Page 21234..1020..»

New Jersey Stem Cell Therapy – Stem Cell Center Of NJ

COPD

Over 32 million Americans suffer from chronic obstructive pulmonary disease (also known as COPD). COPD is a progressive lung disease, however regenerative medicine, such as lung regeneration therapies using stem cells are showing potential for COPD by encouraging tissue repair and reducing inflammation to the diseased lung tissue.

Following up with stem cell therapy and exome therapy immediately in the first 36 to 48 hours after stroke symptoms surface has proven to be crucial to long-term recovery and regaining mobility again. Cell therapy also calms post-stroke inflammation in the body, and reduces risk of serious infections.

Parkinsons is a neurodegenerative brain disorder caused by the gradual loss of dopamine-producing cells in the brain. It afflicts more than 1 million people in the U.S., and currently, there is no known cure. Stem cell therapies have been showing incredible progress. Using induced pluripotent stem (iPS) cells, a mature cell can be reprogrammed into an embryonic-like, healthy and highly-functioning state, which has the potential to become a dopamine-producing cell in the brain.

A thick, full head of hair is possible, naturally! Stem cell and exosome therapy promotes healing from within to naturally stimulate hair follicles, which encourages new hair growth. Using your own stem cells, Platelet Rich Plasma (PRP) and exosomes, you can regrow your own healthy, thick hair naturally and restore your confidence!

Erectile Dysfunction (ED) is the inability to achieve or maintain an erection sufficient for satisfactory sexual intercourse. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue to improve performance and sensation.

If chronic joint pain is derailing your active lifestyle, then youre not alone. Regenerative medicine offers a non-surgical option that commonly uses the patients own stem cells, exosomes, and other sources of growth factors to reduce inflammation, promote natural healing and regenerate healthy tissue surrounding the joint for relief.

Multiple Sclerosis (MS) affects 400,000 people in the U.S., and occurs when the body has an abnormal immune system response and attacks the central nervous system. Regenerative medicine now offers treatment for MS with stem cell therapy, which is an exciting and rapidly developing field of therapy. Stem cells work to repair damaged cells these new cells can become replacement cells to restore normal functionality.

Spinal cord injuries are as complex as they are devastating. Today, cellular treatments, usually a combination of therapies, such as stem cell, Platelet Rich Plasma (PRP) and exosome therapy with growth factors are showing promise in contributing to spinal cord repair and reducing inflammation at the site of injury.

If you have chronic nerve injury pain that doesnt fade, your health care provider may recommend surgery to reverse the damage. However, regenerative medicine offers a non-surgical option to repair damaged tissue and reduce inflammation at the site of injury. Stem cell therapy commonly uses the patients own stem cells, exosomes, and other sources of growth factors to regenerate healthy tissue.

Neuropathy also called peripheral neuropathy occurs when nerves are damaged and cant send messages from the brain and spinal cord to the muscles, skin and other parts of the body. Simply put, the two areas stop communicating. Stem cell and exosome therapies treat damaged nerves affected by neuropathy, and they have the ability to replicate and create new, healthy cells, while repairing damaged tissue.

See more here:
New Jersey Stem Cell Therapy – Stem Cell Center Of NJ

Recommendation and review posted by sam

Center for Gene Therapy :: The Research Institute at Nationwide …

The mission of the Center for Gene Therapy is to investigate and employ the use of gene and cell based therapeutics for prevention and treatment of human diseases including: neuromuscular and neurodegenerative diseases, lysosomal storage disorders, ischemia and re-perfusion injury, neonatal hypertension, cancer and infectious diseases.

Learn about our areas of focus and featured research projects.

The Center for Gene Therapy and the Viral Vector Core are home to a Good Manufacturing Practice (GMP) production facility for manufacture of clinical-grade rAAV vectors.

View the Viral Vector Core & Clinical Manufacturing Facility site.

TheOSU and Nationwide Children’s Muscle Groupbrings together investigators with diverse research interests in skeletal muscle, cardiac muscle, and neuromuscular biology.

Hosted by Kevin Flanigan, MD,”This Month in Muscular Dystrophy” podcastshighlight the latest in muscular dystrophy and other inherited neuromuscular disease research.During each podcast, authors of recent publications discuss how their work improves our understanding of inherited neuromuscular diseases, and what their work might mean for treatment of these diseases.

Visit link:
Center for Gene Therapy :: The Research Institute at Nationwide …

Recommendation and review posted by sam

Nu You Med Clinic – Hormone Replacement Therapy Frankfort, KY

We started this clinic for natural hormone replacement in Frankfort, KY because my patients were fatigued with the lack of energy. They had loss of memory and difficulty thinking at times. They displayed irritability, anxiety, and depression-like symptoms. They were having decreased loss of muscle strength with joint pain. Along with these symptoms, they lacked sexual desire and performance. I knew their hormones were to blame but the medicines offered by the conventional medical community had potential side effects or even caused heart attacks, stroke, DVTs and cancer and I didnt really see them as effective.

I searched for a long time to find the right solution that would be safe for my patients, be effective and reverse all the symptoms they were experiencing. I found it in Human-identical Hormone Therapy or HRT for short. These hormones, along with some supplements, allowed my patients to regain energy and muscle strength while feeling younger and happier. They had increased mental clarity and ability to lose weight again. It restored or increased their sex drive and performance while decreasing their joint and muscle pain. Its been a great experience and we are just starting out. We are seeing people get theirlife back to want they want it to be. They are Living Happier and Aging Healthier.

If you want to see a video about what Dr. Lingreen thinks about hormone replacement pleasewatch the following:

.

Call to speak to a representative and see if Balanced Hormone therapy in Frankfort, KY is right for you. Just call (855) 592-4683 and leave a Voice Message and our staff will call you back.

ga(‘create’, ‘UA-104143050-1’, ‘auto’); ga(‘send’, ‘pageview’);

Like Loading…

Continue reading here:
Nu You Med Clinic – Hormone Replacement Therapy Frankfort, KY

Recommendation and review posted by Rebecca Evans

What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net

A stem cell transplant is a treatment for some types of cancer. For example, you might have one if you have leukemia, multiple myeloma, or some types of lymphoma. Doctors also treat some blood diseases with stem cell transplants.

In the past, patients who needed a stem cell transplant received a bone marrow transplant because the stem cells were collected from the bone marrow. Today, stem cells are usually collected from the blood, instead of the bone marrow. For this reason, they are now more commonly called stem cell transplants.

A part of your bones called bone marrow makes blood cells. Marrow is the soft, spongy tissue inside bones. It contains cells called hematopoietic stem cells (pronounced he-mah-tuh-poy-ET-ick). These cells can turn into several other types of cells. They can turn into more bone marrow cells. Or they can turn into any type of blood cell.

Certain cancers and other diseases keep hematopoietic stem cells from developing normally. If they are not normal, neither are the blood cells that they make. A stem cell transplant gives you new stem cells. The new stem cells can make new, healthy blood cells.

The main types of stem cell transplants and other options are discussed below.

Autologous transplant. Doctors call this an AUTO transplant. This type of stem cell transplant may also be called high-dose chemotherapy with autologous stem cell rescue.

In an AUTO transplant, you get your own stem cells after doctors treat the cancer. First, your health care team collects stem cells from your blood and freezes them. Next, you have powerful chemotherapy, and rarely, radiation therapy. Then, your health care team thaws your frozen stem cells. They put them back in your blood through a tube placed in a vein (IV).

It takes about 24 hours for your stem cells to reach the bone marrow. Then they start to grow, multiply, and help the marrow make healthy blood cells again.

Allogeneic transplantation. Doctors call this an ALLO transplant.

In an ALLO transplant, you get another persons stem cells. It is important to find someone whose bone marrow matches yours. This is because you have certain proteins on your white blood cells called human leukocyte antigens (HLA). The best donor has HLA proteins as much like yours as possible.

Matching proteins make a serious condition called graft-versus-host disease (GVHD) less likely. In GVHD, healthy cells from the transplant attack your cells. A brother or sister may be the best match. But another family member or volunteer might work.

Once you find a donor, you receive chemotherapy with or without radiation therapy. Next, you get the other persons stem cells through a tube placed in a vein (IV). The cells in an ALLO transplant are not typically frozen. So, doctors can give you the cells as soon after chemotherapy or radiation therapy as possible.

There are 2 types of ALLO transplants. The best type for each patient depends his or her age and health and the type of disease being treated.

Ablative, which uses high-dose chemotherapy

Reduced intensity, which uses milder doses of chemotherapy

If your health care team cannot find a matched adult donor, there are other options. Research is ongoing to determine which type of transplant will work best for different patients.

Umbilical cord blood transplant. This may be an option if you cannot find a donor match. Cancer centers around the world use cord blood.

Parent-child transplant and haplotype mismatched transplant. These types of transplants are being used more commonly. The match is 50%, instead of near 100%. Your donor might be a parent, child, brother, or sister.

Your doctor will recommend an AUTO or ALLO transplant based mostly on the disease you have. Other factors include the health of your bone marrow and your age and general health. For example, if you have cancer or other disease in your bone marrow, you will probably have an ALLO transplant. In this situation, doctors do not recommend using your own stem cells.

Choosing a transplant is complicated. You will need help from a doctor who specializes in transplants. So you might need to travel to a center that does many stem cell transplants. Your donor might need to go, too. At the center, you talk with a transplant specialist and have an examination and tests. Before a transplant, you should also think about non-medical factors. These include:

Who can care for you during treatment

How long you will be away from work and family responsibilities

If your insurance pays for the transplant

Who can take you to transplant appointments

Your health care team can help you find answers to these questions.

The information below tells you the main parts of AUTO and ALLO transplants. Your health care team usually does the steps in order. But sometimes certain steps happen in advance, such as collecting stem cells. Ask your doctor what to expect before, during, and after a transplant.

A doctor puts a thin tube called a transplant catheter in a large vein. The tube stays in until after the transplant. Your health care team will collect stem cells through this tube and give chemotherapy and other medications through the tube.

You get injections of a medication to raise your number of white blood cells. White blood cells help your body fight infections.

Your health care team collects stem cells, usually from your blood.

Time: 1 to 2 weeks

Where its done: Clinic or hospital building. You do not need to stay in the hospital overnight.

Time: 5 to 10 days

Where its done: Clinic or hospital. At many transplant centers, patients need to stay in the hospital for the duration of the transplant, usually about 3 weeks. At some centers, patients receive treatment in the clinic and can come in every day.

Time: Each infusion usually takes less than 30 minutes. You may receive more than 1 infusion.

Where its done: Clinic or hospital.

Time: approximately 2 weeks

Where its done: Clinic or hospital. You might be staying in the hospital or you might not.

Time: Varies based on how the stem cells are collected

Where its done: Clinic or hospital

Time: 5 to 7 days

Where its done: Many ALLO transplants are done in the hospital.

Time: 1 day

Where its done: Clinic or hospital.

You take antibiotics and other drugs. This includes medications to prevent graft-versus-host disease. You get blood transfusions through your catheter if needed. Your health care team takes care of any side effects from the transplant.

After the transplant, patients visit the clinic frequently at first and less often over time.

Time: Varies

For an ablative transplant, patients are usually in the hospital for about 4 weeks in total.

For a reduced intensity transplant, patients are in the hospital or visit the clinic daily for about 1 week.

The words successful transplant might mean different things to you, your family, and your doctor. Below are 2 ways to measure transplant success.

Your blood counts are back to safe levels. A blood count is the number of red cells, white cells, and platelets in your blood. A transplant makes these numbers very low for 1 to 2 weeks. This causes risks of:

Infection from low numbers of white cells, which fight infections

Bleeding from low numbers of platelets, which stop bleeding

Tiredness from low numbers of red cells, which carry oxygen

Doctors lower these risks by giving blood and platelet transfusions after a transplant. You also take antibiotics to help prevent infections. When the new stem cells multiply, they make more blood cells. Then your blood counts improve. This is one way to know if a transplant is a success.

It controls your cancer. Doctors do stem cell transplants with the goal of curing disease. A cure may be possible for some cancers, such as some types of leukemia and lymphoma. For other patients, remission is the best result. Remission is having no signs or symptoms of cancer. After a transplant, you need to see your doctor and have tests to watch for any signs of cancer or complications from the transplant.

Talking often with the doctor is important. It gives you information to make health care decisions. The questions below may help you learn more about stem cell transplant. You can also ask other questions that are important to you.

Which type of stem cell transplant would you recommend? Why?

If I will have an ALLO transplant, how will we find a donor? What is the chance of a good match?

What type of treatment will I have before the transplant? Will radiation therapy be used?

How long will my treatment take? How long will I stay in the hospital?

How will a transplant affect my life? Can I work? Can I exercise and do regular activities?

How will we know if the transplant works?

What if the transplant doesnt work? What if the cancer comes back?

What are the side effects? This includes short-term, such as during treatment and shortly after. It also includes long-term, such as years later.

What tests will I need later? How often will I need them?

If I am worried about managing the costs of treatment, who can help me with these concerns?

Bone Marrow Aspiration and Biopsy

Making Decisions About Cancer Treatment

Donating Blood and Platelets

Donating Umbilical Cord Blood

Explore BMT

Be the Match: National Marrow Donor Program

Blood & Marrow Transplant Information Network

U.S. Department of Health and Human Services: Understanding Transplantation as a Treatment Option

National Bone Marrow Transplant Link

Follow this link:
What is a Stem Cell Transplant (Bone Marrow Transplant)? | Cancer.Net

Recommendation and review posted by sam

Hypopituitarism – Symptoms, Causes, Diagnosis and Treatment – Prime Health Channel

[Total: 0 Average: 0/5] What is Hypopituitarism ?

Hypopituitarism refers to a rare clinical syndrome that is characterized by the low secretion of one or more hormones secreted by the pituitary gland. It is a condition primarily affecting the anterior lobe of the pituitary gland. The hormones that are produced by the pituitary glands and may be affected by hypopituitarism are Adrenocorticotrophic Hormone (ACTH), Antidiuretic Hormone (ADH), Follicle-Stimulating Hormone (FSH), Thyroid-Stimulating Hormone (TSH), Luteinizing Hormone (LH), Growth Hormone (GH) and Prolactin. When any one of these hormones is affected, one is considered to suffer from Partial Hypopituitarism and the case involving several hormones at a time is known as Panhypopituitarism. The German physician, Dr.Morris Simmonds can be credited to have detected and described the first such condition as early as 1914. Both children and adults may suffer from hypopituitarism which may be caused by a number of reasons affecting the pituitary glands. An underactive pituitary gland affects the normal body functions. One who is affected with hypopituitarism since birth or inherits the same, is said to suffer from congenital or postpartum hypopituitarism. However, like hypoparathyroidism, hypopituitarism is a disease that is most likely to last for life, so its treatment also lasts long.

The symptoms of hypopituitarism basically depend on the deficiency of a particular hormone secreted by the pituitary glands and its severity as well as the underlying cause responsible for it as. The signs and symptoms of hypopituitarism are usually subtle in nature but may also appear very suddenly.

In cases such as insufficient gonadotropins production that is actually secreted by the follicle-stimulating hormone and the luteinizing hormone, one may experience sexual problems such as hot flashes, infertility, impotence, loss of pubic hair, decreased sperm production, drying of the vagina, shriveling of the testes, amenorrhea or the absence of menstrual cycle in women and altogether a decreased sex drive. It may also cause osteoporosis in adults. The deficiency of such a hormone may be responsible for delaying puberty in children.

Insufficient production of the growth hormone caused by hypopituitarism in adults usually has no specific symptoms. But growth hormone deficiency may cause hypopituitarism dwarfism in children. This kind of specific hormone deficiency is more associated with people already suffering from tumor in the pituitary glands. One may suffer from the enlargement of the limbs or acromegaly, headaches, autoimmune inflammation of the pituitary glands or lymphocytic hypophysitis, and pituitary apoplexy or stroke.

The deficiency or the poor secretion of the TSH may be signaled by the gain or loss of weight, puffiness or the drying of the skin, sensitivity towards cold, constipation and even cretinism. The poor functioning of the pituitary glands to produce the ACTH or the prolactin results in low blood pressure, fatigue, stress, low blood sugar, anemia and the lack of production of breast milk in women after the birth of a child. On a more general sense, people with hypopituitarism may suffer from skin, nail and hair problems.

The causes of hypopituitarism are quite a few in number and also quite distinct by nature. The most common cause of hypopituitarism is the development of tumor in any of the pituitary glands. Such a condition is also known as pituitary adenomas in which case the normal tissues in the gland are compressed and it may also cause brain tumors, namely, craniopharyngiomas, glioma, chordoma, metastasis, ependymoma, and meningioma that are actually derivatives from pituitary gland problems. Cancer may also aggravate hypopituitarism.

