshore, theres a conga line of developers having a crack at a vaccine.

In Israel, scientists at the Galilee Research Institute claim to be on the cusp of finalising a product that is capable of getting regulatory assent within 90 days.

Thats what you call fast-track approval.

According to the Jerusalem Post, the same team of scientists has been developing a prophylactic against infectious bronchitis virus, which affects poultry.

The effectiveness of the vaccine has been proven in pre-clinical trials carried out at the countrys Veterinary Institute.

In the US, Gilead Sciences plans to recruit 1,000 patients with coronavirus for a clinical trial to test its experimental anti-viral drug remdesivir (as used to tackle Ebola virus).

With the backing of the World Health Organisation, the drug is also being trialed in China.

Maryland-based, Nasdaq-listed Novavax says it is cloning the coronavirus to develop a vaccine, in the same way it developed one for MERS in 2013.

Novavax is looking at several vaccine candidates for animals and hopes to find one for human testing by the end of May.

Our previous experience working with other coronaviruses, including both MERS and SARS, allowed us to mobilise quickly, Novavax CEO Stanley Eck said.

Fellow Nasdaq minnow Moderna has shipped an experimental vaccine to the National Institute of Allergy and Infectious Diseases for testing.

Backed by billionaire hedge fund founder Jim Simons, Long Island-based private outfit Codagenixexpects to have a vaccine ready for animal testing in four to six weeks, with one suitable for testing about six weeks later.

The Codagenix know-how is based on recoding the genomes of viruses to render them harmless. The technique is not exactly unknown, as its been used to eradicate polio and small pox.

And who can forget Australias very own Relenza anti-influenza Biota, which became Alpharetta Georgias Nabi, changed its name to Aviragen and then was subsumed as a sub-division of San Franciscos Vaxart, popping its head above the parapet to also claim an anti-viral program for COVID-19.

READ: Biotech big guns are buying up the minnows

The South China Morning Post reports that a 65-year-old woman on her COVID-19 deathbed walked out of Chinas Kunming Hospital after being given a stiff shot of mesenchymal stem cells (MSCs).

Two trials are also underway to test the therapy against pneumonia, at a Beijing Military Hospital and Zhongnan Hospital of Wuhan University (yep, in the coronavirus capital).

Could the excitement rub-off on our ASX-listed plays Mesoblast (ASX:MSB), Cynata Therapeutics (ASX:CYP), Orthocell (ASX:OCC) and Regeneus (ASX:RGS)?

Cynatas Dr Ross Macdonald says the reports look authentic; and he believes that MSCs could be an effective adjunct in managing patients with serious issues pertaining to COVID-19.

This is not because MSCs are inherently anti-viral or can act as a vaccine, but more because they have shown benefit in major pathologies associated with infection, he says.

Cynata, we stress, has not mentioned coronavirus in its dispatches and nor has any of the other non-China MSC plays or not yet anyway.

But still, what decent CEO would not give his company a plug?

The clear advantage of (Cynatas) Cymerus technology (is) the ability to make large quantities of consistent, robust MSCs without having to find gazillions of donors, Dr Macdonald says.

Your columnist stresses that the coronavirus influence on the sector is not all positive, with some biotechs likely to be affected by supply or other disruptions.

In mid-February, Cochlear (ASX:COH) quickly stepped off the mark by announcing its earnings for the 2019-20 year were likely to come in at $270-290m, compared with the previously guided $290-300m.

The reason is that hospitals in China and Hong Kong have delayed cochlear implant procedures to avoid the risk of infection.

The aforementioned Uscom notes that with labs preoccupied with the virus, short-term revenues are less predictable. In other words, the coronavirus is a distraction as well as an opportunity.

IDT Australias (ASX:IDT)Dr David Sparling told Biotech Daily that his company had no direct supply chain exposure to China at all, and was doubtful that even the companys gowns and protective gear had much to do with the Middle Kingdom.

If you throw enough money and resources at tackling a disease you will get a result, right?

Er, not quite: cures for well-researched ailments such as Alzheimers disease, multiple sclerosis and an array of cancers remain elusive.

But when youve got an ailment that is crippling the global economy, the imperative to find a solution is somewhat more intensive.

Our best guess is that like SARS and MERS, COVID-19 will hang around for years to come, but the ill-effects will be made more tolerable with an effective vaccine and/or improved immunity over time.

In other words, it will become just another disease in the pantheon of maladies blighting humanity.

