Page 11234..1020..»

Crispr Gene Editing Is Coming for the Womb | WIRED

William Peranteau is the guy parents call when theyve received the kind of bad news that sinks stomachs and wrenches hearts. Sometimes its a shadow on an ultrasound or a few base pairs out of place on a prenatal genetic test, revealing that an unborn child has a life-threatening developmental defect. Pediatric surgeons like Peranteau, who works at Childrens Hospital of Philadelphia, usually cant try to fix these abnormalities until their patients leave their mothers bodies behind. And by then it might be too late.

Its with the memory of the families he couldnt help in the back of his mind that Peranteau has joined a small group of scientists trying to bring the fast-moving field of gene editing to the womb. Such editing in humans is a long way off, but a spate of recent advances in mouse studies highlight its potential advantages over other methods of using Crispr to snip away diseases. Parents confronted with an in utero diagnosis are often faced with only two options: terminate the pregnancy or prepare to care for a child who may require multiple invasive surgeries over the course of their lifetime just to survive. Prenatal gene editing may offer a third potential path. What we see as the future is a minimally invasive way of treating these abnormalities at their genetic origin instead, says Peranteau.

To prove out this vision, Peranteau and colleagues at the University of Pennsylvania injected Crispr editing components, encoded in a virus, into the placentas of pregnant mice whose unborn pups were afflicted with a lethal lung-disease-causing mutation. When the fetuses breathed in the amniotic fluid they also inhaled the Crispr bits, which went to work editing the DNA inside their rapidly dividing alveolar progenitor cells. These cells give rise to many types of cells that line the lungsincluding ones that secrete a sticky substance that keeps the lungs from collapsing every time you breathe. Mutations to proteins that make up this secretion are a major source of congenital respiratory conditions. All of the mice with the mutation died within a few hours of birth. Of those edited with Crispr, about a quarter survived. The results were published in todays issue of Science Translational Medicine.

Its the second proof of concept from the group of scientists in the past year. In October, they published a paper describing a slightly different procedure to edit mutations that lead to a lethal metabolic disorder. By changing a single base pair in the liver cells of prenatal mice, Peranteaus team was able to rescue nearly all of the mouse pups. Other recent successes include unborn mice cured of a blood disorder called beta-thalassemia following a prenatal injection of Crispr, carried out last year by a team at Yale and Carnegie Mellon.

Though the field is still in its infancy, its pioneers believe that many of the problems Crispr-based therapies have to contend withlike reaching enough of the right cells and evading the human immune systemcan be solved by treating patients while they are still in the womb.

If youre trying to edit cells in an adult organ, theyre not proliferating, so you have to reach a lot of them to have any impact, says Edward Morrisey, a cardiologist at the University of Pennsylvania, who coauthored the latest study. Fetuses, on the other hand, are still developing, which means their cells are in a state of rapid division as they grow into new tissues. The earlier in life you can edit, the more those genetic changes will multiply and propagate through developing organs. Morriseys mice might have only been born with the genetic edit in about 20 percent of their lung cells, but 13 weeks later, the correction had spread to the entire surface of the lung. Theyve actually outcompeted the nonedited cells, because those cells are very sick, says Morissey.

For lung diseases in particular, this represents a huge advantage. As soon as a baby leaves the watery world of the womb, its lung cells start secreting a barrier of mucus mixed with surfactant, to keep any dust or viruses or other foreign objects, including Crispr components, from reaching those tissues. A developing fetus also has a less aggressive immune system than a human whos been exposed to the outside world. So its less likely to mount an attack on Crispr components, which do, after all, originate in the bacterial kingdom.

Now, you might be thinking, if editing earlier is better, why not edit an embryo right after its been fertilized, when its only a cell or two old? But this technique, known as germline editing (you might remember it from last years Chinese Crispr baby scandal), is a much more complicated ethical endeavor. Editing at that stage would pass on any changes to every cell, including the ones that would go on to make sperm or eggs. This kind of editing is effectively banned in the United States, following a directive from Congress to the US Food and Drug Administration to not allow any clinical trials involving genetically modified human embryos. (The ban, which has to be renewed annually, was most recently reaffirmed in February of 2019). The other thing though, is that getting an accurate diagnosis when an embryo is only a few cells old can be tricky. Waiting long enough to get a visual on a fetus along with other vital signs can provide important clues as to the severity of the condition. It gets us right in that sweet spot to treat a disease at the very beginning, basically as soon as its diagnosed, says Peranteau.

But there are still safety issues to resolve. For one thing, in utero editing involves two patients, not just one. In the process of curing a child, this technique would potentially expose a healthy bystanderthe motherto a treatment that provides no potential benefit and only potential risks, including dangerous immune reactions. And because the editing is taking place inside her reproductive tract, some wayward Crispr components might wend their way up her fallopian tubes and into her ovaries, potentially making changes to other, unfertilized eggs. A lot more science will need to be done to better assess these risks. To give you an idea of how long these things can take, consider that in utero gene therapyan older approach that entails replacing a defective gene with a functioning one using a viruswas first proposed back in the mid-1990s following a series of positive proof of concept studies in mice. Today, only a single clinical trial is in progress.

This is not a panacea for curing every genetic disease thats out there, says Peranteau. But he believes that a Crispr approach will be able to piggyback on the work of the gene therapy field, and may offer a new way forward for at least some of his patients. At some point in the futurenot tomorrow or the next day, years from nowI think in utero editing would provide hope for families that today have none.

Read more from the original source:
Crispr Gene Editing Is Coming for the Womb | WIRED

Recommendation and review posted by Bethany Smith

CRISPR Research Moves Out Of Labs And Into Clinics Around The …

CRISPR gene-editing technology allows scientists to make highly precise modifications to DNA. The technology is now starting to be used in human trials to treat several diseases in the U.S. Molekuul/Getty Images/Science Photo Library hide caption

CRISPR gene-editing technology allows scientists to make highly precise modifications to DNA. The technology is now starting to be used in human trials to treat several diseases in the U.S.

The powerful gene-editing technique called CRISPR has been in the news a lot. And not all the news has been good: A Chinese scientist stunned the world last year when he announced he had used CRISPR to create genetically modified babies.

But scientists have long hoped CRISPR a technology that allows scientists to make very precise modifications to DNA could eventually help cure many diseases. And now scientists are taking tangible first steps to make that dream a reality.

For example, NPR has learned that a U.S. CRISPR study that had been approved for cancer at the University of Pennsylvania in Philadelphia has finally started. A university spokesman on Monday confirmed for the first time that two patients had been treated using CRISPR.

One patient had multiple myeloma, and one had sarcoma. Both had relapsed after undergoing standard treatment.

The revelation comes as several other human trials of CRISPR are starting or are set to start in the U.S., Canada and Europe to test CRISPR's efficacy in treating various diseases.