Other common causes of hypopituitarism include hypophysis trauma, brain injury, ill effects of neurosurgical operations and ionizing radiation therapies to cure brain tumors and transsphenoidal adenomectomy.

Infections of the brain or the pituitary glands such as meningitis, brain abscess, syphilis, and encephalitis may also be responsible for causing hypopituitarism. Inflammatory diseases like amyloidosis and sarcoidosis are other causes of hypopituitarism. Diseases associated with infiltration by abnormal cells, histiocytosis and neurosarcoidosis may also be held responsible for hypopituitarism. Autoimmune diseases such as lymphocytic hypophysitis, empty sella syndrome that causes the disappearance of the pituitary tissues, and hemochromatosis or excessive iron content in the body may also be attributed to the occurrence of hypopituitarism.

Vascular hypopituitarism is a disease that affects pregnant women when their pituitary gland is harmed due to hemorrhage or infarction, or excessive bleeding following a delivery, a condition known as Sheehanss Syndrome. Pituitary apoplexy and strokes may also be held responsible for the same. On the other hand, congenital hypopituitarism is a disorder that affects a child since his/her birth. It may arise as a result of genetic complications or complications related to the birth. Certain specific gene mutations may cause the poor development of the pituitary glands to such an extent that they even be on the verge of dysfunction. The condition related to the insufficient development of the glands is called hypoplasia. Congenital hypopituitarism may also be caused by the Kallmann Syndrome which causes a deficiency of the sex hormones.

Certain other syndromes such as Prader-Willi and Biedl, chronic metabolic and autoimmune syndromes such as diabetes insipidus may also be responsible for causing hypopituitarism. Any other kind of damage to the nerves or the vessels by either internal or external factors may also cause the deficiency of the pituitary hormones.

Some of the symptoms of hypopituitarism are so obvious and serious that may facilitate the easy diagnosis of the disorder. But for discerning the exact reason behind hypopituitarism, one must go through the proper clinical tests, which shall help in the proper diagnosis of the ailment.

Blood tests are the most common form of clinical test that is beneficial in the proper diagnosis of just not hypopituitarism but for most of the diseases and disorders. The blood tests are usually of two types, namely, basal level tests and dynamic tests. Basal level tests have a specific timing for the collection of blood samples, mostly early morning when one is not stimulated before being injected. One the other hand, dynamic tests requires one to get injected by a stimulant before conducting the actual blood test. Basal level tests are conducted in the case of the measurement of the FSH, TSH and prolactin. Whereas, low levels of growth hormone and ACTH can be detected by the dynamic blood test.

Another way to detect the cause of hypopituitarism is to undergo an x-ray of the neck, hand or the wrist. This is a way most common in cases related to hypopituitarism in children. However, if this method does not prove to be helpful, one may take recourse to the other imaging tests such as CT scan or an MRI.

CT scan or Computed Tomography and MRI are non-invasive diagnosis procedures that helps to detect any kind of abnormality just not associated with the pituitary glands but the body as a whole.

In addition to these, vision tests are conducted specially on children to conform if hypopituitarism tumor has caused any kind of impairment to the eyes. Moreover, in case of congenital hypopituitarism, one may be asked to undergo a genetic test in order to discern the exact cause of hypopituitarism. Urine specific gravity test is used for patients with hypopituitarism and diabetes. All of these diagnostic procedures facilitate the treatment of hypopituitarism.

The treatment for hypopituitarism depends on the underlying cause of the disease that has been detected through the various ways of diagnosis. Some of the treatment methods that are adopted include medicines, drugs, hormone replacement therapy, and radiation therapy. Surgeries and radiation therapies are usually performed in case of pituitary tumors.

The hormone replacement medications perform the similar functions that insulin is supposed to perform in case of diabetes. Such medications help the pituitary glands to artificially produce the hormones that it is deficient in. Some of the most commonly prescribed medications are corticosteroids such as prednisone and hydrocortisone, levothyroxine like synthroid and levoxyl, desmopression, sex hormones, namely, testosterone, progesterone and estrogen, and artificial growth hormones like the somatropin. Corticosteroids help in making up for ACTH deficiency, Levothyroxines help in replacing deficient TSH. Desmopression (DDAVP) or Vasopressin helps in the case of ADH deficiency and also to treat diabetes insipidus. The sex hormones are administered either through the skin to compensate for the deficiency of sex hormones in case of hypopituitarism. In fact, in case of severe hypopituitarism due to FSH and LH deficiency, one may have to be administered gonadotropins to stimulate the production of the sex hormones. The artificially produced growth hormones help in raising the height of children who had to suffer from a stunted growth due to hypopituitarism.

A surgery is usually conducted if one detects a tumor in the vicinity of the pituitary glands. Radiation therapies also serve the purpose of damaging the tumor through powerful radiations.

However, hypopituitarism is a disorder from which one cant escape till ones death. So, one need to go through routine tests in order to monitor the effects of the disorder and take precautions to thwart away the complications involved with hypopituitarism. So, undertaking the treatment for hypopituitarism under the supervision of an endicronologist is the best way to keep it on tabs.

References :

Wikipedia

http://www.emedicinehealth.com

http://www.mayoclinic.com

More:
Hypopituitarism – Symptoms, Causes, Diagnosis and Treatment – Prime Health Channel

Recommendation and review posted by Rebecca Evans

PPT Bone Marrow Transplantation Stem Cell Transplantation PowerPoint …

PowerShow.com is a leading presentation/slideshow sharing website. Whether your application is business, how-to, education, medicine, school, church, sales, marketing, online training or just for fun, PowerShow.com is a great resource. And, best of all, most of its cool features are free and easy to use.

You can use PowerShow.com to find and download example online PowerPoint ppt presentations on just about any topic you can imagine so you can learn how to improve your own slides andpresentations for free. Or use it to find and download high-quality how-to PowerPoint ppt presentations with illustrated or animated slides that will teach you how to do something new, also for free. Or use it to upload your own PowerPoint slides so you can share them with your teachers, class, students, bosses, employees, customers, potential investors or the world. Or use it to create really cool photo slideshows – with 2D and 3D transitions, animation, and your choice of music – that you can share with your Facebook friends or Google+ circles. That’s all free as well!

For a small fee you can get the industry’s best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it’s free. We’ll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides. All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download. (You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today – for FREE. There is truly something for everyone!

For a small fee you can get the industry’s best online privacy or publicly promote your presentations and slide shows with top rankings. But aside from that it’s free. We’ll even convert your presentations and slide shows into the universal Flash format with all their original multimedia glory, including animation, 2D and 3D transition effects, embedded music or other audio, or even video embedded in slides. All for free. Most of the presentations and slideshows on PowerShow.com are free to view, many are even free to download. (You can choose whether to allow people to download your original PowerPoint presentations and photo slideshows for a fee or free or not at all.) Check out PowerShow.com today – for FREE. There is truly something for everyone!

Read the original post:
PPT Bone Marrow Transplantation Stem Cell Transplantation PowerPoint …

Recommendation and review posted by Rebecca Evans

2018s 100% Real HCG Drops Real HCG Hormone Drops

last update January 15th 2018

List of Top HCG DropsSuppliers(with comparison chart)

The real hcg hormone drops can be purchased only from certain merchants and you should always double check whether they are authentic, original, legit and 100% pure. Everyone knows that there are loads of crappy company and sites selling fake hcg hormone drops. However, before you continue with your purchase, you might need to know the things you should look out for:

1. It should be pharmaceutical grade HCG. A pharmaceutical grade HCG is nothing but purest form of HCG. On the other hand, other types of HCG have hormones diluted with it reducing the effectiveness.

2. The HCG should be manufactured within US. Never Buy HCG supplied from Third world countries as they do not meet quality guidelines and might contain microbes.

3. Finally and most important of all, the process of manufacturing HCG must be approved by the FDA. If the merchant has this certificate then you can buy from them blindly. This will ensure that you are buying the real hcg drops and not fake ones.

Of all the real HCG suppliers HCG Complex is the best and meets all the above criteria. Moreover, they have great inventory that beats other suppliers.

Note: For a Limited Time HCG Complex is providing Buy One Get One Offer.

We have also listed a number of top HCG suppliers for your convenience. Browse each supplier and choose your product independently.

There are new and exiting offers for the year 2018. Therefore, ensure to check them out.

Obesity has become prevalent across the world. As a result, number of rapid weight loss programs and solutions have been developed. One of the effective solutions is HCG drops. They offer a painless, convenient and fast way to shed large pounds of weight in a short period. They contain HCG hormone that develops in considerable quantities during pregnancy. This hormone influences how the fats are utilized in the body. It is very effective for weight loss as it signals your hypothalamus to convert your fat deposits into energy. If you want to shed the extra pounds of weight, you should first learn how to find legit hcg drops, buy them and adhere to strict diet. This is important if you want to achieve the desired results. There are many reports published that reveal effectiveness of hcg drops for rapid weight loss.

HCG drops are simply drops you place on the tongue and it is comprised of HCG hormone. It may be found in shakes and some other products. The drops are scientifically proven to assist with weight loss. The oral administering is a good alternative to the injections. It is great, cheaper, way to losing weight on hcg diet. It attracts minimal costs and maximum dosage, no unnecessary trips to doctors and you are free to increase the dosage yourself to get desired results. The following are some of the important things you should consider on how to find legit hcg drops online:

A simple search online will yield a lot of products, companies and reviews. Any blog or review you are reading should cover quality of documentation. In addition, instructions about the product need to be included. The instructions ought to cover basics of diet; its implementation and it can be maintained throughout. It is important to note that the diet is very powerful and it will produce stunning weight loss results in short period. However, this is only possible if you adhere to diets guidelines. On the other hand, using inaccurate dieting instructions is likely to make your purchase useless. Therefore, a good review ought to list products or supporting information that comes with the purchase. All materials that are provided with your product need to describe the particular dosage instructions.

It is important to note that it is the ingredients that make hcg drops work. Therefore, they are very essential part of the information on how to find legit hcg drops. All the ingredients must be listed and their effect briefly explained. In this way you will be able to find out whether your hcg drops are going to work or not. Generally, the ingredients should follow guidelines set by FDA. Therefore, they should be manufactured in FDA approved facility. Homeopathic HCG is illegal in according to FDA. It is unfortunate that some manufacturing firms have incorporated illegal ingredients in their HCG drops products.

Simply, if all the ingredients of HCG drops are not listed, then never trust that product. In fact, failure to disclose the ingredients is a red flag and should be treated that way.

Most HCG drop reviews do not have price comparisons. You need price comparisons in order to find right products that meet your budget. Ideally, they should compare the size and price of every product. All these are important characteristics to give a consideration. This is because dosage plays an important role as it helps determine the duration your dosage will last.

You should note that not all HCG drops manufacturing companies are trustworthy and reputable. You should look for companies, which offer generous product guarantees and return policies. Some guarantees do have absurd rules in fine print, which are meant to discourage returns. A reputable company that offers legal hcg drops should offer solid guarantees and solid return policies. Such guarantees are important as they ensure that the company you are dealing with believes in its products and it is confident that you will be satisfied with them. Also, the company you are dealing with should have prominent contact customer support and phone number.

Any review you are reading about hcg drops should not promote a particular product. Ideally, it should offer honest and unbiased information about the products. This is the best way to ensure that all information you are getting is true.

You should note that hcg diet is available in different forms. However, diet drops is still the most popular form currently on the market. Therefore, before spending your hard-earned money, it makes sense to read legal hcg drops reviews. The information you get will be of help in finding best products from reputable companies.

Not all legal hcg drops are made equal. A number of homeopathic varieties have cropped up with the main intention of scamming customers. Homeopathic simply means the product contains no dosage at all or contains a small dosage. You will note that hcg diet is quite strict about need for the real dosages to make hcg effective. Generally, 500 calories and clinical dosages are needed daily to achieve the desired results.

Previously, it had become difficult for the customers to acquire real, legal, non-homeopathic hcg drops. But nowadays, it is possible to find genuine hcg drops that offer same results as injections.

One of the benefits of these drops is the instant results you get. In fact, the results are noted faster as compared to other diet products that take months. During the first days, you body begins feeling lighter. This will inspire and keep motivating you. Secondly, you will not have a constant hunger. This makes hcg drops perfect solution for people with busy lifestyles who want to lose weight. You will be able to continue working on important things without worrying about losing weight loss. This is possible as hcg hormone eliminates hunger feeling. While taking these drops, it is not a must to couple with exercises. The results are possible without exercises and there is no need to actively change your lifestyle. Lastly, it is a cost effective method of losing weight.

note: a recent research had indicates HCG diet is healthy as it is low in carbs.

HCG stands for Human Chorionic Gonadotropin. It is a hormone that is produced within the body of pregnant women.

HCG is generally extracted from the urine of pregnant women. After 11 days of conception the body of pregnant women starts to produce HCG hormone. The amount of HCG within a pregnant womans body doubles every 45 hours or 90 hours. This level increases until the woman is 11 weeks pregnant. After that period the amount of HCG decreases steadily.

For Introduction to HCG diet Click Here

Any HCG hormone that is purest in its form without any other addition of hormone is known as pure HCG and in fact it is also known as pharmaceutical HCG.

It is a form of HCG that is known as homeopathic and does not contain much of HCG. And for your kind Information we would also like to state that Homeopathic HCG drops are not as effective as the real ones. Moreover, the FDA considers homeopathic HCG drops as Illegal as they shouldnt be prescribed within the US.

Dr Simeons was the first to find that HCG when consumed with low calorie diet can lead to weight loss. It was in India while studying pregnant women that he came to the conclusion. He wrote all his findings and published them as a book which today is sold worldwide called as Pounds and Inches.

The HCG works in several ways. For first it increases metabolism of the body so that it can burn more fat. Secondly, while being on HCG diet with low calorie the hormone programs the brain to stick with low fatty foods and avert themselves of high fatty substances. Therefore, even if you have stopped with your HCG diet you will still be able to lose weight.

Thirdly, It keeps the leans muscle from losing as it targets only the fat cells.

No, it is not possible to lose weight only on HCG hormone alone. You will have to accompany the meal protocol that is mentioned in the book Pounds and Inches written by Dr. Simeons. However, there are many other modern authors that have polished the works of Dr Simeons and have presented the works as theirs.

Ideally the diet will supply calorie anywhere from 500 to 800 per day.

Yes, it is completely safe as long as you eat the right mentioned foods. The meal protocol was meant to provide your body with whole nutrition keeping the calorie in check. Therefore, it is very important that you follow the meal protocol especially meant for HCG diet. Also check our HCG Mythsand a True story of weight loss on Shape.com

For the first week you might a little hard to keep on the low calorie food and you might get frequent cravings. However, from the second week you will noticed that you have adapted to the low calorie diet and you will no longer have those cravings. Moreover, the HCG hormone in itself is a hunger suppressant. Therefore, you do not have to worry about cravings as you will soon manage them within a week or two.

No, you cannot exercise while on the HCG diet. This is because while on the diet your body will burn fat at its maximum potential. Further increasing the metabolism through exercise will shoot the metabolism even higher. This can lead to imbalance within the body or will cause you to eat more. Eventually, you will end up in failing the weight loss. Hence, exercise during the HCG diet is strictly prohibited.

You will lose more weight that with any other diet. If you are following the meal protocol exactly then it is possible to lose up to 3 lbs per day. However, on average people lose at least one lbs per day.

It depends on you as only you know how much weight you wish to lose. A single bottle of HCG drops (1 oz) helps in losing around 7 to 12 lbs. The time it takes is a month on average. Therefore, if you wish to lose 50 lbs then we strongly recommend following the diet for at least 4 months in a row. Yes, you need to follow in a row as only then you will be able to lose weight. Skipping the HCG diet every month will throw your system to into chaos as it will forced to choose between fatty food consumption and low calorie consumption. Therefore, before starting your HCG diet plan it accordingly and decide for how long you wish to be on the diet and how much weight is needed to be lost.

After Dr. Simeons published his findings in a book the whole weight loss industry was thrown over as his diet became the most popular diet to lose weight instantly. However, FDA has yet to find any claims as to whether the HCG really helps in losing weight. Therefore, The FDA hasnt given its approval for HCG as a weight loss supplement. click here to see what FDA thinks about HCG diet.

FDA certified manufacturing process and FDA approved are two different things. The first says the manufacturing of the product is approved by the FDA (only the process not product). The second says that the product is approved and the HCG has no approval from FDA as a weight loss product.