In the race for a cure, Gileads Remdesivir looks interesting, given it has been used before.

As for the opportunists in the sanitiser game, the surge in demand means tangible revenue gains and good on them.

But lets be clear: theyre hardly breaking new ground technology-wise and their gains will only be short term as other suppliers enter the market.

As for a cure, or lack of one, we suggest that investors hedge their bets with an exposure to the funeral stocks Invocare (ASX:IVC)and Propel Funeral Partners (ASX:PFP).

After all, theyre the last people to let you down.

Disclosure: Dr Boreham is not a qualified medical practitioner and does not possess a doctorate of any sort. If he doesnt shake hands with you or spare you a square of toilet paper, dont be offended.

This column first appeared in Biotech Daily.

NOW LISTEN TO:

Get the latest Stock & Small Caps news and insights direct to your inbox.

Read more from the original source:
Dr Borehams Crucible: The small cap biotechs trying to make a buck from coronavirus - Stockhead

Techshots New Projects Will be on the Next SpaceX Mission Launch – 3DPrint.com

2020 is already promising to be a fantastic year for space exploration. The next generation of Artemis explorers can begin applying for the program that will be journeying to the Moon, Mars and beyond; the James Webb Space Telescope is ready to test key deployments made in space, and even the Orion spacecraft that will blast off to the Moon during Artemis missions has successfully passed its final tests. Furthermore, NASA and commercial space companies prepare for the colonization of orbit, rockets are taking payloads to the International Space Station (ISS) very often and 3D bioprinting is becoming an attractive and useful method to carry out experiments. The next one up is SpaceX mission CRS-20. Scheduled to launch at 11:50 PM Eastern Time (EST) on March 6 from Floridas Cape Canaveral Air Force Station, the unpiloted cargo spacecraft is expected to arrive at the orbiting laboratory two days later with three Techshot-managed research campaigns.

The Indiana-based commercial research company is sending equipment and samples supporting plant, heart and cartilage research for NASA, Emory University and the Uniformed Services University of the Health Sciences (USU) to the ISS. According to the company, astronauts onboard the station will use Techshots 3D BioFabrication Facility (BFF) mounted inside the ISS U.S. National Laboratory (ISS National Lab) since last summer to manufacture human knee menisci for the 4-Dimensional Bioprinting, Biofabrication, and Biomanufacturing, or 4D Bio3program. Based at USU, 4D Bio3 is a collaboration between the USU and The Geneva Foundation, a non-profit organization that advances military medical research.

Funded by the U.S. Defense Health Program and managed by the Geneva Foundation, 4D Bio3promotes the development and application of advanced bioprinting, biofabrication, and biomanufacturing technologies for research pursuant to U.S. Department of Defense priorities and ultimately for translation to clinical medical defense care and training solutions.

This is our most diverse manifest to date, said Techshot President and CEO, John Vellinger. Throughout March well be conducting three major investigations in space for three customers using three very different Techshot-built research devices. Its going to be a busy month, but were excited to see the results.

Techshot owns BFF and the company built it at a cost of approximately seven million dollars. The starting point was an nScrypt printer, which now is highly modified by Techshot for use inside the ISS. In that relationship, Techshot handles all the space bioprinting, while nScrypt handles all the Earth-based bioprinting.

This first experiment for 4D Bio3 next month will be used as a test of the materials and the processes required to print a meniscus in space. Techshot engineers will upload a design file to BFF from the companys Payload Operations Control Center in Greenville, Indiana, and evaluate its success via real-time video from inside the unit. A second meniscus print will take place in BFF early next year and the item will then be returned to Earth for extensive testing and comparison to the nScrypt Earth-printed items. Last year nScrypt printed the same thing at a U.S. military base in Africa with their own printer.

Vincent B.Ho, Director of 4D Bio3 and professor and chair of radiology at USU said that meniscal injuries are one of the most commonly treated orthopedic injuries, and have a much higher incidence in military service membersreported to be almost 10 times that of the civilian population. We successfully biofabricated 3D human medial and lateral menisci in a pilot study performed in Africa last summer and anticipate learning valuable lessons on the challenges and benefits of biofabrication in microgravity by performing a similar experiment on the space station.