"2019 is the year when the training wheels come off and the world gets to see what CRISPR can really do for the world in the most positive sense," says Fyodor Urnov, a gene-editing scientist at the Altius Institute for Biomedical Sciences in Seattle and the University of California, Berkeley.

Here are highlights of the year ahead in CRISPR research, and answers to common questions about the technology.

What is CRISPR exactly?

CRISPR is a new kind of genetic engineering that gives scientists the power to edit DNA much more easily than ever. Researchers think CRISPR could revolutionize how they prevent and treat many diseases. CRISPR could, for example, enable scientists to repair genetic defects or use genetically modified human cells as therapies.

Traditional gene therapy uses viruses to insert new genes into cells to try to treat diseases. CRISPR treatments largely avoid the use of viruses, which have caused some safety problems in the past. Instead they directly make changes in the DNA, using targeted molecular tools. The technique has been compared to the cut and paste function in a word processing program it allows scientists to remove or modify specific genes causing a problem.

Is this the same technique that caused a recent scandal when a scientist in China edited the genes of two human embryos?

There's an important difference between the medical studies under discussion here and what the Chinese scientist, He Jiankui, did. He used CRISPR to edit genes in human embryos. That means the changes he made would be passed down for generations to come. And he did it before most scientists think it was safe to try. In fact, there have been calls for a moratorium on gene-editing of heritable traits.

For medical treatments, modifications are only being made in the DNA of individual patients. So this gene-editing doesn't raise dystopian fears about re-engineering the human race. And there's been a lot of careful preparation for these studies to avoid unintended consequences.

So what's happening now with new or planned trials?

We've finally reached the moment when CRISPR is moving out of the lab and into the clinic around the world.

Until now, only a relatively small number of studies have tried to use CRISPR to treat disease. And almost all of those studies have been in China, and have been aimed at treating various forms of cancer.

There's now a clinical trial underway at the University of Pennsylvania using CRISPR for cancer treatment. It involves removing immune system cells from patients, genetically modifying them in the lab and infusing the modified cells back into the body.

The hope is the modified cells will target and destroy cancer cells. No other information has been released about how well it might be working. The study was approved to eventually treat 18 patients.

"Findings from this research study will be shared at an appropriate time via medical meeting presentation or peer-reviewed publication," a university spokesperson wrote in an email to NPR.

But beyond the cancer study, researchers in Europe, the United States and Canada are launching at least half a dozen carefully designed studies aimed at using CRISPR to treat a variety of diseases.

What other diseases are they testing treatments for?Two trials sponsored by CRISPR Therapeutics of Cambridge, Mass., and Vertex Pharmaceuticals of Boston are designed to treat genetic blood disorders. One is for sickle cell disease, and another is a similar genetic condition called beta thalassemia.

In fact, the first beta thalassemia patient was recently treated in Germany. More patients may soon get their blood cells edited using CRISPR at that hospital and a second clinic in Germany, followed by patients at medical centers in Toronto, London and possibly elsewhere.

The first sickle disease patients could soon start getting the DNA in their blood cells edited in this country in Nashville, Tenn., San Antonio and New York.

And yet another study, sponsored by Editas Medicine of Cambridge, Mass., will try to treat an inherited form of blindness known as Leber congenital amaurosis.

That study is noteworthy because it would be the first time scientists try using CRISPR to edit genes while they are inside the human body. The other studies involve removing cells from patients, editing the DNA in those cells in the lab and then infusing the modified cells back into patients' bodies.

Finally, several more U.S. cancer studies may also start this year in Texas, New York and elsewhere to try to treat tumors by genetically modifying immune system cells.

What can go wrong with CRISPR? Are there any concerns?

Whenever scientists try something new and powerful, it always raises fears that something could go wrong. The early days of gene therapy were scarred by major setbacks, such as the case of Jesse Gelsinger, who died after an adverse reaction to a treatment.

The big concern about CRISPR is that the editing could go awry, causing unintended changes in DNA that could cause health problems.

There's also some concern about this new wave of studies because they are the first to get approved without going through an extra layer of scrutiny by the National Institutes of Health. That occurred because the NIH and FDA changed their policy, saying only some studies would require that extra layer of review.

"Every human on the planet should hope that this technology works. But it might work. It might not. It's unknown," says Laurie Zoloth, a bioethicist at the University of Chicago. "This is an experiment. So you do need exquisite layers of care. And you need to really think in advance with a careful ethical review how you do this sort of work."

The researchers conducting the studies say they have conducted careful preliminary research, and their studies have gone through extensive scientific and ethical review.

When might we know whether any of these experimental CRISPR treatments are working?

All of these studies are very preliminary and are primarily aimed at first testing whether this is safe. That said, they are also looking for clues to whether they might be helping patients. So there could be at least a hint about that later this year. But it will be many years before any CRISPR treatment could become widely available.

Continued here:
CRISPR Research Moves Out Of Labs And Into Clinics Around The ...

Recommendation and review posted by Bethany Smith

CRISPR gene editing has been used on humans in the US

It's not certain how effective the treatment has been, and you won't find out for a while when the trial has been cleared to treat a total of 18 patients. You won't hear more about it until there's been a presentation or a peer-reviewed paper, the university said. Other trials, such as ones for blood disorders in the Boston area, have yet to get underway.

No matter what, any practical uses could take a long time. There are widespread concerns that CRISPR editing could have unanticipated effects, and scientists have yet to try editing cells while they're still in the body (a blindness trial in Cambridge, MA may be the first instance). There's also the not-so-small matter of ethical questions. Chinese scientist He Jiankui raised alarm bells when he said he edited genes in human embryos -- politicians and the scientific community will likely want to address practices like that before you can simply assume that CRISPR is an option.

Go here to read the rest:
CRISPR gene editing has been used on humans in the US

Recommendation and review posted by Bethany Smith

Gene Therapy 2019 Global Market Outlook,Research,Trends …

WiseGuyReports.Com Publish a New Market Research Report On Gene Therapy 2019 Global Market Outlook,Research,Trends and Forecast to 2026.

Pune, India April 15, 2019

Gene Therapy Industry 2019


The global gene therapy market is anticipated to reach USD 4,300 million by 2021. The demand for gene therapy is primarily driven by continuous technological advancements and successful progression of several clinical trials targeting treatments with strong unmet need. Moreover, rising R&D spend on platform technologies by large and emerging biopharmaceutical companies and favorable regulatory environment will accelerate the clinical development and the commercial approval of gene therapies in the foreseeable future. Despite promise, the high cost of gene therapy represents a significant challenge for commercial adoption in the forecast period.

Get a Free Sample Report @

For more information or any query mail at

Gene therapy involves inactivating a mutated gene that is not functioning properly and introducing a new gene to assist in fighting a disease. Overall, the field of gene therapy continues to mature and advance with many products in development and nearing commercialization. For instance, Spark Therapeutics received approval of Luxturna, a rare form inherited blindness in December 2017. Gene therapy market in late 2017 also witnessed the approvals of Gilead/Kite Pharmas Yescarta and Novartis Kymriah in the cancer therapeutic area.