Yes, as long as you buy from a legit seller. Before purchasing from any seller ensure that they are selling real hcg drops and not homeopathic. Secondly, do not buy from any other country except US as HCG imported to US from other countries is considered illegal and might carry infection.

Well, we have some great recommendation on our blog over here. However, if you ask which is the best of best then you must have noticed our recommendation at the top for HCG triumph which is a great brand as all their HCG drops are pharmaceutical grades. Moreover, they even have various types of HCG bottles for people for different tastes like homeopathics and HCG without Hormone.

Yes, actually there are many. We ask you to take a look at our top HCG brands and start out from there. It contains some awesome sites and they are great for casual purchase like a single bottle or for bundle packages. We update the page regularly and if you think we have missed any brand that is worth mentioning over there then kindly let us know through the contact page or comments.

If you are buying from a local store then yes you will need a prescription. However, if you are purchasing from online store then you wont probably need a prescription.

Most online sellers do not test you or ask for any work. However, we strongly advice that you get checked up by your personal physician and get to know if you are fit for the HCG diet. Some people are not meant to be on the low calorie diet and hence we suggest that you do not jump on HCG diet. Rather treat with it cautiously. It has known to cause arrhythmia in some cases.

The side effects of HCG drops are abdomen pain, nausea and loose stools. Other side effects might be possible. Check with your doctor.

This is a most common question and however, depends on the manufacturer and the case in which it is bottled. If you have purchased from a retailer who has manufactured in a lab approved by FDA and the glass bottle is colored to filter out sunlight then it is possible that the hormone would stay good for at least a year.

Note: HCG has also received some negative reviews like this one and yet people still trust it because it really does help in weight loss.

Disclaimer: All the above mentioned information should not be considered as an alternative to medial advise. Readers are advised to make their independent decision before purchasing HCG Diet or Drops.

Read more:
2018s 100% Real HCG Drops Real HCG Hormone Drops

Recommendation and review posted by sam

Sarapy Clinic – Hormone Replacement Therapy & Medical …

Doctor Sarah Ghayouri M.D.

San Diego Doctor Sarah K. Ghayouriis an internal medicine doctor, or internist, with more than 20 years of experience in adult medical care. She focuses on optimizing your overall health, disease prevention, medical weight loss to reverse obesity, and using anti-aging treatments to slow the aging process such as endocrinologist hormone replacement therapy and cosmetic dermatology and laser skin care. Shes the ideal primary care doctor if you wish to feel and look younger.

Many patients prefer having a primary care physician who is an internal medicine doctor, or internist, rather than a general family doctor, because internal medicine doctors have special training to deal with the challenging conditions and illnesses that affect adults as they age. High blood pressure, cholesterol, hormone imbalances, testosterone deficiency, adult growth hormone deficiency, adrenal and thyroid disease, menopause, diabetes, obesity, allergies, arthritis, skin problems, and premature aging are the more common issues that an internal medicine physician like Doctor Sarah treats.

I wish to partner with you in keeping optimal health and minimizing the risk of age related diseases. My goal is to provide innovative, high quality and personalized care in a compassionate atmosphere where the priority is the patient. I encourage patient education and informed life style changes.

More:
Sarapy Clinic – Hormone Replacement Therapy & Medical …

Recommendation and review posted by simmons

Studies: Stem cells reverse heart damage – CNN

Story highlights

On a June day in 2009, a 39-year-old man named Ken Milles lay on an exam table at Cedars-Sinai Medical Center in Los Angeles. A month earlier, he’d suffered a massive heart attack that destroyed nearly a third of his heart.

“The most difficult part was the uncertainty,” he recalls. “Your heart is 30% damaged, and they tell you this could affect you the rest of your life.” He was about to receive an infusion of stem cells, grown from cells taken from his own heart a few weeks earlier. No one had ever tried this before.

About three weeks later, in Kentucky, a patient named Mike Jones underwent a similar procedure at the University of Louisville’s Jewish Hospital. Jones suffered from advanced heart failure, the result of a heart attack years earlier. Like Milles, he received an infusion of stem cells, grown from his own heart tissue.

“Once you reach this stage of heart disease, you don’t get better,” says Dr. Robert Bolli, who oversaw Jones’ procedure, explaining what doctors have always believed and taught. “You can go down slowly, or go down quickly, but you’re going to go down.”

Conventional wisdom took a hit Monday, as Bolli’s group and a team from Cedars-Sinai each reported that stem cell therapies were able to reverse heart damage, without dangerous side effects, at least in a small group of patients.

In Bolli’s study, published in The Lancet, 16 patients with severe heart failure received a purified batch of cardiac stem cells. Within a year, their heart function markedly improved. The heart’s pumping ability can be quantified through the “Left Ventricle Ejection Fraction,” a measure of how much blood the heart pumps with each contraction. A patient with an LVEF of less than 40% is considered to suffer severe heart failure. When the study began, Bolli’s patients had an average LVEF of 30.3%. Four months after receiving stem cells, it was 38.5%. Among seven patients who were followed for a full year, it improved to an astounding 42.5%. A control group of seven patients, given nothing but standard maintenance medications, showed no improvement at all.

“We were surprised by the magnitude of improvement,” says Bolli, who says traditional therapies, such as placing a stent to physically widen the patient’s artery, typically make a smaller difference. Prior to treatment, Mike Jones couldn’t walk to the restroom without stopping for breath, says Bolli. “Now he can drive a tractor on his farm, even play basketball with his grandchildren. His life was transformed.”

At Cedars-Sinai, 17 patients, including Milles, were given stem cells approximately six weeks after suffering a moderate to major heart attack. All had lost enough tissue to put them “at big risk” of future heart failure, according to Dr. Eduardo Marban, the director of the Cedars-Sinai Heart Institute, who developed the stem cell procedure used there.

The results were striking. Not only did scar tissue retreat — shrinking 40% in Ken Milles, and between 30% and 47% in other test subjects — but the patients actually generated new heart tissue. On average, the stem cell recipients grew the equivalent of 600 million new heart cells, according to Marban, who used MRI imaging to measure changes. By way of perspective, a major heart attack might kill off a billion cells.

“This is unprecedented, the first time anyone has grown living heart muscle,” says Marban. “No one else has demonstrated that. It’s very gratifying, especially when the conventional teaching has been that the damage is irreversible.”

Perhaps even more important, no treated patient in either study suffered a significant health setback.

The twin findings are a boost to the notion that the heart contains the seeds of its own rebirth. For years, doctors believed that heart cells, once destroyed, were gone forever. But in a series of experiments, researchers including Bolli’s collaborator, Dr. Piero Anversa, found that the heart contains a type of stem cell that can develop into either heart muscle or blood vessel components — in essence, whatever the heart requires at a particular point in time. The problem for patients like Mike Jones or Ken Milles is that there simply aren’t enough of these repair cells waiting around. The experimental treatments involve removing stem cells through a biopsy, and making millions of copies in a laboratory.

The Bolli/Anversa group and Marban’s team both used cardiac stem cells, but Bolli and Anversa “purified” the CSCs, so that more than 90% of the infusion was actual stem cells. Marban, on the other hand, used a mixture of stem cells and other types of cells extracted from the patient’s heart. “We’ve found that the mixture is more potent than any subtype we’ve been able to isolate,” he says. He says the additional cells may help by providing a supportive environment for the stem cells to multiply.

Other scientists, including Dr. Douglas Losordo, have produced improvements in cardiac patients using stem cells derived from bone marrow. “The body contains cells that seem to be pre-programmed for repair,” explains Losordo. “The consistent thing about all these approaches is that they’re leveraging what seems to be the body’s own repair mechanism.”

Losordo praised the Lancet paper, and recalls the skepticism that met Anversa’s initial claims, a decade ago, that there were stem cells in the adult heart. “Some scientists are always resistant to that type of novelty. You know the saying: First they ignore you, then they attack you and finally they imitate you.”

Denis Buxton, who oversees stem cell research at the National Heart, Lung and Blood Institute at the National Institutes of Health, calls the new studies “a paradigm shift, harnessing the heart’s own regenerative processes.” But he says he would like to see more head-to-head comparisons to determine which type of cells are most beneficial.

Questions also remain about timing. Patients who suffer large heart attacks are prone to future damage, in part because the weakened heart tries to compensate by dilating — swelling — and by changing shape. In a vicious circle, the changes make the heart a less efficient pump, which leads to more overcompensation, and so on, until the end result is heart failure. Marban’s study aimed to treat patients before they could develop heart failure in the first place.

In a third study released Monday, researchers treated patients with severe heart failure with stem cells derived from bone marrow. In a group of 60 patients, those receiving the treatment had fewer heart problems over the course of a year, as well as improved heart function.

A fourth study also used cells derived from bone marrow, but injected them into patients two to three weeks after a heart attack. Previous studies, with the cells given just days afterward, found a modest improvement in heart function. But Monday, the lead researcher, Dr. Dan Simon of UH Case Medical Center, reported that with the three-week delay, patients did not see the same benefit.

With other methods, there may be a larger window of opportunity. At least in initial studies, Losordo’s bone marrow treatments helped some patients with long-standing heart problems. Bolli’s Lancet paper suggests that CSCs, too, might help patients with advanced disease. “These patients had had heart failure for several years. They were a wreck!” says Bolli. “But we found their stem cells were still very competent.” By that, he means the cells were still capable of multiplying and of turning into useful muscle and blood vessel walls.

Marban has an open mind on the timing issue. In fact, one patient from his control group e-mailed after the study was complete, saying he felt terrible and pleading for an infusion of stem cells. At Marban’s request, the FDA granted special approval to treat him. “He had a very nice response. That was 14 months after his heart attack. Of course that’s just one person, and we need bigger studies,” says Marban.

For Ken Milles, the procedure itself wasn’t painful, but it was unsettling. The biopsy to harvest the stem cells felt “weird,” he recalls, as he felt the doctor poking around inside his heart. The infusion, a few weeks later, was harder. The procedure — basically the same as an angioplasty — involved stopping blood flow through the damaged artery for three minutes, while the stem cells were infused. “It felt exacfly like I was having a heart attack again,” Milles remembers.

Milles had spent the first weeks after his heart attack just lying in bed re-watching his “Sopranos” DVDs, but within a week of the stem cell infusion, he says, “I was reinvigorated.” Today he’s back at work full time, as an accounting manager at a construction company. He’s cut out fast food and shed 50 pounds. His wife and two teenage sons are thrilled.

Denis Buxton says the new papers could prove a milestone. “We don’t have anything else to actually regenerate the heart. These stem cell therapies have the possibility of actually reversing damage.”

Bolli says he’ll have to temper his enthusiasm until he can duplicate the results in larger studies, definitive enough to get stem cell therapy approved as a standard treatment. “If a phase 3 study confirmed this, it would be the biggest advance in cardiology in my lifetime. We would possibly be curing heart failure. It would be a revolution.”

Go here to read the rest:
Studies: Stem cells reverse heart damage – CNN

Recommendation and review posted by Bethany Smith

Late-onset hypogonadism – Wikipedia

Late-onset hypogonadism is a rare condition in older men, characterized by measurably low testosterone levels and clinical symptoms mostly of a sexual nature, including decreased desire for sex, fewer spontaneous erections, and erectile dysfunction.[1] It is the result of a gradual drop in testosterone; a steady decline in testosterone levels of about 1% per year can happen and is well documented in both men and women.[2][3]

Late-onset hypogonadism is an endocrine condition as well as a result of aging.[1]

The terms “male menopause” and “andropause” are used in the popular media and are misleading, as they imply a sudden change in hormone levels similar to what women experience in menopause.[4]

As of 2016, the International Society for the Study of the Aging Male defines late-onset hypogonadism as a series of symptoms in older adults related to testosterone deficiency that combines features of both primary and secondary hypogonadism; the European Male Aging Study (a prospective study of ~3000 men)[5] defined the condition by the presence of at least three sexual symptoms (e.g. reduced libido, reduced spontaneous erections, and erectile dysfunction) and total testosterone concentrations less than 11 nmol/l (3.2ng/ml) and free testosterone concentrations less than 220 pmol/l (64 pg/ml).[1]

Some men present with the symptoms, but with normal testosterone levels, and some men with low testosterone levels have no symptoms; the reasons for this are not known.[1][6]

Some men in their late 40s and early 50s develop depression, loss of libido, erectile dysfunction, and other physical and emotional symptoms such as irritability, loss of muscle mass and reduced ability to exercise, weight gain, lack of energy, difficulty sleeping, or poor concentration; many of these symptoms may arise from a midlife crisis or as the results of a long-term unhealthy lifestyle (smoking, excess drinking, overeating, lack of exercise) and may be best addressed by lifestyle changes, therapy, or antidepressants.[4]

If a person has symptoms of late-onset hypogonadism, testosterone is measured by taking blood in the morning on at least two days; while immunoassays are commonly used, mass spectrometry is more accurate and is becoming more widely available.[6] The meaning of the measurement is different depending on many factors that affect how testosterone is made and how it is carried in the blood. Increased concentrations of proteins that bind testosterone in blood occur if the person is older, has hyperthyroidism or liver disease, or is taking anticonvulsant drugs (which are increasingly used for depression and various neuropathies), and decreased concentrations of proteins that bind testosterone occur if the person is obese, has diabetes, has hypothyroidism, has liver disease, or is taking glucocorticoids or androgens, or progestins.[6] If levels are low, conditions that cause primary and secondary hypogonadism need to be ruled out.[6][7][8]

Due to difficulty and expense of testing, and the ambiguity of the results, screening is not recommended.[1][6] While some clinical instruments (standard surveys) had been developed as of 2016, their specificity was too low to be useful clinically.[1]

Testosterone levels can and are well-documented to decline with aging at about 1% per year in both men and women after a certain age; the causes are not well understood.[1][2][3][9][10]

The significance of a decrease in testosterone levels is debated and its treatment with replacement is controversial. The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established in older men with low testosterone levels.[11] Testosterone replacement therapy should only be started if low levels have been confirmed;[7] in the US, this confirmation is not done about 25% of the time, as of 2015.[8] Testosterone levels should also be monitored during therapy.[7]

Adverse effects of testosterone supplementation may include increased cardiovascular (CV) events (including strokes and heart attacks) and deaths, especially in men over 65 and men with pre-existing heart conditions.[1] The potential for CV risks from testosterone therapy led the FDA to issue a requirement in 2015 that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.[1][11] However, the data are mixed, so the European Medicines Agency, the American Association of Clinical Endocrinologists, and the American College of Endocrinology have stated that no consistent evidence shows that testosterone therapy either increases or decreases cardiovascular risk.[1]

Other significant adverse effects of testosterone supplementation include acceleration of pre-existing prostate cancer growth; increased hematocrit, which can require venipuncture to treat; and, exacerbation of sleep apnea.[1]

Adverse effects may also include minor side effects such as acne and oily skin, as well as significant hair loss and/or thinning of the hair, which may be prevented with 5-alpha reductase inhibitors ordinarily used for the treatment of benign prostatic hyperplasia, such as finasteride or dutasteride.[12]

Exogenous testosterone may also cause suppression of spermatogenesis, leading to, in some cases, infertility.[1]

As of 2015, the evidence is inconclusive as to whether testosterone replacement therapy can help with erectile dysfunction in men with late-onset hypogonadism.[8] It appears that testosterone replacement therapy may benefit men with symptoms of frailty who have late-onset hypogonadism.[8]

The epidemiology is not clear; 20% of men in their 60s and 30% of men in their 70s have low testosterone;[2][8] around 5% of men between 70 and 79 have both low testosterone and the symptoms, so are diagnosed with late-onset hypogonadism.[2] The National Health Service describes it as rare.[4]

The impact of low levels of testosterone has been previously reported. In 1944, Heller and Myers identified symptoms of what they labeled the “male climacteric” including loss of libido and potency, nervousness, depression, impaired memory, the inability to concentrate, fatigue, insomnia, hot flushes, and sweating. Heller and Myers found that their subjects had lower than normal levels of testosterone, and that symptoms decreased dramatically when patients were given replacement doses of testosterone.[13][14]

Popular interest in the concept of “andropause” was fueled by the 1998 book Male Menopause, written by Jed Diamond, a lay person.[15] According to Diamond’s view, andropause is a change of life in middle-aged men, which has hormonal, physical, psychological, interpersonal, social, sexual, and spiritual aspects. Diamond claims that this change occurs in all men, may occur as early as age 45 to 50 and more dramatically after the age of 70 in some men, and that women’s and men’s experiences are somewhat similar phenomena.[16][17] The language of “andropause” and its supposed parallels with menopause have been rejected by the medical community.[4][18]

Thomas Perls and David J. Handelsman, in a 2015 editorial in the Journal of the American Geriatrics Society, say that between the ill-defined nature of the diagnosis and the pressure and advertising from drug companies selling testosterone and human growth hormone, as well as dietary supplement companies selling all kinds of “boosters” for aging men, the condition is overdiagnosed and overtreated.[19] Perls and Handelsman note that in the US, “sales of testosterone increased from $324 million in 2002 to $2 billion in 2012, and the number of testosterone doses prescribed climbed from 100 million in 2007 to half a billion in 2012, not including the additional contributions from compounding pharmacies, Internet, and direct-to-patient clinic sales.”[19]

As of 2016, research was necessary to find better ways to measure testosterone and to be better able to understand the measurements in any given person, and to understand why some people with low testosterone do not present with symptoms and some with seemingly adequate levels do present with symptoms.[1] Research was also necessary to better understand the cardiovascular risks of testosterone replacement therapy in older men.[1]

A relationship between late-onset hypogonadism and risk of Alzheimer’s disease and some small clinical studies have been conducted to prevent Alzheimer’s disease in men with late-onset hypogonadism; as of 2009, results were inconclusive.[20]

Read more:
Late-onset hypogonadism – Wikipedia

Recommendation and review posted by sam

Printing Skin Cells on Burn Wounds – Wake Forest School of …

Skin is the body’s largest organ. Loss of the skin barrierresults in fluid and heat loss and the risk of infection. Thetraditional treatment for deep burns is to cover them with healthyskin harvested from another part of the body. But in cases ofextensive burns, there often isn’t enough healthy skin toharvest.