Besides BFF, there are four other Techshot owned and operated research machines inside the ISS today. Only the BFF is a bioprinter. The others are an X-ray machine for mice, two identical units called the Techshot Multi-use Variable-gravity Platform (MVP), and one called the ADvanced Space Experiment Processor (ADSEP), which is where cells printed in the BFF go to become conditioned and cultured into the tissue. The company has agreements with NASA and the ISS National Lab that permit Techshot to operate a commercial business in space. This is part of NASAs objective to make orbit more commercial, providing access to space for nearly anyone.

Another complex Techshot-managed experiment launching onboard SpaceX CRS-20 will test whether a heart-specific stem cell, called a cardiac progenitor, multiplies better in space and if more of them become heart muscle cells known as cardiomyocytes. This is part of Chunhui Xu, an associate professor in the department of pediatrics at the Emory University School of Medicine who studies heart cells, research that aims to improve treatments for congenital heart disorders and better the hearts ability to regenerate after injuries.

Preparing the experiments: under the vent hood, Biomedical Engineer Jordan Fite adds media to bags and fluid loops that will be used in the experiment in space (Image: Techshot)

Techshot explained that human cardiac tissues cant repair themselves once damaged from disease, due to this, repairing a failing heart by cell therapy requires a large number of cardiomyocytes, which can be converted from stem cells cultured in two dimensions in Earth-based laboratories. Without the pull of gravity, it is expected that culturing in three dimensions in space, inside specialized Techshot cell culture experiment modules, will increase the yield of high-quality heart muscle cells. The company expects that learning more about why this happens could lead to new strategies for reproducing the same results on a much larger scale on Earth, lowering costs and enabling more patients to receive needed cardiac cell therapies.

Astronaut handling Techshots BFF (Image: Techshot/NASA)

It is expected that once the cargo spacecraft reaches the station, the 12 Techshot experiment modules will be removed from the spacecraft and inserted by the crew into the companys Multi-use Variable-gravity Platform (MVP) unit number two mounted in the Japanese space laboratory known as Kibo.

We are thankful for Techshots engineers who designed the Multi-use Variable-gravity Platform hardware and will help us maintain constant communication with the astronauts during the flight operation. Their professionalism and collaboration with our team have contributed tremendously toward our overall research efforts, said Ho.

Besides the materials for the BFF meniscus print, SpaceX CRS-20 will also carry 12 Passive Orbital Nutrient Delivery System, or PONDS, plant growth devices that Techshot co-developed with Tupperware Brands, and that was first prototyped by NASA Kennedy Space Center. According to company officials, they will be growing red romaine lettuce inthe devices, installed inside two of the space stations identical plant growth chambers each called Veggie. The PONDS units are being tested in two different configurations, each representing approaches refined from two previous flight tests. For this demonstration, lettuce is expected to grow in space for 21 days. Besides the hardware built and own, Techshot also manages the space stations most complex greenhouse, called the Advanced Plant Habitat, and it manages two on-orbit research furnaces called PFMI and SUBSA.

Techshot has been working hard to get samples ready in a lab at the Space Station Processing Facility at NASAs Kennedy Space Center.

Product assurance associate Keri Roeder, program manager Nathan Thomas and mechanical engineer Grant Vellinger prepared samples for Techshot customer Emory University (Image: Techshot)

Founded more than 30 years ago, Techshot operates its own commercial research equipment in space and serves as the manager of three NASA-owned ISS payloads. The company is also working on other space 3D printing technologies. Last fall they tested a laser-based 3D metal printer in zero gravity inside an aircraft performing parabolic arcs over the Gulf of Mexico (sometimes unofficially nicknamed the vomit comet). However, officials suggest that this technology is still at least a couple of years from Techshot launching it to the space station.

NASA and dozens of companies continue to work together to develop the means for astronauts and space explorers to endure life in orbit, the Moon and other planets. This vision is enthralling for anyone who ever dreamed of going to space, even hopeful of the next generations that will be able to experience space travel and conduct research work in microgravity. Perhaps we are too hopeful of the future, but with so much going on, its difficult not to be.

The launch on Friday will be the last SpaceX launch under the current NASA CRS-1 contract, yet SpaceX will continue performing resupply missions under a new CRS-2 contract beginning with the next scheduled resupply mission in August this year. To watch the launch, which is scheduled to take place at 11:50 p.m. EST on Friday, March 6, and capture of the spacecrafts arrival at the ISS, you can tune into NASA TV using the video below:

More here:
Techshots New Projects Will be on the Next SpaceX Mission Launch - 3DPrint.com

Archives