Gene therapy offers promise in the treatment of range of indications in cancer and genetic disorders. Large Pharmaceuticals and Biotechnology companies exhibit strong interest in this field and key among them include Allergan, Shire, Biomarin, Pfizer and GSK. The gene therapy space is witnessing a wave of partnerships and alliances. Pfizer has recently expanded its presence in gene therapy with the acquisition of Bamboo Therapeutics and Allergan entered the field, with the acquisition of RetroSense and its Phase I/II optogenetic program.

North America holds a dominating position in the global gene therapy market which is followed by Europe and the Asia Pacific. The U.S. has maximum number of clinical trials ongoing followed by Europe. Moreover, the field of gene therapy in the U.S. and Europe continues to gain investor attention driven by success of high visible clinical programs and the potential of gene therapy to address strong unmet need with meaningful commercial opportunity. Moreover, the increasing partnerships and alliances and the disruptive potential of gene therapy bodes well for the sector through the forecast period.Key Findings from the study suggest products accessible in the market are much competitive and manufacturers are progressively concentrating on advancements to pick up an aggressive edge. Companies are in a stage of development of new items in order to guarantee simple implementation and connection with the current gene. The hospatility segment is anticipated to grow at a high growth rate over the forecast period with the expanding utilization of smart locks inferable from expanding security-related worries among clients amid their stay at the hotels. North America is presumed to dominate the global smart locks market over the forecast years and Asia Pacific region shows signs of high growth owing to the booming economies of India, and China.

Enquiry About Report @

Table Of Contents Major Key Points

1. Gene Therapy Overview1.1. History and Evolution of Gene Therapies1.2. What is Gene Therapy1.3. Types of Gene Therapy1.4. Ex vivo and in vivo Approaches of Gene Therapy1.5. RNAi Therapeutics1.6. CAR-T Technology based Gene Therapy1.7. Types of Vectors used for Gene Therapy1.7.1. Viral1.7.2. Non-Viral

2. Historical Marketed Gene Therapies [2003-2012]2.1. Rexin-G (Epeius Biotechnologies Corporation)2.2. Gendicine (SiBiono GeneTech Co., Ltd)2.3. Neovasculgen [Human Stem Cells Institute (HSCI))2.4. Glybera (UniQure Biopharma B.V.)

3. First Countries to get an access to Gene Therapies3.1. Philippines for Rexin-G [2003]3.2. China for Gendicine [2003]3.3. Russia for Neovasculgen [2011]3.4. Selected European Countries for Glybera [2012]

4. Marketed Gene Therapies [Approved in Recent Years]4.1. KYMRIAH (tisagenlecleucel)4.1.1. Therapy Description4.1.2. Therapy Profile4.1.2.1. Company4.1.2.2. Approval Date4.1.2.3. Mechanism of Action4.1.2.4. Researched Indication4.1.2.5. Vector Used4.1.2.6. Vector Type4.1.2.7. Technology4.1.2.8. Others Development Activities4.1.3. KYMRIAH Revenue Forecasted till 20214.2. YESCARTA (axicabtagene ciloleucel)4.2.1. Therapy Description4.2.2. Therapy Profile4.2.2.1. Company4.2.2.2. Approval Date4.2.2.3. Mechanism of Action4.2.2.4. Researched Indication4.2.2.5. Vector Used4.2.2.6. Vector Type4.2.2.7. Technology4.2.2.8. Others Development Activities4.2.3. YESCARTA Revenue Forecasted till 20214.3. LUXTURNA (voretigene neparvovec-rzyl)4.3.1. Therapy Description4.3.2. Therapy Profile4.3.2.1. Company4.3.2.2. Approval Date4.3.2.3. Mechanism of Action4.3.2.4. Researched Indication4.3.2.5. Vector Used4.3.2.6. Vector Type4.3.2.7. Technology4.3.2.8. Others Development Activities4.3.3. LUXTURNA Revenue Forecasted till 20214.4. STRIMVELIS4.4.1. Therapy Description4.4.2. Therapy Profile4.4.2.1. Company4.4.2.2. Approval Date4.4.2.3. Mechanism of Action4.4.2.4. Researched Indication4.4.2.5. Vector Used4.4.2.6. Vector Type4.4.2.7. Technology4.4.2.8. Others Development Activities4.4.3. STRIMVELIS Revenue Forecasted till 2021

5. Comparison of current Regulatory Status for Gene Therapy Products5.1. U.S5.2. Europe5.3. Japan

6. Emerging Gene Therapies [Phase III]6.1. Gene Based Therapeutics under Development6.2. Therapy Description

7. Indication of Focus in Gene Therapy7.1. Cancer7.2. Neurodegenerative Disorders7.3. Lysosomal Storage Disorders (LSDs)7.4. Ocular Diseases7.5. Muscle Disorders7.6. Anemia7.7. Hemophilia7.8. Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency


Buy 1-user PDF @

ABOUT US:Wise Guy Reports is part of the Wise Guy Consultants Pvt. Ltd. and offers premium progressive statistical surveying, market research reports, analysis & forecast data for industries and governments around the globe. Wise Guy Reports features an exhaustive list of market research reports from hundreds of publishers worldwide. We boast a database spanning virtually every market category and an even more comprehensive collection of market research reports under these categories and sub-categories.

Contact Info:Name: Norah TrentEmail: Send EmailOrganization: WiseGuy Research Consultant Pvt Ltd.Address: Office No.528,Amanora Chambers,Magarpatta Road,Hadapsar,Pune-411028.Phone: +1-646-845-9349Website:

This content is not produced by Reuters Editorial News. It is produced by VC NewsNetwork. For content enquiry, please reach us at

Go here to see the original:
Gene Therapy 2019 Global Market Outlook,Research,Trends ...

Recommendation and review posted by Bethany Smith

Crispr Can Speed Up Natureand Change How We Grow Food | WIRED

Like any self-respecting farmer, Zachary Lippman was grumbling about the weather. Stout, with close-cropped hair and beard, Lippman was standing in a greenhouse in the middle of Long Island, surrounded by a profusion of rambunctiously bushy plants. Dont get me started, he said, referring to the late and inclement spring. It was a Tuesday in mid-April, but a chance of snow had been in the forecast, and a chilly wind blew across the island. Not the sort of weather that conjures thoughts of summer tomatoes. But Lippman was thinking ahead to sometime around Memorial Day, when thousands of carefully nurtured tomato plants would make the move from the greenhouse to Long Island loam. He hoped the weather would finally turn.

Although he worked on a farm as a teenager and has a romantic attachment to the soil, Lippman isnt a farmer. Hes a plant biologist at Cold Spring Harbor Laboratory in New York with an expertise in genetics and development. And these greenhouse plants arent ordinary tomatoes.