During phase I of AFIRM, WFIRM scientists designed, built andtested a printer designed to print skin cells onto burn wounds. The”ink” is actually different kinds of skin cells. A scanner is usedto determine wound size and depth. Different kinds of skin cellsare found at different depths. This data guides the printer as itapplies layers of the correct type of cells to cover the wound. Youonly need a patch of skin one-tenth the size of the burn to growenough skin cells for skin printing.

During Phase II of AFIRM, the WFIRM team will explore whether atype of stem cell found in amniotic fluid and placenta (afterbirth)is effective at healing wounds. The goal of the project is to bringthe technology to soldiers who need it within the next 5 years.

This video — with a mock hand and burn — demonstrates the process.

More here:
Printing Skin Cells on Burn Wounds – Wake Forest School of …

Recommendation and review posted by Rebecca Evans

Masculinizing hormone therapy – About – Mayo Clinic

Overview

Masculinizing hormone therapy is used to induce the physical changes in your body caused by male hormones during puberty (secondary sex characteristics) to promote the matching of your gender identity and body (gender congruence). If masculinizing hormone therapy is started before the changes of female puberty begins, female secondary sex characteristics, such as the development of breasts, can be avoided. Masculinizing hormone therapy is also referred to as cross-sex hormone therapy.

During masculinizing hormone therapy, you’ll be given the male hormone testosterone, which suppresses your menstrual cycles and decreases the production of estrogen from your ovaries. Changes caused by these medications can be temporary or permanent. Masculinizing hormone therapy can be done alone on in combination with masculinizing surgery.

Masculinizing hormone therapy isn’t for all transgender men, however. Masculinizing hormone therapy can affect your fertility and sexual function and cause other health problems. Your doctor can help you weigh the risks and benefits.

Mayo Clinic’s approach

Masculinizing hormone therapy is used to alter your hormone levels to match your gender identity.

Typically, people who seek masculinizing hormone therapy experience distress due to a difference between experienced or expressed gender and sex assigned at birth (gender dysphoria). To avoid excess risk, the goal is to maintain hormone levels in the normal range for the target gender.

Masculinizing hormone therapy can:

Although use of hormones is currently not approved by the Food and Drug Administration for treatment of gender dysphoria, research suggests that it can be safe and effective.

If used in an adolescent, hormone therapy typically begins at age 16. Ideally, treatment starts before the development of secondary sex characteristics so that teens can go through puberty as their identified gender. Hormone therapy is not typically used in children.

Masculinizing hormone therapy isn’t for everyone, however. Your doctor might discourage masculinizing hormone therapy if you:

Talk to your doctor about the changes in your body and any concerns you might have. Complications of masculinizing hormone therapy include:

Evidence suggests no increased risk of breast or cervical cancer.

The evidence that masculinizing hormone therapy increases the risk of ovarian and uterine cancer is inconclusive. Further research is needed.

Because masculinizing hormone therapy might reduce your fertility, you’ll need to make decisions about your fertility before starting treatment. The risk of permanent infertility increases with long-term use of hormones, especially when hormone therapy is initiated before puberty. Even after discontinuation of hormone therapy, ovarian and uterine function might not recover well enough to ensure that you can become pregnant.

If you want to have biological children, talk to your doctor about egg freezing (mature oocyte cryopreservation) or embryo freezing (embryo cryopreservation). Keep in mind that egg freezing has multiple steps ovulation induction, egg retrieval and freezing. If you want to freeze embryos, you’ll need to go through the additional step of having your eggs fertilized before they are frozen.

At the same time, while testosterone might limit your fertility, you’re still at risk of pregnancy if you have your uterus and ovaries. If you want to avoid becoming pregnant, use a barrier form of contraception or an intrauterine device.

Before starting masculinizing hormone therapy, your doctor will evaluate your health to rule out or address any medical conditions that might affect or contraindicate treatment. The evaluation might include:

You might also need a mental health evaluation by a provider with expertise in transgender health. The evaluation might assess:

Adolescents younger than age 18, accompanied by their custodial parents or guardians, also should see doctors and mental health providers with expertise in pediatric transgender health to discuss the risks of hormone therapy, as well as the effects and possible complications of gender transition.

Typically, you’ll begin masculinizing hormone therapy by taking testosterone. Testosterone is given either by injection or by a patch or gel applied to the skin. Oral testosterone or synthetic male sex hormone (androgen) medication shouldn’t be used because of potential adverse effects on your liver and lipids.

If you have persistent menstrual flow, your doctor might recommend taking progesterone to control it.

Masculinizing hormone therapy will begin producing changes in your body within weeks to months. Your timeline might look as follows:

After masculinizing hormone therapy, you’ll meet regularly with your doctor. He or she will:

After masculinizing hormone therapy, you will also need routine preventive care if you have not had certain surgical interventions, including:

When undergoing cervical cancer screening, be sure to share that you’re on testosterone therapy and make sure that the gender designation on your sample is disregarded. This kind of therapy can cause your cervical tissues to thin (cervical atrophy), which might mimic a condition in which abnormal cells are found on the surface of the cervix (cervical dysplasia).

Aug. 31, 2017

Read this article:
Masculinizing hormone therapy – About – Mayo Clinic

Recommendation and review posted by simmons

Hypopituitary: Hypopituitarism Causes, Symptoms & Treatment

What is Hypopituitaryism?

What Causes Hypopituitary?

A loss of function of the pituitary gland or hypothalamus results in low or absent hormones. Tumors can cause damage to the pituitary gland or hypothalamus and can therefore result in a loss of function. Damage to the pituitary gland can also be caused by radiation, surgery, infections (eg, meningitis), or various other conditions. In some cases, the cause is unknown.

What Are the Symptoms of Hypopituitary?

Some persons may have no symptoms or a gradual onset of symptoms. In other persons, the symptoms may be sudden and dramatic. The symptoms depend on the cause, rapidity of onset, and the hormone that is involved.

When to See a Doctor for Hypopituitary

Call the doctor or health care practitioner if any symptoms develop.

What Exams and Tests Diagnose Hypopituitary?

The doctor or health care practitioner may perform blood tests to determine which hormone level is low and to rule out other causes. The following tests may be performed:

An MRI or CT scan of the pituitary gland may be obtained to determine if a tumor is present.

In children, X-rays of the hands may be taken to determine if bones are growing normally.

What Is the Treatment for Hypopituitary?

Medical treatment consists of hormone replacement therapy and treatment of the underlying cause.

What Are the Medications Used to Treat Hypopituitary?

Drugs used to treat hypopituitarism replace the deficient hormone.

Is Surgery a Treatment Option for Hypopituitary?

Surgery may be performed depending on the type, size, and location of the tumor.

What Is the Follow-up for Hypopituitary?

Checkups with the doctor or health care practitioner are important. The doctor may need to adjust the dose of hormone replacement therapy.

What Is the Outlook for Hypopituitary?

If hormone replacement therapy is adequate, the prognosis is good. Complications are often related to the underlying disease.

Reviewed on 1/3/2018

Medically reviewed by John A. Daller, MD; American Board of Surgery with subspecialty certification in surgical critical care

REFERENCE:

“Clinical manifestations of hypopituitarism”

UpToDate.com

View original post here:
Hypopituitary: Hypopituitarism Causes, Symptoms & Treatment

Recommendation and review posted by Rebecca Evans

Finest Bioidentical Hormone Doctors | Hormone Specialist

Dr. Edmund Chein, M.D., author of Age Reversal, Bio-Identical Hormones and Telomerase, and Living to 120 and Beyond, has appeared on various radio and television shows such as:

Dr. Chein is a practicing physician in Palm Springs, California who is regarded by many as one of the founding fathers of longevity and anti-aging medicine.Today, he is known as one of the best bioidentical hormone doctors in the world.

His method of life extension was recently validated by achieving a biological age of 34 as measured by telomere length in the DNA at the calendar age of 61. His patients, who had followed him since 1994, achieved similar results.

He is offering a cash reward of $25,000 to the public for anyone who can show a difference of greater than 27 years between the persons biological age and calendar age.

Dr. Chein was trained at the University of Southern California Medical Center in Rehabilitation Medicine a specialty focused on restoring function to disabled patients. Now, Dr. Chein has narrowed his specialty to rehabilitating those suffering from the disease of aging. He considers aging to be a disease because aging, like any other disease, ultimately leads to death.

Dr. Chein learned the importance of hormone balancing during the years he replaced hormones in patients with damaged glands. In the early 1990s, he researched and discovered the miraculous benefits of the total hormone balancing treatment. His study with Dr. Cass Terry of the Medical College of Wisconsin showed that by replacing and balancing all the hormones in ones body, a person can improve and normalize the bodys systems and functions that deteriorate with age. This results in REVERSING ones biological age and eliminating age-related diseases such as elevated cholesterol, increased body fat, decreased energy and stamina, decreased immunity, decreased sexual functions, and wrinkling of skin. Together, they completed the largest study to date (of 1,000 human subjects) on supplementing growth hormone and other hormones to achieve reversal of biological age.

Dr. Chein was the first hormone doctor in the United States to discover and patent total hormone balancing therapy. He was also the first physician to supplement and optimize human growth hormone in adults in a private practice. In addition, Dr. Chein was the first physician to advocate supplementing thymus hormone and pregnenolone hormone.

Hormone specialist, Dr. Cheins work has been discussed in Newsweek, Health and Medicine for Physicians, Ability, Cosmopolitan, and Life Extension Magazine, to name a few.

In 1994, Dr. Chein founded the Palm Springs Life Extension Institute. The Institute is visited by hundreds of new patients from all over the world, and has the largest clinical client base in hormone replacement therapy. In 1996, he founded the American Academy of Longevity Medicine for bioidentical hormone physicians and scientists to pursue and exchange ideas regarding this new specialty.

In 2010, Dr. Chein founded the Autologous Stem Cell Therapy Institute. Autologous Stem Cell Therapy uses peripheral-blood-derived and adipose-tissue-derived autologous stem cells to regenerate damaged joints (such as torn meniscuses) and damaged organs such as the lungs (emphysema) and the brain (stroke).

He has been granted three patents by the United States Patent and Trademark Office for his discoveries in Total Hormone Replacement Therapy, Method of Hormone Treatment for Patients with Multiple Sclerosis, and Reversal of Coronary Blockages.

His publications include Clinical Experience Using a Low-Dose, High-Frequency Human Growth Hormone Treatment Regimen, Journal of Advancement in Medicine, December 1999, and Retrospective Analysis of the Effects of Low-Dose, High-Frequency Human Growth Hormone Treatment on Serum Lipids and Prostate-Specific Antigen, American Journal of Aging, May 2001.

In addition to his medical degree, Dr. Chein has a Bachelor of Arts degree in Psychology from the University of Southern California and a Juris Doctor degree from Southwestern University School of Law.

Dr. Chein, a renowned name among bioidentical hormone doctors, has written three books:Age Reversal (1997)Bio-Identical Hormones and Telomerase (2011)Living to 120 and Beyond (2013)

Dr. Chein is often asked to speak publicly. Recent Activity

The rest is here:
Finest Bioidentical Hormone Doctors | Hormone Specialist

Recommendation and review posted by Bethany Smith

Human Gene Therapy | Mary Ann Liebert, Inc. publishers

Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.

The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.

Human Gene Therapy was voted one of the most influential journals in Biology and Medicine over the last 100 years by the Biomedical & Life Sciences Division of the Special Libraries Association.

Human Gene Therapy, HGT Methods, and HGT Clinical Development are under the editorial leadership of Editor-in-Chief Terence R. Flotte, MD, University of Massachusetts Medical School; Deput Editors Europe Nathalie Cartier, MD, INSERM, andThierry VandenDriessche, PhD, Free University of Brussels (VUB); Deputy Editors U.S. Barry J. Byrne, MD, PhD,Powell Gene Therapy Center, University of Florida, College of Medicine and Mark A. Kay, MD, PhD, Stanford University School of Medicine; Human Gene Therapy Editor Guangping Gao, PhD, University of Massachusetts Medical School; Methods Editor Hildegard Bning, PhD, Hannover Medical School; Clinical Development Editor James M. Wilson, MD, PhD,University of Pennsylvania School of Medicine, Gene Therapy Program; and other leading investigators. View the entire editorial board.

Audience: Geneticists, medical geneticists, molecular biologists, virologists, experimental researchers, and experimental medicine specialists, among others.

Human Gene Therapy and HGT Methods provide Instant Online publication 72 hours after acceptance

Read the rest here:
Human Gene Therapy | Mary Ann Liebert, Inc. publishers

Recommendation and review posted by Rebecca Evans

Most Common Multiple Sclerosis Treatments

While there is no cure for multiple sclerosis yet, there are plenty of options available that can help treat symptoms, relapses, and the disease itself.

For those most part, those treatments can fall into one of three camps, each with different purposes. Those treatments are medications, corticosteroids, and disease modifying agents.

Let’s look at each a little more closely.

Medications

Medications may be used short term or long term, and for a variety of different reasons. In general, though, most doctors will prescribe medications as part of an effort to minimize the intensity of various symptoms, thereby improving daily function and quality of life. For instance, if MS is resulting in depression for you, a doctor might prescribe antidepressants.

Corticosteroids

Steroids are often prescribed for MS patients as a way of reducing the severity of a flare-up or relapse, and as such, are usually only prescribed over short periods of time, such as a few days up to a few weeks. Prednisone is one of the most commonly prescribed, though there are others as well.

Disease-Modifying Agents

So far the FDA has approved close to a dozen of these drugs, each of which is aimed at slowing the progression of multiple sclerosis. In general they are most often prescribed for patients with relapse remitting MS or secondary progressive MS.

Combination Prescriptions

For most MS patients, their treatment plan may include several different prescriptions from more than one of the categories above. Some treatments work better than others, and what works well for one MS patient may not work at all for another. As a result, it can take time to determine a medication plan that makes sense for your individual case.

Medications and steroids have long been part of MS treatment plans; disease-modifying agents are a little newer, but most MS patients are now on them.

Let’s look a little more closely.

DMA Questions

DMAs aren’t always easy to take, can have serious side effects (which means they require far more monitoring and testing than the more established other classes of MS drugs), and can be quite expensive. While some patients get assistance in paying for these drugs, either through drug trials, financial aid, or spectacular insurance, far more MS patients are forced to pay out of pocket.

And some studies are now suggesting that DMAs may not work, as interferons (the active part of DMAs) may not actually reduce MS progression. At this time, the research remains mixed.

So should you take a DMA. Or what medication should you take?

Medication Guidelines

First, keep in mind that you didn’t go to medical school. Your doctors, on the other hand, did. At the same time, it’s your body, and you have every right to be informed about what goes in it as part of your treatment plan.

Toward that end, I have a few tips:

  • Doctors aren’t always right. MS patients should listen to their doctor’s knowledge and expertise, certainly, but they should also have final say as to what goes in their body.
  • You rarely if ever will have to make a treatment decision immediately. Instead, you can take your time in doing your research most of the time, as a delay of a few weeks will rarely make a difference in the overall progression of your MS. Use common sense, but also do your research.
  • Toward that end, research thoroughly. Look at the drug trials information, the contraindications, and more. Carefully evaluate any study you look at.
  • And lastly, know the risks and benefits of any drug you do take. If you’re young especially, consider the long-term risks as well.