After introducing me to his constant companion, Charlie (a slobberingly gregarious Labrador-Rottweiler mix), Lippman walked me through hundreds of plants, coddled by 80-degree daytime temperatures and 40 to 60 percent humidity, and goaded into 14 hours of daily photosynthetic labor by high-pressure sodium lights overhead. Some were seedlings that had barely unfurled their first embryonic leaves; others had just begun to flash their telltale yellow flowers, harbingers of the fruit to come; still others were just about ripe, beginning to sag with the weight of maturing red fruit.

What makes this greenhouse differentwhat makes it arguably an epicenter of a revolution in plant biology that may forever change not just the future of the tomato but the future of many cropsis that 90 percent of the tomato plants in the building had been genetically altered using the wizardly new gene-editing tool known as Crispr/Cas-9. Lippman and Joyce Van Eck, his longtime collaborator at the Boyce Thompson Institute in Ithaca, New York, are part of a small army of researchers using gene editing to turn the tomato into the laboratory mouse of plant science. In this greenhouse, Crispr is a verb, every plant is an experiment, and mutant isnt a dirty word.

Lippman walked to the rear of the building and pointed out a variety of tomato known as Large Fruited Fresh Marketone of the commercial varieties that turn up in supermarkets, not farmers markets. This particular plant, about two months old, bowed with big, nearly ripe fruit. It was, Lippman explained, a mutant called jointless. Most tomato varieties have a swollen knuckle of tissue (or joint) on the stem, just above where the fruit forms; when the tomato is ready, it tells itself, as Lippman put it, OK, Im ripetime to fall, and the cells in the joint receive a signal to die, letting go of the tomato. That is natures way of spreading tomato seeds, but the joint has been a thorny problem for agricultural production, because it leaves a residual stem that pokes holes in mechanically harvested fruit. Jointless tomatoes, whose stems can be plucked clean, have been bred and grown commercially, but often with unwanted side effects; these gene-edited versions avoid the unintended consequences of traditional breeding. We can now use Crispr to go in and directly target that gene for the molecular scissors to cut, which leads to a mutation, Lippman said. Voil: the jointless trait in any variety you want.

We moved on to several examples of Physalis pruinosa, a relative of the tomatillo that produces a small, succulent fruit called a ground cherry. The plant has never been domesticated, and Lippman referred to the wild version as a monstrosity: tall, unkempt, and stingy, bestowing a single measly fruit per shoot. Next to it stood a Physalis plant after scientists had induced a mutation called self-pruning. It was half as tall, much less bushy, and boasted half a dozen fruits per shoot. Lippman plucked a ground cherry off one of the mutated plants and offered it to me.

Smell it first, he entreated. Enjoy the smell. It was exotic and faintly tropical. I popped it in my mouth and bit into a complex burst of flavor. Like all its cousin tomatoes, the taste was a mystical, time-lapse blur of sugar and acidity, embellished by the whiff of volatile compounds that found my nose and rounded out the flavor.

You just ate an edited plant, Lippman said with a smile. But dont be too nervous.

Zach Lippman in a Cold Spring Harbor test field of tomato plants edited to produce more fruit.

Dolly Faibyshev

A gene-edited tomato plant.

Dolly Faibyshev

Like the majority of scientists, Lippman regards genetically modified plants as safe to eat. But his mischievous smile acknowledged that not everyone views the technology as innocuous. There is a lot of nervousness about genetic tinkering with food plants. Genetically modified (GM) transgenic crops such as corn and soybeans have infiltrated processed foods, animal feed, and biofuels for many years, and the battle over them has long divided the public in the US and overseas. The Crispr revolution is reinventing, if not reigniting, that debate. Most of the plants that have been gene-edited to date have been created by knocking out genes (that is, mutating them), not by introducing genes from unrelated species, as first-generation genetic modification generally didrousing cries of Frankenfoods and fears of environmental contamination. Precisely because its subtraction rather than addition, scientists argue that this form of gene editing mimics the process of agriculturally induced mutations that characterizes traditional plant breeding. This distinction may not assuage critics, but it has apparently persuaded federal regulators; gene-edited soybean and potato crops are already in the ground, and last March the US Department of Agriculture declared that crops developed with gene-edited mutations are indistinguishable from those produced by traditional breeding and do not require regulatory oversight.

Huge questions vex the future of foodhow to feed 9 billion mouths, how to farm in an era of unprecedented climate uncertainty, how to create more resilient and nutritious foods for a public wary of the new technology. Plant scientists are already using Crispr and related technologies to reshape food crops in dramatic waysediting wheat to reduce gluten, editing soybeans to produce a healthier oil, editing corn to produce higher yields, editing potatoes to store better (and not throw off a carcinogen when cooked). In both industrial and academic labs, new editing tools are being developed that will have a profound impact on the foods all of us eat. Yet this newfound power to transform food traits coincides with a moment when the agriculture business has consolidated into essentially three mega-conglomerates. Those companies have the money to put this new technology to use. The question is: What use will they put it toward?

Soybeans, potatoes, and corn melt invisibly into the food chain, but tomatoes add a big red exclamation point to the current debate. Perhaps no food crop is more emblematic of what is at stakeagriculturally, biologically, culturally, and perhaps even in homegrown foodie waysthan the tomato: queen of the farmers market, jewel of the backyard garden, alpha vegetable of locavores everywhere. Lippmans greenhouse reveals just some of the ways gene editing is already altering the tomatohe has plants that flower earlier, that are oblivious to daylight cues, that prune themselves into smaller footprints, that can be genetically programmed to space out the position of fruits on the stem like an accordion.

For people who love to eat or grow tomatoes (I do both), the arrival of Crispr provokes both cynicism and giddy hope about the future of our favorite vegetable. Cynicism because most of the practical scientific efforts would perpetuate the dreary taste of commercially produced tomatoes. In one sense, this is simply the latest in a century-long conquest of the produce aisles by the desires of food growers, who prize greater yield at lesser cost, over the desires of consumers, who cherish taste and nutrition. (Harry Klee, a tomato expert at the University of Florida, says that the perfect tomato for industry is one that exactly matches the size of a McDonalds hamburger.) Hope because there is something intriguing about using new technology to preserve the ravishing, sweet acidic burst of an heirloom tomato in a hardier, disease-resistant plantan heirloom-plus, if you will.

After Lippman walked me through his garden of man-made mutations, I couldnt resist asking if the heirlooms I struggle to grow every year might also benefit from Crisprs scissors.

Were not doing any editing of heirlooms, Lippman said. Not yet. But its in the works. They could benefit from a little bit of tweaking.

Tomatoes are coddled and goaded into photosynthetic labor in a greenhouse at the Boyce Thompson Institute.