There still is no cure for MS, nor is there any magic that it’ll make it disappear. You can, however, manage your treatment and do your homework. You can also take care of yourself by taking your own action, making sure you get plenty of sleep, limit stress, exercise regularly, and eat well. Alternative therapies such as massage or yoga can also help.

No matter what your treatment, though, remember: You are in charge of your MS.

Multiple Sclerosis – An infographic by MS

 

Recommendation and review posted by Rebecca Evans

The Genetics of Depression Are Different for Men and Women

A wiring diagram of a human brain.Illustration: NIH

There may not be a single depression gene, but theres no question that our genetic makeup is an important factor in whether or not we get depressed. And our sex, it turns out, can be a factor in how those genes are expressed. In men and women diagnosed with major depressive disorder, the same genes show the opposite changes. In other words, the molecular underpinnings of depression in men and women may be different.

Thats according to a new postmortem brain study published on Wednesday in the journal Biological Psychiatry. The study could in the future help lead to more effective treatments for depression, if it turns out that men and women need different types of treatment.

To arrive at that conclusion, researchers at the University of Pittsburgh and Torontos Centre for Addiction and Mental Health analyzed gene expression levels in the postmortem brain tissue of 50 people who had major depressive disorder, of which 26 were men and 24 were women. (The data on their subjects was collected from several existing published data sets.) They also looked at the postmortem brain tissue of 50 men and women not diagnosed with depression. Gene expression levels are an indication of how much of a particular protein an individual gene is producing.

In the women with depression, they found that genes affecting synapse function were more expressed, meaning genes that play a role in how electrical activity is transferred between cells were producing more protein. In men, those same genes had decreased expression. In other genes with altered expression, a particular change occurred in only men or only women. Of 706 gene variants in men with depression and 882 variants in women with depression, 52 of the genes showed opposite changes in expression between the men and women. Only 21 genes changed in the same way in both sexes.

In the study, researchers focused on three regions of the brain that regulate mood: the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and basolateral amygdala. To bolster their findings, they also looked at a smaller dataset of men and women with major depressive disorder and found similar results. More research, including studies in living patients, will be necessary to further validate the results.

The study is significant for two reasons. For one, it is the first to suggest an opposing pathology for depression in men and women, which could eventually influence how depression is treated. Depression is complex disease that occurs in different regions of the brain, and increased understanding of the neurology and genetics of depression may lead to tailored depression treatments that are far more effective.

But the study also highlights the necessity of diversity in scientific study. Major depressive disorder affects women about twice as often as men. Women are also more likely to experience symptoms like weight gain along with depression, suggesting the biological mechanisms at work may be different. But many depression studies only look at men, and ones that look at both sexes do not necessarily differentiate between the two when reporting findings.

The science of genetics overwhelmingly suggests how similar we all really are. But it also underscores how much there is to gain from understanding and embracing how we are different.

Visit link:
The Genetics of Depression Are Different for Men and Women

Recommendation and review posted by simmons

Antibodies Part 1: CRISPR – Radiolab

Hidden inside some of the worlds smallest organisms is one of the most powerful tools scientists have ever stumbled across. It’s a defense system that has existed in bacteria for millions of years and it may some day let us change the course of human evolution.

Out drinking with a few biologists, Jad finds out about something called CRISPR. No, its not a robot or the latest dating app, its a method for genetic manipulation that is rewriting the way we change DNA. Scientists say theyll someday be able to use CRISPR to fight cancer and maybe even bring animals back from the dead. Or, pretty much do whatever you want. Jad and Robert delve into how CRISPR does what it does, and consider whether we should be worried about a future full of flying pigs, or thesimple fact that scientists have now used CRISPR to tweak the genes of human embryos.

As of February 24th, 2017 we’ve updated this story.

View original post here:
Antibodies Part 1: CRISPR – Radiolab

Recommendation and review posted by sam

Genetically modified skin grown from stem cells saved a 7 …

Scientists reported Wednesday that they genetically modified stem cells to grow skinthat they successfully grafted over nearly all of a child’s body a remarkable achievement thatcouldrevolutionize treatment of burn victims and people with skin diseases.

The research, published in the journalNature, involved a 7-year-old boy who suffers from a genetic disease known as junctional epidermolysis bullosa (JEB)that makes skin so fragile that minor friction such as rubbing causes the skin to blister or come apart.

By the time the boy arrived at Children’s Hospital of Ruhr-University in Germany in 2015, he wasgravely ill.Doctors noted that hehad complete epidural loss on about 60 percent of his body surface area, was in so much pain that he was on morphine, and fighting off a systemic staph infection. The doctors triedeverything they could think of: antibiotics, changing dressings, grafting skin donated by his father. But nothing worked, and they told his parents to prepare for the worst.

We had a lot of problems in the first days keeping this kid alive, Tobias Hirsch, one of the treating physicians, recalled in a conference call with reporters this week.

Gene therapy to treat a skin disease. (Nature News & Views)

Hirsch and his colleague Tobias Rothoeft began to scour the medical literature foranything that might help and came acrossanarticle describing a highlyexperimental procedure to genetically engineer skin cells.They contacted the author, Michele De Luca, of the Center for Regenerative Medicine at the University of Modena and Reggio Emilia in Italy. De Luca flew out right away.

Using a technique he had used only twice before and even then only on small parts of the body,De Luca harvested cells froma four-square-centimeter patch of skin on anunaffected part of the boy’s body and brought them into the lab. There, he genetically modified them so that they no longer contained the mutated form of a gene known to cause the disease and grew the cells into patches of genetically modified epidermis. They discovered, the researchers reported, that the human epidermis is sustained by a limited number of long-lived stem cells which are able to extensively self-renew.

In three surgeries, the child’s doctorstook that lab-grownskin and used it to cover nearly 80 percent ofthe boy’s body mostly on the limbs and on his back, which had suffered the most damage. The procedure was permitted under a compassionate useexception that allows researchers under certain dire circumstances to make a treatment available even though it is not approved by regulators for general use. Then, over the course of the nexteight months while thechild was in the intensive care unit, they watched and waited.

The boy’srecovery was stunning.

The regenerated epidermis firmly adhered to the underlying dermis, the researchers reported. Hair follicles grew out of some areas. And even bumps and bruises healed normally. Unlike traditional skin grafts that requireointmentonce or twice a day to remain functional, the boy’s new skin was fine with the normal amount of washing and moisturizing.

The epidermis looks basically normal. There is no big difference, De Luca said. He said he expects the skin to last basically the life of the patient.

In an analysis accompanying themain article in Nature, Mariacelest Aragona and Cedric Blanpain wrote that this therapy appears to be one of the few examples of trulyeffective stem-cell therapies. The study demonstrates the feasibility and safety of replacing the entire epidermis using combined stem-cell and gene therapy, and also provides important insights into how different types of cellswork together to help ourskin renew itself.

They said there are still many other lingering questions, including whether such procedures might work better in children than adults and whether there would be longer-term adverseconsequences, such as the development ofcancer.

There are also manychallenges to translating this research to treating wounds sustained in fires or other violent ways. In the skin disease that was treated in the boy, the epidermis is damaged but the layer beneath it, the dermis, is intact. The dermis is what the researchers called an ideal receiving bed for the lab-grown skin. But if deeper layers of the skin are burned or torn off, it’s possible that the artificial skin would not adhere as well.

No matter how you prepare, its a bad situation, De Luca said. For the time being, he says he’s continuingto study the procedure in two clinical trials that involve genetic diseases.

Meanwhile, Hirsch and Rothoeft report that the boy is continuing to do well and is not on any medication for the first time in many years. Doctors are carefully monitoring the child for any signs that there may be some cells that were not corrected and that the disease may reemerge, but right now that does not appear to be happening in the transplanted areas. However, the child does have some blisteringin about 2 to 3 percent of his body in non-grafted areas, and they are considering whether to replace that skin as well.

But for now, they are giving the boy time to be a boy, Rothoeft said: The kid is now back to school and plays soccer and spends other days with the children.

Read more:

New evidence of brain damage from West Nile virus years after bite, scientists say

She signed up to be a surrogate mother and unwittingly gave away her own child

Toddler hospitalized after his fathers arrest postponed kidney donation

Read the original here:
Genetically modified skin grown from stem cells saved a 7 …

Recommendation and review posted by Rebecca Evans

Genetic Testing | HealthyWomen

Share on:

Overview

What Is It?Genetic testing is used to confirm the presence of genetic diseases, as well as to measure your risk of developing a disease or of passing along a genetic disorder to a child.Today, there are hundreds of genetic tests, some of them for relatively common disorders, such as cystic fibrosis, and others for very rare diseases. A genetic test is fundamentally different from other kinds of diagnostic tests you might take. Indeed, a whole new field, genetic counseling, has grown up around the need to help incorporate family history and genetic testing into modern health care.

The purposes of genetic tests vary. Some genetic tests are used to confirm a preliminary diagnosis based on symptoms. But others measure your risk of developing a disease, even if you are healthy now (presymptomatic testing), or determine whether you and your partner are at risk of having a child with a genetic disorder (carrier screening).

As the name suggests, a genetic test looks at your genes, which consist of DNA (deoxyribonucleic acid). DNA is a chemical message to produce a protein, which has a specific function in the body. Proteins are essential to lifethey serve as building blocks for cells and tissues; they produce energy and act as messengers to make your body function. In addition to studying genes, genetic testing in a broader sense includes biochemical tests for the presence or absence of key proteins that signal aberrant gene function.

What do Genetic Tests Test For?

Chromosome AbnormalitiesLong strings of DNA condense together, packaging the DNA in the form of a chromosome. Most people have 23 pairs of chromosomes in the nucleus of each cell. One of each chromosome pair is inherited from the mother and the other is inherited from the father. Some tests look at chromosomes for abnormalities such as extra, missing or transposed chromosomal material. The chromosomes hold 20,000 to 25,000 genes, meaning that each chromosome is densely packed with genes. Extra or missing pieces of chromosomes can have a significant impact on the health of an individual. Also, sometimes pieces of chromosomes become switched, or transposed, so that a gene ends up in a location where it is permanently and inappropriately turned on or off. The genes on the chromosomes are responsible for making proteins, which direct our biological development and the activity of about 100 trillion cells in our bodies.

If something goes wrong with an essential protein, the consequences can be severe. For example, a protein called alpha-1 antitrypsin (AAT) clears the lungs of a caustic agent called neutrophil elastase. If the body has an alteration in the gene that makes the protein AAT, the AAT protein may not be made correctly or at all. Then neutrophil elastase will build up in the lungs, and the individual can develop emphysema and other complications.

MutationsMost genetic conditions are the result of mutations in the DNA, which alter the instructions for making a given protein. Some mutations are inherited on genes passed down from parents, while others occur during an individual’s lifetime. These mutations can lead to diseases ranging from those we think of as “genetic diseases,” such as cystic fibrosis or AAT deficiency, to those we think of as degenerative diseases, such as heart disease. In the case of diseases like heart disease, asthma or diabetes, a combination of factorssome genetic, some related to environmental or lifestylemay work together to trigger the disease.

It’s possible to have a mutation, even one for a severe disease, such as cystic fibrosis (CF) and never know it. Almost all humans have two copies of each chromosome and therefore have two copies of each gene, one inherited from the mother and the other from the father. If only one copy of a given gene has a mutation, you are a healthy carrier of the disorder. You “carry” the mutation but do not have the disease. If both copies of a gene have a mutation, you will have the disease. Such disorders are called autosomal recessive. If you are a carrier, the unaltered gene in the pair retains the function. Those who are diagnosed with a recessive disease have inherited two copies of a gene, both carrying a mutation. Therefore, since one of those copies came from the mother and the other from the father, both parents must have at least one copy of the gene with a mutation. If two carriers of the same disease-causing gene have children, each pregnancy has a 25 percent chance of having the disease (because of a 25 percent chance of inheriting both the mother’s and the father’s mutated copies of the gene), a 50 percent chance of being a carrier and a 25 percent chance of not inheriting the mutation at all.

Some disorders, such as Huntington disease, are autosomal dominant. If a person has one mutated gene, its effects will cause the disease, even if the matching gene is normal. Thus, each child of a parent with Huntington disease has a 50 percent chance of inheriting the gene causing the disease. Osteogenesis imperfecta, which causes brittle bones, is another example of a dominant disorder.

Chromosomes can be one of two types: sex chromosomes or autosomes. Sex chromosomes are X and Y. Most men have an X and a Y, and most women have two Xs. If each parent contributes an X chromosome, the child is a girl; if the father passes on his Y chromosome, the child is a boy. Because girls have two X chromosomes, and therefore two copies of every X-linked gene, they are less likely than boys to have symptoms from X-linked genetic diseases because boys don’t have a backup copy if an X-chromosome gene has a mutation. Examples of X-linked diseases include forms of hemophilia and fragile X syndrome (the most common inherited cause of mental impairment). Autosomes are the remaining 22 pairs of chromosomes. Therefore, most diseases are autosomal, or due to genes on the autosomes.

What Genetic Tests Can Find

Unclear Results Although genetic testing can be very useful in diagnosis, prevention and medical decision-making, genetic tests do not always provide clear answers. One such result is a “variant of uncertain significance.” All people have differences in their DNA, so if a new DNA alteration is detected, it may be uncertain as to whether it is associated with disease or is part of normal human variation. Another limitation is that not all genetic tests are created as equals. Since genetic testing can be very expensive, some tests only look for the most common disease-causing mutations. Instead of examining the entire gene, these tests only look for specific, common mutations. If you or your family has a mutation in a portion of the gene that wasn’t tested, you will have a negative result, even though you do have a disease-associated mutation. Since genetic tests are not perfect, it is always important that genetic test results be interpreted in combination with medical and family history by a genetic counselor or other genetics-credentialed professional.

The Cost of Genetic Testing

The cost of a genetic test varies dramatically, ranging from $100 to more than $3,200. The difference stems largely from the variation in labor intensity of different tests. Some tests look for a limited number of mutations (sometimes only one) known to cause a disease. This type of test may only look at one piece of DNA code, for one specific mutation. Other genetic tests require sequencing of the entire gene, where they examine each piece of DNA code comprising the gene, which can be thousands of pieces of code.

The explosion of genetic research now taking place is expected to bring prices down and dramatically increase the number of tests available. Tests are becoming available to predict your genetic risk of more common disease, such as heart disease and diabetes. This information will help you and your health care professional develop specific strategies for prevention. Preventive efforts can include changing your lifestyle or perhaps taking certain medications, which may be tailored to your specific genetic profile, and early screening to head off the worst complications should you develop the disease.

Facts to Know

A genetic test examines some aspect of a person’s genetic makeup, either directly through gene sequencing or indirectly through the measure of marker chemicals. Such a test usually aims to determine whether a person has, is at above-average risk of having or is a carrier of a disease-causing genetic mutation.

Because the nature of genetic testing is so complex, with implications for both the person being tested and his or her family, genetic counseling is desirable before taking any genetic test and essential for proper interpretation of test results.

Genetic counselors are committed to protecting your privacy. They will not contact other family members without your permission, though they may encourage you to share results that might affect your relatives.

A maternal serum screening test indicates whether a fetus is at above-average risk of being born with certain genetic disorders, most notably Down syndrome, trisomy 18 and open neural tube defects. The test is not diagnostic and a positive result is usually followed up with a diagnostic amniocentesis or chorionic villus sampling test. Out of 1,000 serum screening tests, 50 will suggest increased risk for open neural tube defects, but only one or two of the fetuses will have such a defect. Likewise 40 of 1,000 will test positive for increased risk of Down syndrome, but only one or two will fetuses will actually have the disease.

Some genetic disorders are recessive and X-linked, which means they are caused by a mutation in a gene that resides on the X chromosome. Females have two X chromosomes, but males have only one. If a mother has a disease-linked recessive gene mutation in one of her X chromosomes, she is a carrier of the disorder but will have no or minimal symptoms herself. If she has a son, he will have a 50 percent risk of inheriting the disorder; a daughter will have a 50 percent chance of being a carrier.

In addition to disorders that have surfaced in your family, you may want to consider carrier testing for genetic conditions that occur with greater frequency in your particular ethnic group. For example, Caucasians have a higher risk of cystic fibrosis, while those of African descent are at high risk of carrying a mutation that can cause sickle cell disease. A battery of tests exists for those of Ashkenazi (Eastern European) Jewish descent. Remember that the best time for carrier testing is before a pregnancy.