Dolly Faibyshev

This is a story about tomatoes, of course. But it is also, like all agricultural stories, about mutationsnatural mutations and man-made mutations, invisibly insidious mutations and overtly grotesque mutations, mutations that were created earlier this year at Cold Spring Harbor Laboratory and mutations that may have occurred 10,000 years ago, like the ones that transformed Solanum pimpinellifolium from a scraggly perennial weed producing pea-sized fruit along the Pacific coastal margins of Peru and Ecuador to those beautiful big-lobed heirlooms in your backyard. Our cultural thesaurus has reduced the word mutant to a term of derision, but if you think mutation is a dirty word, you should probably stop readingand probably stop eating plant-based food too. The foundational principle of plant breeding is to take advantage of genetic modification, whether the mutation is caused by sunlight or x-rays or Crispr. As Klee puts it, there isnt a single crop that I know of in your produce aisle that is not drastically modified from what is out there in the wild.

Every backyard gardener is a connoisseur, witting or otherwise, of mutation. The intense, thin-skinned freshness of Brandywines, the apricot glow of Jaune Flamme, the green standoffish shoulders of Black Krims, and my personal favorite, Rose de Berne, with its blush of color and amazing tasteall those heirlooms are the product of long-ago, hand-me-down mutations.

Every spring, almost inevitably during March Madness (this year, during Villanova-Michigan), I get down on the floor with a bunch of peat pots and starter soil and clumsily press seeds of all of the above varieties into virgin dirt. My wife wonders why I cant buy seedlings at the market like everyone else, but Ive never outgrown the childlike thrill of watching an itty-bitty snippet of plant DNA, encased in the stiff callus of a seed coat, unfurl into a 5-foot-tall plant that yields its sublime bounty. Gardenersthe original DIY biologistsall know this thrill. And so does Lippman. Thats how he got into gene-editing tomatoes in the first place.

If you think mutation is a dirty word, you should probably stop reading. And probably stop eating plant-based food too.

Lippman grew up in Milford, Connecticut; his father was an English teacher and his mother worked in health care. Among his earliest memories is visiting a nearby farm with his father when he was 6 or 7 years old and picking up leftover Halloween pumpkins and gourdswith their mind-blowing shapes and colorsthat littered the field.

That pumpkin field was part of Robert Treat Farm, and when he was 13, Lippman began working summers there, cultivating his fascination with plants. By the time he graduated from high school in 1996, he had decided to pursue plant breeding and genetics, first at Cornell University and then at Cold Spring Harbor, where he got his PhD and is now a Howard Hughes Medical Institute investigator.

Lippmans office is a shrine to the tomato: On his walls are old tomato-can labels and antique postcards of implausibly gigantic tomatoes, and thousands of little brown envelopes containing seeds, each marked by year and variety, are stacked on his desk, in old seed boxes, in wooden trays and plastic cabinets against the wall. The most telling relic is just behind the door: a large framed reproduction from a 16th-century book by Pietro Andrea Mattioli, believed to be the earliest color depiction of the tomato following the Spanish conquest of the Americas. To a geneticist like Lippman, the Mattioli print is especially significant because it is early evidence that pre-Columbian cultures knew a beneficial tomato mutation when they saw onethey had already converted the nubbin of wild fruit into a large, multiple-lobed golden beefsteak.

Up until the 1930s, agricultural scientists essentially relied on the same techniques as the original tomato farmers in Central America: Be patient enough to wait for nature to produce a useful mutation, be smart enough to recognize that desirable trait (bigger fruit, for example), and be clever enough to create a new variety with that trait by selecting the mutant strains and propagating them. Put another way, agriculture has always been about unnatural selectionhuman choice privileging certain mutations while discarding others. Biologists sped up this process around the time of World War II by deliberately inducing random mutations in seeds with the use of chemicals, x-rays, and other forms of radiation. But even so, the process was slow. Selective breeding of a desirable trait could easily take a decade.

This all began to change in 2012, an annus mirabilis for the tomato. In May of that year, plant geneticists completed the Tomato Genome Projectthe entire DNA sequence of the tomato plant, all 900 million base pairs on 12 chromosomes. Then, in June, a group led by Jennifer Doudna at UC Berkeley published the first report on the new gene-editing technique known as Crispr, followed soon after by a group at the Broad Institute of MIT and Harvard. The fruit of those two converging streams of researchand, yes, botanically speaking, tomato is a fruitwas a race among scientists to see if the new technique worked in plants.

As soon as word of Crispr broke, Lippman wondered, Can we do it in tomato? And if we can, lets move. Moving fast meant doing an experiment on a tomato gene that would prove the efficacy of Crispr without too much delay. Which gene did Lippman and Van Eck target? Not one that would improve the size or shape of the fruitthat would take too long, and Van Eck was impatient. I dont want to have to put it in the greenhouse and wait for it to grow, she told Lippman. I want to be able to see something in the petri plate. So they picked a gene that was of zero economic significance and less-than-zero consumer appeal. It was a weird gene that, when mutated, produced disfigured tomato leaves that looked like needles. The mutant version was called wiry.

A research field at Cold Spring Harbor with some 8,000 gene-edited plants.

Dolly Faibyshev

Seeds are stored in boxes, and then planted.

Dolly Faibyshev

The wiry mutation was so obscure that Van Eck had to dig up a paper from 1928 that described it for the first time to know what shed be looking for. Each Crispr-directed mutation requires a customized, genetically engineered tool called a constructa so-called guide RNA to target the right tomato gene and an enzyme riding shotgun to cut the plant DNA at precisely that spot. In this case, Lippman designed the construct to target the wiry gene and cut it; the mutation is not created by Crispr per se but by the plant when it attempts to repair the wound. Van Eck used a bacterium that is very good at infecting plants to carry the Crispr mutation tool inside tomato cells. Once mutated, these cells were spread onto petri plates where they began to develop into plants. Van Eck still had to wait about two months before the tomato cells developed into seedlings and sprouted leaves, but it was worth the wait.

I still remember when I saw the first leaves coming up, she recalls. The leaves were radializedcurled up into needlelike shapes. Omigod, it worked! she cried, and raced down the hallways of the institute to tell anyone who would listen. I was thrilled because, you know, when does something work the first time?

Not only had they demonstrated that Crispr could produce a heritable trait change in a fruit crop, they also had their answer in two months rather than a year. They knew that the same basic process could theoretically be used to edit, with exquisite precision and unprecedented speed, any gene in any food crop.

As soon as they knew it worked, Lippman and Van Eck began Crispring every trait theyd wanted to study for the past 15 years. One of them was jointless. For 60 years, researchers had been trying to solve the problem of the joint on the tomato plants stem. Large-scale farming of tomatoesCalifornia alone produces more than 10 million tons each yearrequires mechanical harvesting, and those stabbing stems of jointed tomatoes make the task harder and more wasteful. Lippman, who studies plant architecture, knew that many jointless tomato plants produce excessive branching and lower yields. He discovered that this unintended consequence was the result of traditional breeding: When breeders favored the jointless mutation, they unwittingly produced unwanted branching as well because of a complex interaction between jointless and another ancient mutation. Traditional breeding produced another side effectabnormally shaped tomatoesbecause the process of selecting the jointless trait dragged along a chunk of DNA with an unwanted mutation. (This phenomenon is known as linkage drag.)

If Lippman could Crispr his way to the jointless mutation without dragging along the deleterious effects related to traditional breeding, it would offer a significant advance for growers. He and Van Eck had to wait longer than they had for the needle-nosed leaves of wiry, but by March 2016, Lippman had jointless tomatoes growing in his greenhouse. They published the work in the journal Cell in the spring of 2017, and Lippman shared the gene-editing tool with Klee at the University of Florida. Last March, Klee and his team planted a plot of gene-edited jointless mutants, in a commercial variety called Florida 8059, in a test field north of Gainesville.

Joyce Van Eck saw curled leaves on a tiny tomato plant growing on a petri plate and knew that the Crispr experiment was a success.

Dolly Faibyshev

Quick reality check: Despite the hype about the gene-editing revolution, the past couple of years have revealed limitations as well as successes. Scientists will tell you Crispr is great at knocking out a gene. But using it to insert a new gene and, as many popular accounts suggest, rewrite the germline of man, beast, or plant? Not so easy. Crispr is not the be-all and end-all, says Dan Voytas of the University of Minnesota, one of the pioneers of agricultural gene editing. Moreover, genomes are complex, even in plants. Just as a dozen knobs on a stereo console can shape the overall sound of a single song, multiple genetic elements can control the effect of a single gene.

That daunting complexity inspired Lippmans lab to pursue a clever riff on gene editing. I remember having a sticky note here, Lippman says, pointing to his keyboard. The note simply read: Promoter CRISPR.

In plants as well as animals (and humans), there is part of the DNA that lies outside the protein-encoding segment of the gene and essentially regulates its output. This upstream patch of regulatory DNA is called the promoter, and it sets different levels of outputvolume, if you willfor specific genes, from a little to a lot. What if, Lippmans group asked, you could use Crispr to, in effect, adjust the volume of a particular gene, turning it up or down like a stereo knob, by mutating the promoter in different places?

The Long Island greenhouse is now full of examples of what happens. As they reported in Cell last October, Daniel Rodrguez-Leal and colleagues in Lippmans lab showed that, by mutating the promoter of the self-pruning gene in different places, they could adjust its output like a dimmer switch, producing subtle but important changes. By using Crispr to create varying doses of a gene, Lippman says, scientists can now find better versions of plants than nature ever provided.

But better for whom? One of Lippmans pet phrases is sweet spotthat point of genetic balance where desirable traits for agriculture can be improved without sacrificing essential features like flavor or shape. Now we can start to think about taking some of our best tomato varieties, and if they can flower faster, you can start to grow them in more northern latitudes, where the summers are shorter, he says. We can begin to imagine new crops, or new versions of existing crops, for urban agriculture, like tiered cropping that they have in these abandoned warehouses ... Adapt the plant so that its more compact, flowers faster, gives you a nice-sized fruit with a decent yield, in a very compressed growth setting, with the equivalent of protective agriculturegreenhouse conditionsbut with LED lights. Because every plant gene comes with its own promoter, this genetic tuning, as Lippman puts it, could apply to virtually any vegetable crop.

The sad reality is that industry is not really committed to making a better-tasting tomato.

Tuning is just one of many ways biologists are remaking the tomato. Last year, researchers at the Sainsbury Laboratory in England gene-edited a tomato variety called Moneymaker to be resistant to powdery mildew, and a Japanese research group recently created tomatoes without seeds. On the day in May that I set my first heirloom seedlings into the ground, I happened to have a Skype conversation with two plant biologists in Brazil who have taken the gene editing of tomatoes to a whole new level. In collaboration with the Voytas lab at the University of Minnesota, Agustin Zsgn of the University of Viosa and Lzaro Peres of the University of So Paulo claim to have, in essence, reverse-engineered the weedlike wild tomato believed to be the forerunner of all cultivated varieties. (They havent published this work to date, but have discussed it at meetings.) Rather than tweak a domesticated variety of tomato, they went back to square onethe wild plantand used Crispr to knock out a handful of genes all at once. The result? Where the wild plant was sprawling and weedy, the gene-edited tomato was compact and bushy; where the ancestral plant had pea-sized fruit, the gene-edited version had reasonably plump, cherry-sized tomatoes. The edited fruit also contained more lycopene, an important antioxidant, than any other known variety of tomato. The process is called de novo domestication.

We didnt go from pea-sized to beefsteak, but we went from pea-sized to cherry-sized, said Zsgn of this first attempt. And how did the tomatoes taste? They taste great! Peres insisted. In a similar vein, Lippman and Van Eck are domesticating the wild ground cherry in the hope that it can join blueberries and strawberries as one of the basic berry crops.

What makes the de novo approach so intriguing is that it takes advantage of all the accumulated botanical wisdom of a wild plant. Over tens of thousands of years of evolution, a wild species acquires traits of hardiness and resilience, such as resistance to disease and stress. Domestication eliminated some of those traits. Since those resistance traits typically involve a suite of genes, Peres says, they would be extremely difficult to introduce into domesticated tomatoes, via Crispr or any other technology. And the approach can exploit other extreme traits. Peres wants to domesticate a wild species from the Galapagos, which can tolerate extreme environmental conditions such as high salinity and droughttraits that might enhance food security in a future with enormous climate fluctuations.

Rising temperatures. Changing growing seasons. A rising global population. The environmental toll of herbicide overuse. What if gene editing, for example, could favor disease-resistance genes that would reduce pesticide use? Lippman asks. Thats not just feeding the world, thats protecting the planet.

Lippman, outside a tomato greenhouse: Ive eaten many gene-edited tomatoes, yeah.

Dolly Faibyshev

All this new plant scienceknocking out genes, fiddling with the volume knob of promoters, de novo domesticationis wonderfully creative and happening very fast. But sooner or later, the other shoe drops in the conversation. Will consumers want to eat these tomatoes? Are Crispr vegetables and grains simply new GMOs, as a number of environmental groups maintain, or are gene-edited plants intrinsically different? This is the beginning of the new conversation, Lippman says.

The old conversation was acrimonious and emotional. The initial GM foods that Monsanto introduced in the 1990s were transgenic, meaning that biologists used genetic engineering to introduce foreign DNA, from an unrelated species, into the plant. Gene editing is much more analogous to older forms of mutagenesis such as irradiation and chemicals, though much less scattershot. Rather than creating random mutations, Crispr targets specific genes. (Editing that misses its mark is possible, though Lippman hasnt detected any in his work.) That is why plant scientists have been so eager to use it, and why the USDA regards gene-edited knockouts as similar to earlier mutagens and thus not requiring special regulation. (In the case of knocking in, or adding, a gene to crop plants, the USDA has indicated it will assess on a case-by-case basis.) Some European countries have banned GMOs, and the European Union has yet to issue a final judgment on gene-edited plants.