Children should not be screened for carrier status or for diseases that won’t trouble them until much later in life because the information is not relevant to their health care. Most geneticists and genetic counselors consider such testing unethical, since children are not in the position to make their own decisions as to whether or not they want the test (known as informed consent).

Within a family, two or more incidences of the same type of cancer or related cancers, or one at under age 50 may indicate a hereditary pattern. A genetic counselor can take a closer look at your family history to determine whether an inherited mutation appears to be responsible for the cancers in your family and can advise you as to whether testing is available.

The best-known cancer predisposition tests look for mutations in the BRCA1 and BRCA2 genes. Women with a BRCA mutation face a lifetime breast cancer risk of up to 88 percent, compared to about 13 percent in the general population, and lifetime ovarian cancer risk of up to 60 percent, compared to a population risk of about 1.4 percent.

If your family has a history of colorectal and related cancers, you may want to consider genetic counseling and risk assessment. Several colorectal cancer syndromes can be responsible for hereditary cancer risk. One such syndrome is Lynch Syndrome. The syndrome increases lifetime risk of colorectal cancer to 80 percent vs. a 5.4 percent population risk, but also boosts risk of endometrial cancer (to 60 percent), ovarian cancer (to 12 percent) and gastric cancer (to 13 percent). Those with Lynch Syndrome also face a higher risk of cancers of the kidney and ureter, brain and small bowel.

Questions to Ask

Review the following Questions to Ask about genetic testing so you’re prepared to discuss this important health issue with your health care professional.

General

Could my symptoms be caused by a genetic disorder? Is testing available?

Are you experienced in diagnosing and treating genetic disorders? If not can you make a referral?

How accurate is this test?

What are the risks of the test?

What information will come out of the test?

What will a positive or negative result tell me?

Is an uncertain result possible, and what would that mean?

What are my options for preventing or treating the disease if a mutation is found?

What other family members might be affected?

How do I broach the subject with them?

Could this disorder affect my children before they’re grown? Should they be tested?

What measures are in place to protect my privacy?

How often have you performed the test?

How experienced is the lab in performing this test?

How long will it take to get results back?

How could this test affect my health care?

Cancer Predisposition Testing

Does my family history suggest a pattern of inherited cancer?

Is there a test available to determine which family members are most at risk?

What are my chances of developing cancer if I test positive for a mutation?

How does my risk change with age?

What are my options if I test positive?

How frequently should I have screenings?

Are preventive measures such as surgery or pharmaceuticals available?

Carrier Screening And Preconception Counseling

Based on family history and ethnicity, which carrier tests should my partner and I consider?

What criteria are you using to determine which tests are right for us?

Would other centers recommend a different lineup of tests?

What are the options if a result suggests the possibility of having a child with a genetic disorder?

Prenatal Testing

How early or late in my pregnancy can this test be performed?

What are the risks of the test?

Is this a risk screening test or a diagnostic test?

What are the options if the test finds a problem?

Key Q&A

What is genetic testing?

A genetic test looks at a particular aspect of your genetic makeup, either directly through gene sequencing or indirectly through measure of marker chemicals. Testing may be done for a variety of purposes:

Diagnosis, to determine if a person has a genetic disorder (often performed in conjunction with analysis of symptoms)

Risk screening, to determine if a person is at increased risk of having a genetic disorder (with follow-up diagnostics usually called for if a test is positive)

Predisposition testing, to determine if a person is at higher risk of developing a particular disease later in life

Carrier testing, to determine if a person is a carrier of a disease-causing mutation and may be at risk of having a child with the disease

What does it mean if I’m a carrier for a disease?

Genes come in pairs, and a carrier of a recessive disease has one mutated, disease-causing gene and a corresponding normal gene. The normal gene compensates for the mutated copy and the person never develops the disease. If two carriers of the same disease-causing gene have a child, however, that child has a 25 percent chance of having the disease (because of a 25 percent chance of inheriting two mutated copies of the gene), a 50 percent chance of being a carrier and a 25 percent chance of not inheriting the mutation at all.

If my partner and I have carrier testing, will the results tell us whether or not our children will be affected?

In most cases, the test will provide only guidance as to your child’s risk for being born with a particular disorder or being a carrier of the disease. Because you contribute only one of the two copies you have of each gene, each child has a 50 percent chance of inheriting any particular mutation from you. Each child likewise has a 50 percent chance of inheriting any particular mutation your partner has. Thus, if you are both carriers of the same autosomal recessive disorder, each child has a 25 percent risk of being born with the disease, a 50 percent risk of being a carrier and a 25 percent chance of not inheriting a mutation at all. A genetic counselor can help you sort through the possible combinations in your situation and describe options for pregnancy planning and prenatal testing.

Why do I need a genetic counselor in addition to my doctor?

Most counselors and geneticists have extensive training and certification specifically related to genetics and genetic testing. Additionally, most physicians do not have time to spend an hour or more providing education, information collection, risk assessment and informed consent. Hence, many physicians make referrals when the issue arises. Genetic counselors usually work with geneticists (MDs or PhDs), particularly for more complex cases.

If I have a test, will I face job or insurance discrimination if the result is positive?

The Genetic Information Nondiscrimination Act of 2008 (GINA), a new federal law that protects Americans from being treated unfairly because of genetic diseases and mutations that may affect their health, was recently passed. This law specifically addresses protections in regard to health insurance and the workplace.

Why are some genetic tests so much more expensive than others?

Some tests look for mutations by actually sequencing the entire gene; these tests, which may cost more than $3,000, look for mutations by determining the exact order of the chemicals that comprise the gene and compare the order to that of a normal gene. Other, less expensive tests look for individual, commonly known disease-causing mutations. It’s like going to a grocery store. If you have never been to that store before and you are looking for a bottle of ketchup, you may go through every aisle. This is the equivalent of sequencing; looking through the entire gene for the mutation. If you have been there before and know where the ketchup is, you can go directly to the location in the store, which is like specific point mutation testingyou know exactly where the mutation is located.

A relative has canceram I at risk, too?

Your family history provides the best clues. Two or more relatives with early onset (before age 50 or 60, depending on the cancer) of related cancers or diagnosis of two or more related cancers in the same person suggest the possibility of a genetic link that could put you at risk. Related cancers are not always as obvious as you might think. For example, colon cancer and endometrial cancer can be caused by the same genetic mutation. Talk to a genetic counselor to get a better idea of your risk and find out whether predisposition testing is available.

Isn’t my health my own business? Why should my extended family be involved?

By their very nature, genetic diseases are a family affair, with mutations passed on to multiple generations. When a disease is clearly hereditary, testing positive for a disease-causing mutation or being diagnosed with the disease provides knowledge that other family members may be at risk. A genetic counselor can help you identify who may be at risk and should be notified and can help you handle the situation if there is estrangement between relatives.

What’s the difference between amniocentesis and chorionic villus sampling? How do I decide which is right for me?

Both procedures provide for diagnosis of specific chromosomal and genetic disorders in the fetus. Amniocentesis is more likely to be offered as a follow-up to an abnormal maternal serum screening test because results of the screen are obtained too late in pregnancy for CVS. However, CVS, which is done at 10 to 12 weeks gestation, or amniocentesis, are offered in the following situations:

You will be 35 or older at delivery.

A genetic disorder has surfaced on either side of the family.

You or your partner has had a previous child with a birth defect.

You and your partner are carriers of the same recessive disorder.

Both chorionic villus sampling (CVS) and amniocentesis can cause cramping, and a small number of women have miscarriages following the procedures (the risk is higher with CVS). It takes one to two weeks to get results from either test.

Amniocentesis is performed more frequently and should be the choice if you’re at risk having a child with neural tube defects. The procedure is performed at 15 to 18 weeks of pregnancy.

CVS can be performed earlier, at 10 to 12 weeks, and is popular with parents who would like to know results before the pregnancy starts to show. The procedure is not available everywhere, however.

If I get a negative result from a cancer predisposition test, can I still develop that particular kind cancer?

Yes. Your lifetime risk for breast cancer, even in the absence of a gene mutation, is about 12 percent. At least 90 percent of breast cancer is not due to a single, inherited cancer predisposition gene. A negative BRCA test result simply means you don’t face a higher-than-average risk for the disease due to a hereditary cancer syndrome.

Genetic Counseling

What Is Genetic Counseling?

Because the nature of genetic testing is so complex, with implications for both the person being tested and his or her family, genetic counseling is an important part of pre- and post-genetic testing. Unlike most medical appointments, a counseling session may be a family affair, with participation of all concerned relatives.

Read more:
Genetic Testing | HealthyWomen

Recommendation and review posted by sam

Cryonics – Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia

Cryonics (often mistakenly called “cryogenics”) is the practice of cryopreserving humans or animals that can no longer be sustained by contemporary medicine until resuscitation may be possible in the future. The largest current practitioners are two member-owned, non-profit organizations, the Alcor Life Extension Foundation in Scottsdale, Arizona, with 74 frozen patients and the Cryonics Institute in Clinton Township, Michigan with 75.

The process is not currently reversible. Cryonics can only be performed on humans after clinical death, and a legal determination that further medical care is not appropriate (legal death). The rationale for cryonics is that the process may be reversible in the future if performed soon enough, and that cryopreserved people may not really be dead by standards of future medicine (see information theoretic death).

Cryonics is viewed with skepticism by many scientists and doctors today. However, there is a high representation of scientists among cryonics supporters.[1] Scientific support for cryonics is based on projections of future technology, especially molecular nanotechnology and nanomedicine. Some scientists believe that future medicine[2] will enable molecular-level repair and regeneration of damaged tissues and organs decades or centuries in the future. Disease and aging are also assumed to be reversible.

The central premise of cryonics is that memory, personality, and identity are stored in the structure and chemistry of the brain. While this view is widely accepted in medicine, and brain activity is known to stop and later resume under certain conditions, it is not generally accepted that current methods preserve the brain well enough to permit revival in the future. Cryonics advocates point to studies showing that high concentrations of cryoprotectant circulated through the brain before cooling can largely prevent freezing injury, preserving the fine cell structures of the brain in which memory and identity presumably reside.[3]

To its detractors, the justification for the actual practice of cryonics is unclear, given present limitations of preservation technology. Currently cells, tissues, blood vessels, and some small animal organs can be reversibly cryopreserved. Some frogs can survive for a few months in a partially frozen state a few degrees below freezing, but this is not true cryopreservation. Cryonics advocates counter that demonstrably reversible preservation is not necessary to achieve the present-day goal of cryonics, which is preservation of basic brain information that encodes memory and personal identity. Preservation of this information is said to be sufficient to prevent information theoretic death until future repairs might be possible.

Probably the most famous cryopreserved patient is Ted Williams. The popular urban legend that Walt Disney was cryopreserved is false; he was cremated, and interred at Forest Lawn Memorial Park Cemetery. Robert A. Heinlein, who wrote enthusiastically of the concept, was cremated and his ashes distributed over the Pacific Ocean. Timothy Leary was a long-time cryonics advocate, and signed up with a major cryonics provider. He changed his mind, however, shortly before his death, and so was not cryopreserved.

Cryonics has traditionally been dismissed by mainstream cryobiology, of which it is arguably a part. The reason generally given for this dismissal is that the freezing process creates ice crystals, which some scientists have claimed damage cells and cellular structures so as to render any future repair impossible. Cryonicists have long argued, however, that the extent of this damage was greatly exaggerated by the critics, presuming that some reasonable attempt is made to perfuse the body with cryoprotectant chemicals (traditionally glycerol) that inhibit ice crystal formation.

According to cryonicists, the ice crystal damage objection became moot around the turn of the millennium, when cryobiologists Greg Fahy and Brian Wowk, of Twenty-First Century Medicine, developed major improvements in cryopreservation technology, including new cryoprotectants and new cryoprotectant mixtures, greatly improving the feasibility of vitrification, and resulting in the near-elimination of ice crystal formation in the brain. Vitrification preserves tissue in a glassy rather than frozen state. In glass, molecules do not rearrange themselves into grainy crystals as they are cooled, but instead become locked together while still randomly arranged as in a fluid, forming a “solid liquid” as the temperature falls below the glass transition temperature. Alcor Life Extension Foundation has since been researching the use of these cryoprotectants, along with a new, faster cooling method, to vitrify whole human brains (neurovitrification). The Cryonics Institute (CI), uses a vitrification solution developed by its in-house cryobiologist, Dr. Yuri Pichugin. CI has developed computer-controlled cooling boxes to ensure that cooling is rapid above Tg (glass transition temperature, solidification temperature) and slow below Tg (to reduce fracturing due to thermal stress).

Current solutions being used for vitrification are stable enough to avoid crystallization even when a vitrified brain is warmed up. This has recently allowed brains to be vitrified, warmed back up, and examined for ice damage using light and electron microscopy. No ice crystal damage was found.[4][5][6] However, if the complete circulation of the protectant in the brain is compromised, protective chemicals may not be able to reach all parts of the brain, and freezing may occur either during cooling or during rewarming. Cryonicists argue, however, that injury caused during cooling might, in the future, be repairable before the vitrified brain is warmed back up, and that damage during rewarming might be prevented by adding more cryoprotectant in the solid state, or by improving rewarming methods. But even given the best vitrification that current technology allows, rewarming still does not allow revival, even if crystallization is avoided, due to the toxic effects of the cryoprotectants. Again, however, cryonicists counter that future technology might be able to overcome this difficulty, and find a way to combat the toxicity after rewarming. If, for example, the toxicity is due to denatured proteins, those proteins could be repaired or replaced.

Some critics have speculated that because a cryonics patient has been declared legally dead, their organs must be dead, and thus unable to allow cryoprotectants to reach the majority of cells. Cryonicists respond that it has been empirically demonstrated that, so long as the cryopreservation process begins immediately after legal death is declared, the individual organs (and perhaps even the patient as a whole) remain biologically alive, and vitrification (particularly of the brain) is quite feasible. This same principle is what allows organs, such as hearts, to be transplanted, even though they come from dead donors.

Cryonics procedures cannot begin until legal pronouncement of death has occurred, and pronouncement is usually based on cessation of heartbeat (only very rarely on brain activity measurements). When the heart stops beating and blood flow ceases, ischemic damage begins. Deprived of oxygen and nutrient, cells, tissues and organs begin to deteriorate. If the heart is restarted after too many minutes have passed, the reintroduced oxygen can cause even more damage due to oxidative stress, a phenomenon known as reperfusion injury. Cryonicists try to minimize ischemic and reperfusion injury by beginning cardio-pulmonary support (much like CPR) and cooling as soon as possible after pronouncement of death. Anti-clotting agents like heparin and antioxidants may be administered. Suspended Animation, Inc is a Florida company that specializes in research into, and implementation of, optimal procedures for minimizing ischemic injury in cryonics rescue.

It is universally agreed by scientists and cryonics advocates that reversing human cryopreservation is not possible with any near-term technology.[7] Those who believe that revival may someday be possible generally look toward advanced bioengineering, molecular nanotechnology, or nanomedicine as key technologies. Revival requires repairing damage from lack of oxygen, cryoprotectant toxicity, thermal stress (fracturing), and freezing in tissues that do not successfully vitrify. In many cases extensive tissue regeneration will be necessary. Hypothetical revival scenarios generally envision repairs being performed by vast numbers of microscopic organisms or devices.[8][9][10][11] These devices would restore healthy cell structure and chemistry at the molecular level, ideally before warming. More radically, mind transfer has also been suggested as a possible revival approach if and when technology is ever developed to scan the memory contents of a preserved brain.

It has often been written that cryonics revival will be a last-in-first-out (LIFO) process. In this view, preservation methods will get progressively better until eventually they are demonstrably reversible, after which medicine will begin to reach back and revive people cryopreserved by more primitive methods. Revival of people cryopreserved by the current combination of neurovitrification and deep-cooling (technically not “freezing”, as cryoprotectant inhibits ice crystallization) may require centuries, if it is possible at all.

It has been claimed that if technologies for general molecular analysis and repair are ever developed, then theoretically any damaged body could be revived. Survival would then depend on whether preserved brain information was sufficient to permit restoration of all or part of the personal identity of the original person, with amnesia being the final dividing line between life and death.

Even if cryonics were scientifically certain to work, there are social obstacles that make success uncertain. The most obvious social obstacle is the prevailing belief that cryonics cannot work, and that cryonics subjects are dead. Although a legal determination of death by contemporary medicine is necessary to implement cryonics, this determination carries with it the implication of futility. By custom and law, dead bodies are objects, not persons with rights or protections. This removal of personhood is a cultural obstacle not faced by living people with even the poorest prognosis. For this reason, cryonics advocates call cryonics subjects patients and argue that morally they shouldnt be considered dead, even though that is their status under present law.

A related question is why future society would want to care for or revive dead people. Cryonicists note that a subset of society already cares for cryonics patients, and has done so for decades. It is assumed that should revival ever become possible, that same subset of society (the advocates who maintained patients long enough for revival to become possible) would pursue revival. They also believe that a future society with technology advanced enough to reverse cryopreservation would necessarily have views of life and death different from society today. They generally reject the idea that they are trying to “raise the dead”, viewing cryonics instead as a highly experimental medical procedure. It has also been suggested that future society may have an interest in revival of cryonics patients for intellectual or historical value, although cryonicists tend to argue that healing and recovering sick people is an ethical imperative regardless of value to society at large.

Neuropreservation is cryopreservation of the brain, usually within the head, with surgical removal and disposal of the rest of the body. Neuropreservation, sometimes called neuro, is one of two distinct preservation options in cryonics, the other being “whole body” preservation.

Neuropreservation is motivated by the fact that the brain is the primary repository of memory and personal identity. (For instance, spinal cord injury victims, organ transplant patients, and amputees appear to retain their personal identity.) It is also motivated by the belief that reversing any type of cryonic preservation is so difficult and complex that any future technology capable of it must by its nature be capable of generalized tissue regeneration, including regrowth of a new body around a repaired brain. Some suggested revival scenarios for whole body patients even involve discarding the original body and regenerating a new one because tissues are so badly damaged by the preservation process. These considerations, along with lower costs, easier transportation in emergencies, and the specific focus on brain preservation quality, have motivated many cryonicists to choose neuropreservation.

The advantages and disadvantages of neuropreservation are often debated among cryonics advocates. Critics of neuropreservation note that the body is a record of much life experience, including learned motor skills. While few cryonicists doubt that a revived neuro patient would be the same person, there are wider questions about how a regenerated body might feel different from the original.[12] Partly for these reasons (as well as for better public relations), the Cryonics Institute preserves only whole bodies. Some proponents of neuropreservation agree with these concerns, but still feel that lower costs and better brain preservation justify preserving only the brain. About three-quarters of the patients stored at Alcor are “neuros”.

Although media sometimes report that cloning is expected to regrow new bodies, cryonics experts generally dismiss cloning as a primitive technology that will be long obsolete before any kind of revival becomes possible. Similarly, although neurosurgeon Robert J. White proved[13] that body transplants were possible in primates, transplantation is dismissed in favor of tissue regeneration as the preferred method for treating neuropreservation and other trauma in future medicine.

Costs of cryonics vary greatly, ranging from $28,000 for whole body cryopreservation by the Cryonics Institute, to $80,000 for neuropreservation by Alcor, or $150,000 for whole body cryopreservation by Alcor or the American Cryonics Society. To some extent these cost differences reflect differences in how fees are quoted. The Cryonics Institute fee doesnt include standby (a team that begins procedures at bedside), transportation costs, or funeral director expenses outside of Michigan, which must be purchased as extras. CI Members wanting Standby and Transport from cryonics professionals can contract for additional payment to the Florida-based company Suspended Animation, Inc.

While cryonics is sometimes suspected of being greatly profitable, the high expenses of doing cryonics are well documented.[14] The expenses are comparable to major transplant surgeries. The largest single expense, especially for whole body cases, is the money that must be set aside to generate interest to pay for maintenance in perpetuity.

The most common method of paying for cryonics is life insurance, which spreads the cost over many years. Cryonics advocates are quick to point out that such insurance is especially affordable for young people. It has been claimed that cryonics is affordable for the vast majority of people in the industrialized world who really want it and plan for it.

Cryonics is based on a view of dying as a process that can be stopped in the minutes, and perhaps hours, following clinical death. If death is not an event that happens suddenly when the heart stops, this raises philosophical questions about what exactly death is. In 2005 an ethics debate in the medical journal, Critical Care, noted few if any patients pronounced dead by todays physicians are in fact truly dead by any scientifically rigorous criteria.[15] Cryonics proponent Thomas Donaldson has argued that death based on cardiac arrest or resuscitation failure is a purely social construction used to justify terminating care of dying patients.[16] In this view, legal death and its aftermath are a form of euthanasia in which sick people are abandoned. Philosopher Max More suggested a distinction between death associated with circumstances and intention versus death that is absolutely irreversible.[17] Absolutely irreversible death has also been called information-theoretic death. Bioethicist James Hughes has written that increasing rights will accrue to cryonics patients as prospects for revival become clearer, noting that recovery of legally dead persons has precedent in the discovery of missing persons.[18]

Ethical and theological opinions of cryonics tend to pivot on the issue of whether cryonics is regarded as interment or medicine. If cryonics is interment, then religious beliefs about death and afterlife may come into consideration. Resuscitation may be deemed impossible by those with religious beliefs because the soul is gone, and according to most religions only God can resurrect the dead. Expensive interment is seen as a waste of resources. If cryonics is regarded as medicine, with legal death as a mere enabling mechanism, then cryonics is a long-term coma with uncertain prognosis. It is continuing to care for sick people when others have given up, and a legitimate use of resources to sustain human life. Cryonics advocates complain that theological dismissal of cryonics because it is interment is a circular argument because calling cryonics “interment” presumes that cryonics cannot work.[19] They believe future technical advances will validate their view that cryonics patients are recoverable, and therefore never really dead.

Alcor has published a vigorous Christian defense of cryonics,[20] including excerpts of a sermon by Lutheran Reverend Kay Glaesner. Noted Christian apologist John Warwick Montgomery has defended cryonics.[21] In 1969, a Roman Catholic priest consecrated the cryonics capsule of Ann DeBlasio, one of the first cryonics patients. In 2002, a Muslim cleric indicated in a media interview that cryonics would be compatible with Islam if it were medicine.

Benjamin Franklin suggested in a famous 1773 letter[22] that it might be possible to preserve human life in a suspended state for centuries. However, the modern era of cryonics began in 1962 when Michigan college physics teacher Robert Ettinger proposed in a privately published book, The Prospect of Immortality,[23] that freezing people may be a way to reach future medical technology. Even though freezing a person is apparently fatal, Ettinger argued that what appears to be fatal today may be reversible in the future. He applied the same argument to the process of dying itself, saying that the early stages of clinical death may be reversible in the future. Combining these two ideas, he suggested that freezing recently deceased people may be a way to save lives.

Slightly before Ettingers book was complete, Evan Cooper[24] (writing as Nathan Duhring) privately published a book called Immortality: Physically, Scientifically, Now that independently suggested the same idea. Cooper founded the Life Extension Society in 1965 to promote freezing people. Ettinger came to be credited as the originator of cryonics, perhaps because his book was republished by Doubleday in 1964 on recommendation of Isaac Asimov and Fred Pohl, and received more publicity. Ettinger also stayed with the movement longer. Nevertheless, cryonics historian R. Michael Perry has written Evan Cooper deserves the principal credit for forming an organized cryonics movement.[25]

The actual word cryonics was invented by Karl Werner in 1965 in conjunction with the founding of the Cryonics Society of New York (CSNY) by Curtis Henderson and Saul Kent that same year. This was followed by the founding of the Cryonics Society of Michigan (CSM) and Cryonics Society of California (CSC) in 1966, and Bay Area Cryonics Society (BACS) in 1969 (renamed the American Cryonics Society, or ACS, in 1985). CSM eventually became the Immortalist Society, a non-profit affiliate of the Cryonics Institute (CI), a cryonics service organization founded by Robert Ettinger in 1976, now the second-largest cryonics organization.

Although there was at least one earlier aborted case, it is generally accepted that the first person frozen with intent of future resuscitation was Dr. James Bedford, a 73-year-old psychology professor frozen under crude conditions by CSC on January 12, 1967. The case made the cover of a limited print run of Life Magazine before the presses were stopped to report the death of three astronauts in the Apollo 1 fire instead.

Cryonics suffered a major setback in 1979 when it was discovered that nine bodies stored by CSC in a cemetery in Chatsworth, California, thawed due to depletion of funds.[26] Some of the bodies had apparently thawed years earlier without notification. The head of CSC was sued, and negative publicity slowed cryonics growth for years afterward. Of seventeen documented cryonics cases between 1967 and 1973, only James Bedford remains cryopreserved today. Strict financial controls and requirements adopted in response to the Chatsworth scandal have resulted in the successful maintenance of almost all cryonics cases since that era.

The largest cryonics organization today was established by Fred and Linda Chamberlain in 1972 as the Alcor Society for Solid State Hypothermia (ALCOR). In 1977 the name was changed to the Alcor Life Extension Foundation. In 1982, the Institute for Advanced Biological Studies (IABS) founded by Mike Darwin and Steve Bridge in Indiana merged with Alcor. By combining Darwins technical and communications skills with those of medical scientist Jerry Leaf, this merger is generally regarded as a key event that allowed Alcor to attract a critical mass of knowledgeable people, eventually moving Alcor to a leading position in the field.

During the 1980s Darwin worked with UCLA cardiothoracic surgery researcher Jerry Leaf at Alcor to develop a medical model for cryonics procedures. Prior to Leaf and Darwin, cryonics preparation was little more than a mortuary procedure in which cryoprotectant chemicals were substituted for embalming fluid. Leaf and Darwin showed that CPR and medications applied immediately after cardiac arrest, followed by cardiopulmonary bypass and thoracic surgery for access to major blood vessels, could greatly reduce ischemic injury (injury caused by stopped blood flow) in cryonics patients. They pioneered the cryonics procedure now known as a standby, in which a stabilization team stands by to institute life support procedures at the bedside of a cryonics patient as soon as possible after the heart stops. While supporting blood circulation and oxygenation of cryonics patients was first proposed by Ettinger, and the Cryonics Society of Michigan had a Westinghouse Iron Heart for this purpose as early as the late 1960s, the first consistent documented use of such procedures was in the 1980s.

Cryonics received new support in the 1980s when MIT engineer Eric Drexler started publishing papers and books foreseeing the new field of molecular nanotechnology. His 1986 book, Engines of Creation, included an entire chapter on cryonics applications.[27] Cryonics advocates saw the nascent field of nanotechnology as vindication of their long held view that molecular repair of injured tissue was theoretically possible.[28]

Nanotechnology has also been the cause of controversy within the cryonics field, with some cryonics advocates arguing that sophisticated preservation methods arent necessary because nanotechnology is necessary and sufficient for cryonics to work. Critics countered that believing nanotechnology is necessary and sufficient without regard to preservation quality is more religion than science. The simultaneous advent of Leaf and Darwins medical model of cryonics, and the nanotechnology repair paradigm, polarized cryonics into two schools of thought that persist to the present day.[29] One school tends to believe that simple inexpensive procedures administered by morticians are sufficient, while the other advocates monitoring and maintaining viability by contemporary medical methods as far as possible into the procedure, with reversible suspended animation as an ultimate goal.

In the late 1980s a nexus of favorable circumstances, including technical progress, support from nanotechnology experts, and effective communications, led to a period of rapid growth, especially of Alcor. Alcors membership expanded ten-fold within a decade, with a 30% annual growth rate between 1988 and 1992.

Alcor was disrupted by political turmoil in 1993 when a group of activists left to start the CryoCare Foundation,[30] and associated for-profit companies CryoSpan, Inc. (headed by Paul Wakfer) and BioPreservation, Inc.[31] (headed by Mike Darwin). Darwin and collaborators made many technical advances during this time period, including a landmark study documenting high quality brain preservation by freezing with high concentrations of glycerol.[32] CryoCare ceased operations in 1999 when they were unable to renew their service contract with BioPreservation. CryoCares two patients stored at CryoSpan were transferred to Alcor. Several ACS patients stored at CryoSpan were transferred to CI.

There have been numerous, often transient, for-profit companies involved in cryonics. For-profit companies were often paired or affiliated with non-profit groups they served. Some of these companies, with non-profits they served in parentheses, were Cryonic Interment, Inc. (CSC), Cryo-Span Corporation (CSNY), Cryo-Care Equipment Corporation (CSC and CSNY), Manrise Corporation (Alcor), CryoVita, Inc. (Alcor), BioTransport, Inc. (Alcor), Trans Time, Inc.[33] (BACS), Soma, Inc. (IABS), CryoSpan, Inc. (CryoCare and ACS), BioPreservation, Inc. (CryoCare and ACS), Kryos, Inc. (ACS), Suspended Animation, Inc.[34] (CI, ACS, and Alcor). Only Trans Time and Suspended Animation still exist. Apparently none of the companies were ever profitable. The cryonics field seems to have largely consolidated around three non-profit groups, Alcor, Cryonics Institute (CI), and the American Cryonics Society (ACS) all deriving significant income from bequests and donations.

As research in the 1990s revealed in greater detail the damaging effects of freezing, there was a trend to use higher concentrations of glycerol cryoprotectant to prevent freezing injury. In 2001 Alcor began using vitrification (a technology borrowed from mainstream organ preservation research) in an attempt to completely prevent ice formation during cold preservation. Because vitrification technology could then only be applied to the head, heads and bodies were sometimes separated to optimize preservation of the brain, causing much public confusion.

In 2005 Alcor began applying vitrification (or attempted vitrification[35]) treatment to the whole body simultaneously without removal of the head. In the same year, the Cryonics Institute began using a new procedure in which the head was vitrified while still attached to the body, which was frozen without any cryoprotectant.[36] A year later the Cryonics Institute began perfusing the body with ethylene glycol.[37]

When the baseball star Ted Williams was cryopreserved by Alcor in 2002 a family dispute arose as to whether Ted had really wanted to be cryopreserved. Following a July, 2003 Sports Illustrated article claiming that Alcor had mishandled Ted Williams,[38][39][40] Alcor had to fight for its existence in the Arizona legislature.[41] At minimum, Alcor could have been denied use of the Uniform Anatomical Gift Act, which could have impaired its ability to gain rapid access to cryonics patients. Despite not being responsible for Ted Williams, the media blitz resulted in the Cryonics Institute (CI) being placed under a “Cease and Desist” order by the State of Michigan for six months. Finally the Michigan government decided to regulate CI as a cemetery.

Alcor currently maintains about 75 cryonics patients in Scottsdale, Arizona. The Cryonics Institute also maintains about 75 human patients (along with about 40 pets) at its Clinton Township, Michigan facility. There are support groups in Europe, Canada, United Kingdom, and Australia. There is also a small cryonics facility reported to exist in Russia storing two neuropatients called KrioRus, and plans for a facility in Australia.

Procedures similar to cryonics have been featured in innumerable science fiction stories to aid space travel, or as means to transport a character from the past into the future. In addition to accomplishing whatever the character’s primary task is in the future, he or she must cope with the strangeness of a new world, which may contain only traces of their previous surroundings. This prospect of alienation is often cited as a major reason for the unpopularity of cryonics.

Relatively few stories have been published concerning the primary objective and definition of cryonics, which is medical time travel. Novels with this theme include the national best-seller The First Immortal by James Halperin, The Age of the Pussyfoot by Fred Pohl, Tomorrow and Tomorrow by Charles Sheffield, Chiller by Sterling Blake (aka Gregory Benford), Ralphs Journey by David Pizer, and Formerly Brandewyne by Jude Liebermann. The novel Fiasco by Stanisaw Lem raised the question of whether a person cryopreserved for centuries and then revived with amnesia is still the same person. A 1931 short story by Neil R. Jones called The Jameson Satellite has been credited with giving Robert Ettinger the seed of the idea of cryonics when he was a teenager.

Movies featuring cryonics for medical purposes include the Woody Allen comedy, Sleeper, and the films Late for Dinner and Abre los Ojos (remade as Vanilla Sky). The Austin Powers series of films use cryonics as a humorous effect and as one of the main basis in the storyline . One of the most famous movies regarding a cryonics-like process was 1992’s Forever Young, starring Mel Gibson. Although not about cryonics per se, the Ron Howard film Cocoon has been hailed by cryonics advocates as expressing the values motivating cryonics better than any other film.[42]

On television, producer David E. Kelley wrote well-researched and essentially accurate portrayals of cryonics for the T.V. shows L.A. Law (1990 episode[43]), Picket Fences (1994 episode[44]), and Boston Legal (2005 episode[45]). In each case, there was a dying plaintiff petitioning a court for the right to elective cryopreservation. The episode “The Neutral Zone” from the first season of Star Trek: The Next Generation also featured three cryopreserved people in an ancient spacecraft. They had legally died in the 20th century, but were viable and recoverable by 24th century technology. The 1987 episode of Miami Vice “The Big Thaw” featured a cryopreserved reggae singer whose wife wants his revival stopped so she can inherit his estate. The episode “When We Dead Awaken” of seaQuest DSV features Lieutenant James Brody’s mother having been placed in cryonic stasis following a terminal infection. Cryonics was also satirized by the comedy cartoon series Futurama, in which the character, Philip J. Fry, is accidentally cryopreserved at the turn of the millennium on December 31st 1999, and revived on December 31st 2999, a thousand years later.