Although multiple studies have failed to show that GMOs pose a threat to human health, public doubts persista Pew Research Center survey in 2016 indicated that 39 percent of Americans believe that genetically modified foods are less healthy than non-GMOs, and in his household, Lippman admits, his wife initially preferred not to eat his gene-edited tomatoes.

The domesticated tomato possesses thousands, perhaps millions, of spontaneous mutations that helped turn a forlorn, ground-hugging weed into the most popular American garden plant. Now scientists are using gene editing to create these mutations and optimize the plants.

self-pruningThis mutation affects the plants size, shape, and compactness and alone can change the wild, sprawling shrub into the orderly, compact crop familiar to gardeners.

self-pruning 5gThis affects the tomatos day-length sensitivity apparatus, allowing it to be grown during shorter summers at northern latitudes.

fasciatedThis mutation affects the plants size, shape, and compactness and alone can change the wild, sprawling shrub into the orderly, compact crop familiar to gardeners.

jointless-2This mutation eliminates a break point in the middle of the stem, just above the fruit, facilitating mechanical harvesting.

lycopene beta-cyclaseThis mutation increases the fruits lycopene, the chemical that gives the tomato its red color.

There are other reasons that genetically altered foods continue to arouse suspicion. Monsantos early GMO effort used a revolutionary technology not to make healthier or more environmentally sustainable foods but to confer resistance in soybean and corn to the companys proprietary herbicide, Roundup. The companys aggressive promotion of such a self-serving first product was considered a public relations disaster.

Big agribusinesses are now positioning themselves to take advantage of gene editing. A recent rash of mergers has created three giant multinationals in global agriculture: Bayer (which completed its acquisition of Monsanto this year), DowDuPont (following Duponts earlier merger with Dow Chemical), and Syngenta (which was acquired last year by the huge Chinese gene-editing company ChemChina). The intellectual property issues are possibly more complex than plant genetics. Both the Broad Institute and DuPont Pioneer hold basic Crispr patents that apply to agriculture, and the two entities teamed up last fall to jointly negotiate licenses for farming applications (all three giant agribusinesses have licensed the technology). According to agricultural sources, the right to use Crispr for commercial agriculture requires an upfront fee, annual royalty payments on sales, and other conditions. (The Broad Institute did not discuss licensing terms, except to say that it is not involved in product development.)

This is where gene editing bumps up against the harsh economics of agriculture. Academic scientists can conduct basic research with Crispr without paying a licensing fee. But thats as far as it goes. I cant develop products and start to sell them, Lippman says. Commercial development requires payment of a licensing feea cost more easily borne by deep-pocketed agricultural companies.

There are some smaller biotechs seeking to maneuver around the giant companies and the intellectual property obstacles. Calyxt, a Minnesota-based firm cofounded by Voytas, has already received USDA approval to grow several crops using an earlier and more-difficult-to-use gene-editing technology known as TALENs. Lippman consults for a Massachusetts startup called Inari. Benson Hill Biosystems, based in St. Louis, has been working on improving plant productivity using a patented set of new gene-editing scissors the company calls Crispr 3.0. But CEO Matthew Crisp (yes, thats his name) claims innovation is being stifled by an intellectual property landscape that is very murky. Benson Hills partners and prospective licensees, he says, have complained that commercial rights to Crispr gene-editing technology are too expensive, too cumbersome, or too uncertain. The discovery of new gene-editing enzymes and other innovations may complicate the patent landscape even more. As one source put it, Its a mess. And its only going to get worse.

Thats why theres a lot of attention focused on a new startup called Pairwise Plants, in which Monsanto has teamed up with several Crispr pioneers from the Broad Institute. Recent statements to Bloomberg by company CEO Tom Adams, a former vice president of Monsanto, stressing new crops that are really beneficial to people, raised some eyebrows. You know, its not Monsanto language, Voytas noted. And the Monsanto pedigree has some plant biologists concerned. The question will be: They have enormous baggage in terms of consumer acceptance, Lippman says. And if they botch it, theyre going to ruin it for everybody else. Everyone is sort of holding their breath.

Trays for germinating tomato seeds.

Dolly Faibyshev

Physalis pruinosa plants at the Boyce Thompson Institute in Ithaca.

Dolly Faibyshev

Heres a simpler question: What about flavor? When I asked Harry Klee if he had tasted any of the jointless 8059 tomatoes hes growing, he laughed and said he hadnt bothered. We know that Florida 8059 by itself doesnt really have too much taste to begin with. A better-tasting tomato always plays second fiddle to market economics. The majority of tomatoes grown in Florida, for example, go to the food service industryto the McDonalds and Subways, Klee says. The sad reality, Klee says, is that industry is not really committed to making a better-tasting tomato. Klee loves to talk about tastehe heads a group that identified about two dozen genetic regions related to exceptional tomato flavor. We know exactly how to give you a sweeter tomato that will taste better, he says. But those tomatoes are not as economically attractive to producers. The growers wont accept it.

What about consumers? Would they accept a gene-edited tomato if it tasted better? Or, to put it in a slightly more idiosyncratic way, would it be botanical blasphemy to gene-edit an heirloom?

In his tour of the greenhouse, Lippman paused at one point to express good-natured scorn for heirlooms. They are terrific tomatoes, he admits, but pretty crappy producers. From personal experience, I can confirm that heirlooms are finicky plants and stingy producers, with lousy immune systemsmost of all, theyre heartbreakers, at least in the backyard. They start out like Usain Bolt in the 100 meters and end up looking spent, shriveled, hobbled by all manner of wilts and fungi and pests, leaves drooping like brown funereal crepe. It was tempting to think of using the new genetic tools to improve them. Klee is very anxious to introduce gene editing into the home garden. He thinks gardeners like me might be the place to make the argument that gene-edited tomatoes are not GMOs.

What if I could give you a Brandywine that had high lycopene, longer shelf life, and was a more compact plant? Klee asked me. I could do all of those today, with knocking out genes and genome editing. And I could give you something that was virtually identical to Brandywine that was half as tall and had fruit that didnt soften in less than a day, and were deep, deep red with high lycopene. I mean, would you grow that?

Absolutely! I told him.

I think most people would grow that, he replied. I think this could be a huge opportunity to educate home gardeners in what plant breeding is all about.

Not everyone would agree with Klee (or me). Voytas, a pioneer of gene editing in plants, chuckled when I asked him about a gene-edited heirloom. You know, part of it is, theyre heirloom, he said. The name inherently suggests this is something of value from the past. Not something new and techy. More to the point, he reminded me of the sort of outrageous licensing fees for the gene-editing technology. So your heirloom tomato idea would never be financially lucrative enough to pay the requisite licensing fees.

The bottom line: Gene-edited tomatoes are probably on their way to the market. But tomatoes with better flavor? Probably not going to happen anytime soon.