Comic books also feature characters that have been affected by cryonics. Jean Grey, a superheroine from Uncanny X-Men, had been revived after her body was cryonically stored due to a fatal attack from Sentinels. The future society depicted in Warren Ellis’s series Transmetropolitan includes ‘revivals,’ that is, individuals who had been cryonically preserved in centuries past and then revived. Many revivals are psychologically unprepared for a society so radically different from the one they had known and are consequently unable to care for themselves.

Songs about cryonics include “Crionics” by Slayer (from the album Show No Mercy) and “Gelid Remains” by Demolition Hammer (from the album “Tortured Existence”).

Cryonicists have been able to form cryonics societies in highly populated areas (see history section), have regular meetings, publish magazines and hold conferences. Saul Kent and Evan Cooper as well as Fred and Linda Chamberlain were active in organizing cryonics conferences in the early years of cryonics. The magazines of the cryonics organizations have also helped keep members of the cryonics community informed about events and common problems. On July 24, 1988 a Ph.D. in computer science named Kevin Brown started an electronic mailing list called CryoNet[46] that became a powerful tool of communication for the cryonics community. Numerous other mailing lists and web forums for discussing cryonics and the affairs of particular organizations have since appeared, but CryoNet remains a central point of contact for cryonicists.

Cryonicists have also had a common jargon, including their use of the words patient, death, deanimation and suspension. The phrase cryonic suspension to describe cryopreservation is falling into disfavor, partly because cryopreservation is not really suspended animation and human bodies or heads are not buoyant enough in liquid nitrogen to be suspended. As in other subcultures, some members of the community can have strong feelings about the use of “politically correct” cryonics language.

View post:
Cryonics – Wikipedia, the free encyclopedia

Recommendation and review posted by Bethany Smith

Prenatal Genetic Screening Tests – ACOG

Pregnancy

Prenatal genetic testing gives parents-to-be information about whether their fetus has certain genetic disorders.

Genetic disorders are caused by changes in a persons genes or chromosomes. Aneuploidy is a condition in which there are missing or extra chromosomes. In a trisomy, there is an extra chromosome. In a monosomy, a chromosome is missing. Inherited disorders are caused by changes in genes called mutations. Inherited disorders include sickle cell disease,cystic fibrosis, TaySachs disease, and many others. In most cases, both parents must carry the same gene to have an affected child.

There are two general types of prenatal tests for genetic disorders:

Both screening and diagnostic testing are offered to all pregnant women.

Screening tests can tell you your risk of having a baby with certain disorders. They include carrier screening and prenatal genetic screening tests:

First-trimester screening includes a test of the pregnant womans blood and an ultrasound exam. Both tests usually are performed together and are done between 10 weeks and 13 weeks of pregnancy:

Second-trimester screening includes the following tests:

The results from first- and second-trimester tests can be combined in various ways. Combined test results are more accurate than a single test result. If you choose combined screening, keep in mind that final results often are not available until the second trimester.

Cell-free DNA is the small amount of DNA that is released from the placenta into a pregnant womans bloodstream. The cell-free DNA in a sample of a womans blood can be screened for Down syndrome, trisomy 13, trisomy 18, and problems with the number of sex chromosomes. This test can be done starting at 10 weeks of pregnancy. It takes about 1 week to get the results. A positive cell-free DNA test result should be followed by a diagnostic test with amniocentesis or CVS.

The cell-free DNA screening test works best for women who already have an increased risk of having a baby with a chromosome disorder. For a woman at low risk of having a baby with a chromosome disorder, conventional screening remains the most appropriate choice. Cell-free DNA testing is not recommended for a woman carrying more than one fetus.

Results of blood screening tests for aneuploidy are reported as the level of risk that the disorder might be present:

Diagnostic testing with CVS or amniocentesis that gives a more definite result is an option for all pregnant women. Your obstetrician or other health care professional, such as a genetic counselor, will discuss what your screening test results mean and help you decide the next steps.

With any type of testing, there is a possibility of false-positive results and false-negative results. A screening test result that shows there is a problem when one does not exist is called a false-positive result. A screening test result that shows there is not a problem when one does exist is called a false-negative result. Your health care professional can give you information about the rates of false-positive and false-negative results for each test.

It is your choice whether to have prenatal testing. Your personal beliefs and values are important factors in the decision about prenatal testing.

It can be helpful to think about how you would use the results of prenatal screening tests in your pregnancy care. Remember that a positive screening test tells you only that you are at higher risk of having a baby with Down syndrome or another aneuploidy. A diagnostic test should be done if you want to know a more certain result. Some parents want to know beforehand that their baby will be born with a genetic disorder. This knowledge gives parents time to learn about the disorder and plan for the medical care that the child may need. Some parents may decide to end the pregnancy in certain situations.

Other parents do not want to know this information before the child is born. In this case, you may decide not to have follow-up diagnostic testing if a screening test result is positive. Or you may decide not to have any testing at all. There is no right or wrong answer.

Amniocentesis: A procedure in which a needle is used to withdraw and test a small amount of amniotic fluid and cells from the sac surrounding the fetus.

Aneuploidy: Having an abnormal number of chromosomes.

Carrier Screening: A test done on a person without signs or symptoms to find out whether he or she carries a gene for a genetic disorder.

Cell: The smallest unit of a structure in the body; the building blocks for all parts of the body.

Chorionic Villus Sampling (CVS): A procedure in which a small sample of cells is taken from the placenta and tested.

Chromosomes: Structures that are located inside each cell in the body and contain the genes that determine a persons physical makeup.

Cystic Fibrosis: An inherited disorder that causes problems in digestion and breathing.

Diagnostic Tests: Tests that look for a disease or cause of a disease.

DNA: The genetic material that is passed down from parents to offspring. DNA is packaged in structures called chromosomes.

Down Syndrome: A genetic disorder that causes abnormal features of the face and body, medical problems such as heart defects, and intellectual disability. Most cases of Down syndrome are caused by an extra chromosome 21 (trisomy 21). Many children with Down syndrome live to adulthood.

Fetus: The stage of prenatal development that starts 8 weeks after fertilization and lasts until the end of pregnancy.

Genes: Segments of DNA that contain instructions for the development of a persons physical traits and control of the processes in the body. It is the basic unit of heredity and can be passed down from parent to offspring.

Genetic Counselor: A health care professional with special training in genetics and counseling who can provide expert advice about genetic disorders and prenatal testing.

Genetic Disorders: Disorders caused by a change in genes or chromosomes.

Inherited Disorders: Disorders caused by a change in a gene that can be passed down from parent to children.

Monosomy: A condition in which there is a missing chromosome.

Mutations: Permanent changes in genes that can be passed on from parent to child.

Neural Tube Defects: Birth defects that result from incomplete development of the brain, spinal cord, or their coverings.

Nuchal Translucency Screening: A test in which the size of a collection of fluid at the back of the fetal neck is measured by ultrasound to screen for certain birth defects, such as Down syndrome, trisomy 18, or heart defects.

Obstetrician: A physician who specializes in caring for women during pregnancy, labor, and the postpartum period.

Placenta: Tissue that provides nourishment to and takes waste away from the fetus.

Screening Tests: Tests that look for possible signs of disease in people who do not have symptoms.

Sex Chromosomes: The chromosomes that determine a persons sex. In humans, there are two sex chromosomes, X and Y. Females have two X chromosomes and males have an X and a Y chromosome.

Sickle Cell Disease: An inherited disorder in which red blood cells have a crescent shape, causing chronic anemia and episodes of pain. It occurs most often in African Americans.

TaySachs Disease: An inherited birth defect that causes intellectual disability, blindness, seizures, and death, usually by age 5 years. It most commonly affects people of Eastern and Central European Jewish, Cajun, and French Canadian descent, but it can occur in anyone.

Trimester: One of the three 3-month periods into which pregnancy is divided.

Trisomy: A condition in which there is an extra chromosome.

Trisomy 13 (Patau Syndrome): A chromosomal disorder that causes serious problems with the brain and heart as well as extra fingers and toes, cleft palate and lip, and other defects. Most infants with trisomy 13 die within the first year of life.

Trisomy 18 (Edwards Syndrome): A chromosomal disorder that causes severe intellectual disability and serious physical problems such as a small head, heart defects, and deafness. Most of those affected with trisomy 18 die before birth or within the first month of life.

Ultrasound Exams: Tests in which sound waves are used to examine internal structures. During pregnancy, they can be used to examine the fetus.

Read the rest here:
Prenatal Genetic Screening Tests – ACOG

Recommendation and review posted by simmons

Foundation Fighting Blindness Celebrates Historic FDA …

Foundations early investment in LUXTURNA boosts vision-restoring treatment for people with RPE65 mutations and will help advance other gene therapies currently in development.

(Columbia, MD) Todays U.S. Food and Drug Administration (FDA) approval of voretigene neparvovec, to be marketed as LUXTURNA, will be life-changing for patients with vision loss due to mutations in the RPE65 gene and a watershed moment for the inherited retinal disease field, says the Foundation Fighting Blindness. The Foundation was an important early investor in LUXTURNA, providing $10 million in critical seed funding for the therapy.

The groundbreaking treatment is the first gene therapy for the eye and for any inherited disease to be approved by the FDA. The treatment restores vision by delivering working copies of the RPE65 gene directly into the retina, thereby compensating for the nonfunctional, mutated genes.

We are thrilled for the patients whose lives will change dramatically because of this treatment, says David Brint, Foundation Fighting Blindness chairman. We are also pleased to have this concrete example of the strength of the Foundations strategy of identifying and investing early in promising treatments. Doing so helps attract industry investment that can usher promising treatments through clinical trials and ultimately FDA approval.

LUXTURNA is the result of more than two decades of research and development at the University of Florida, the University of Pennsylvania, Childrens Hospital of Philadelphia, and Spark Therapeutics. The Foundation Fighting Blindness seed investment allowed researchers to take the therapy through the early investigational stages critical to any treatment development.

LUXTURNA will be life-changing for people with an inherited retinal disease caused by RPE65 mutations. For them, the treatment means a life of independence. Also important is the momentum this approval provides to other gene-based therapies for the eye and other diseases now in the clinic, says Benjamin Yerxa, PhD, Foundation CEO.

Twenty-four-year-old Katelyn Corey participated in the clinical trial that led to LUXTURNAs FDA approval. Before the trial, failing vision was causing her to consider giving up her lifelong dream of completing college and working in science. But, in December 2013, she received the RPE65 gene therapy in Sparks Phase 3 clinical trial, and her education and science career got quickly back on track.

Within days, I could see vibrant colors. I could even see the Philadelphia City Hall clock tower at night, she says. Also, now, I can go to a restaurant and see everything by candlelight, and I can see stars in the night sky. Corey recently earned a masters degree in epidemiology and now works as a research analyst for the U.S. Department of Veterans Affairs.

An additional noteworthy milestone is the demonstrated value of a new clinical endpoint devised by the Spark Therapeutics team to measure LUXTURNAs impact. The new measure, a multi-luminance mobility test (informally called the maze), measured the impact of the treatment beyond the traditional visual acuity measure the eye chart. This new clinical endpoint moves vision measures beyond the eye chart, which is particularly significant for people with low or no vision.

Spark Therapeutics, which holds the biologics license for LUXTURNA and conducted the clinical trials that showed its safety and efficacy, will also manage the treatment rollout. Spark has announced that in order to ensure the treatment is safely administered, it will only be available through a small number of centers of clinical excellence across the country. Spark has also expressed its commitment to educating third-party payers about the value of LUXTURNA and to working to help ensure treatment access to all eligible patients.

Anyone in need of more information about LUXTURNA should contact Spark Therapeutics at 1-833-SPARK-PS (833-772-7577). Another resource for information is Sparks website: http://www.Sparktx.com.

# # #

The Foundation Fighting Blindness is the worlds leading private funder of research on potential treatments and cures for inherited retinal degenerative diseases and currently funds 77 research projects overseen by 65 investigators at 67 universities, hospitals, and affiliated eye institutes worldwide. The Foundation was established in 1971 and has since raised more than $725 million toward its mission to prevent, treat, and cure blindness caused by inherited retinal diseases. In excess of 10 million Americans, and millions more worldwide, experience vision loss due to retinal degenerations. Through its support of focused and innovative science, the Foundation drives the research that has and will continue to provide treatments and cures for people affected by retinitis pigmentosa, LCA, macular degeneration, Usher syndrome, and other retinal diseases.

More here:
Foundation Fighting Blindness Celebrates Historic FDA …

Recommendation and review posted by sam

Gene Therapy Clinical Trials Databases

Wiley database on Gene Therapy Trials WorldwideThe Journal of Gene Medicine clinical trial site presenting charts and tables showing the number of approved, ongoing or completed clinical trials worldwide. Data is available for: Continents and countries where trials are being performed; Indications addressed; Vectors used; Gene types transferred; Phases of clinical trials; Number of trial approved/initiated 1989-2007.A searchable database is also present with detailed information on individual trials. The data are compiled and are regularly updated from official agency sources (RAC, GTAC etc..), the published literature, presentations at conferences and from information kindly provided by investigators or trial sponsors themselves. Beware that information on some trials is incomplete as some countries regulatory agencies simply do not disclose any information.See also: Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 2013 Feb;15(2):65-77.ClinicalTrials.gov database on clinical trials performed in the US and worldwideThe U.S. National Institutes of Health, through its National Library of Medicine, has developed ClinicalTrials.gov to provide patients, family members and members of the public current information about clinical research studies. The database is a registry of federally and privately supported clinical trials conducted in the United States and around the world. ClinicalTrials.gov gives you information about a trial’s purpose, who may participate, locations, and phone numbers for more details.>> Overview of gene therapy trials recently received in the last 30 days. International Standard Randomised Controlled Trial Number RegisterThe ISRCTN Register is a register containing a basic set of data items on clinical trials that have been assigned an ISRCTN. Records are never removed from the ISRCTN Register (except in cases of duplications), which ensures that basic information about trials registered with an ISRCTN will always be available. The ISRCTN Register complies with requirements set out by the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and the International Committee of Medical Journal Editors (ICMJE) guidelines, and complies with the WHO 20-item Trial Registration Data Set. Selected Gene Transfer and Therapy References databaseThe database is managed by Clinigene. The aim of this webpage is to provide database of selected references in the field of Gene Transfer and Therapy, addressing technological issues, applications, ethics and regulation from four main databases: Quality/Efficacy; Safety (pre-clinical); Adverse events (clinical); Important clinical trials. The database is open to the public and it is by no means intended to be either complete or comprehensive. Published Human Gene Therapy Clinical Trials database The database is maintained by Clinigene. The aim of this website is to provide a complete database of all published clinical gene therapy trials carried out worldwide. At this point in time the database is nearing completion and is open to the public.

See the original post here:
Gene Therapy Clinical Trials Databases

Recommendation and review posted by sam

STEM CELLS – Issue – Wiley Online Library

Advertisement

Stem Cells May Help Improve Corneal Wound Healing

Stem Cell Treatment Has Potential to Help Parkinsons Disease Unexpected Brain Area

Subscribe to RSS headline updates from: Powered by FeedBurner

Subscribe to RSS headline updates from: Powered by FeedBurner

Video abstract from Drs. Banerjee, Surendran, Bharti, Morishita, Varshney, and Pal on their recently published STEM CELLS paper entitled, “Long non-coding RNA RP11-380D23.2 drives distal-proximal patterning of the lung by regulating PITX2 expression.” Read the paper here.

Video abstract from Drs. Sayed, Ospino, Himmati, Lee, Chanda, Mocarski, and Cooke on their recently published STEM CELLS paper entitled, “Retinoic Acid Inducible Gene 1 Protein (RIG1)-like Receptor Pathway is Required for Efficient Nuclear Reprogramming.” Read the paper here.

iOS App for iPad or iPhone

Download the STEM CELLS app from the Apple store

New Android App Available!

Download the STEM CELLS app from the Google Play Store

Here is the original post:
STEM CELLS – Issue – Wiley Online Library

Recommendation and review posted by simmons


Archives