In early June, Zach Lippman went back to being a farmer. On what initially seemed like a sunny day, he and a dozen coworkers got their hands dirty transplanting some 8,000 gene-edited tomato plants into an outdoor field on the grounds of Cold Spring Harbor Laboratory. There were lots of the familiar mutantsjointless, self-pruning, daylight insensitivity. (The outdoor planting required prior approval from the USDA.) Plant em deep! he cried, as the crew raced to get the tomato seedlings in the ground under suddenly darkening skies.

The ultimate fate of the gene-edited tomato is as unpredictable as the weather, but the fate of these particular tomatoes is less of a mystery. Lippman often takes them home. Ive eaten many gene-edited tomatoes, yeah, he laughs. (Not surprisingly, he finds absolutely nothing different about them.) Theyre not GMO, he insists. Its just that youre left with what would be equivalent to a natural mutation. So why not eat it? Its one of just thousands or millions of mutations that may or may not affect the health of the plant and were still eating them!

Stephen S. Hall is the author of six books and teaches science writing at New York University.

This article appears in the August issue. Subscribe now.

Listen to this story, and other WIRED features, on the Audm app

The rest is here:
Crispr Can Speed Up Natureand Change How We Grow Food | WIRED

Recommendation and review posted by Bethany Smith

Hemophilia Gene Therapy Market 2019 to Showing Impressive …

Apr 12, 2019 (The Expresswire via COMTEX) -- Hemophilia Gene Therapy Market report is a complete study of current trends in the Market, industry growth drivers, and restraints. It provides Market forecasts for the coming years

Global Hemophilia Gene Therapy Market report observes different predilections, obstructions, and difficulties looked by the best makers/Economy by Business Leaders contenders of Complete Reports Hemophilia Gene Therapy market. Our specialists' group has considered every single angle directly from the piece of the pie, size, status, and development.

Get Sample copy of this report @

Synopsis of the Hemophilia Gene Therapy Market: -

Hemophilia Gene Therapymarket competition by top manufacturers/ Key player/ Economy by Business Leaders: Spark Therapeutics, Ultragenyx, Shire PLC, Sangamo Therapeutics, Bioverativ, BioMarin, uniQure, Freeline Therapeutics,. And More

Hemophilia is a rare bleeding disorder in which the blood does not clot normally. Hemophilia is a monogenic disease (a disease that is caused by a genetic defect in a single gene). There are two types of hemophilia caused by mutations in genes that encode protein factors which help the blood clot and stop bleeding when blood vessels are injured. Individuals with hemophilia experience bleeding episodes after injuries and spontaneous bleeding episodes that often lead to joint disease such as arthritis. The most frequent forms of hemophilia affect males.

Hemophilia Gene Therapy Market Segment by Type covers:

Hemophilia Gene Therapy Market Segment by Applications can be divided into:

Scope of theHemophilia Gene Therapy MarketReport:

Hemophilia Gene Therapy Market Segment by Regions, regional analysis covers

PurchaseHemophilia Gene Therapy MarketReport, Click Here @

The report deeply displays the global Hemophilia Gene Therapy Market.

Get pre-order-inquiry of Report with Your Corporate E-mail ID:


The next part also sheds light on the gap between supply and consumption. Apart from the mentioned information,growth rateof Hemophilia Gene Therapy market in 2024is also explained.Additionally, type wise and application wise consumptiontables andfiguresof Hemophilia Gene Therapy marketare also given.

Table of Contents

Market Overview 1.1 Hemophilia Gene Therapy Introduction 1.2 Market Analysis by Type 1.3 Market Analysis by Applications 1.4 Market Analysis by Regions 1.4.1 North America (United States, Canada and Mexico) United States Market States and Outlook (2013-2023) Canada Market States and Outlook (2013-2023) Mexico Market States and Outlook (2013-2023) 1.4.2 Europe (Germany, France, UK, Russia and Italy) Germany Market States and Outlook (2013-2023) France Market States and Outlook (2013-2023) UK Market States and Outlook (2013-2023) Russia Market States and Outlook (2013-2023) Italy Market States and Outlook (2013-2023) 1.4.3 Asia-Pacific (China, Japan, Korea, India and Southeast Asia) China Market States and Outlook (2013-2023) Japan Market States and Outlook (2013-2023) Korea Market States and Outlook (2013-2023) India Market States and Outlook (2013-2023) Southeast Asia Market States and Outlook (2013-2023) 1.4.4 South America, Middle East and Africa Brazil Market States and Outlook (2013-2023) Egypt Market States and Outlook (2013-2023) Saudi Arabia Market States and Outlook (2013-2023) South Africa Market States and Outlook (2013-2023) Nigeria Market States and Outlook (2013-2023) 1.5 Market Dynamics 1.5.1 Market Opportunities 1.5.2 Market Risk 1.5.3 Market Driving Force 2 Manufacturers Profiles

3 Global Hemophilia Gene Therapy Market Analysis by Regions

4 Global Hemophilia Gene Therapy Market Competition, by Manufacturer

5 Sales Channel, Distributors, Traders and Dealers


About 360 Market Updates:

360 Market Updates is the credible source for gaining the market research reports that will exponentially accelerate your business. We are among the leading report resellers in the business world committed towards optimizing your business. The reports we provide are based on a research that covers a magnitude of factors such as technological evolution, economic shifts and a detailed study of market segments.


Mr. Ajay More

Phone:+14242530807 / + 44 20 3239 8187

Press Release Distributed by The Express Wire

To view the original version on The Express Wire visit Hemophilia Gene Therapy Market 2019 to Showing Impressive Growth by 2024 | Industry Trends, Share, Size, Top Key Players Analysis and Forecast Research

View original post here:
Hemophilia Gene Therapy Market 2019 to Showing Impressive ...

Recommendation and review posted by Bethany Smith

Stem Cell Treatment Cardiovascular Disease, Heart Disease …

Cardiovascular disease, also called heart disease, is a broad medical term used to describe a group of conditions that affect the blood vessels or the heart. It is the most common cause of death worldwide.1

Conditions of cardiovascular disease include:

The Stem Cells Transplant Institutein Costa Rica, uses adult autologous stem cells for the treatment of cardiovascular disease (heart disease). The symptoms of cardiovascular disease will depend on the specific type of heart disease.

Treatment at the Stem Cells Transplant Institute could help improve the symptoms of cardiovascular disease such as:

Heart disease and cardiovascular disease are often used interchangeably. These terms refer to a group of conditions that affect the blood vessels and heart. Valvular heart disease affects how the valves pump blood flow in and out of the heart. Cardiomyopathy affects the contractions of the heart muscle. Heart arrhythmias are disturbances in the electrical conduction making the heart beat irregular. Coronary artery disease is the most common cause of cardiovascular disease and stem cell therapy may be an effective treatment.

Coronary artery disease is caused by atherosclerosis, the buildup of plaque, causing a narrowing or blocking the blood vessels in the coronary arteries. Coronary artery disease is the leading cause of cardiovascular disease. Atherosclerosis can lead to chest pain, heart attack or stroke.

Coronary arteries carry oxygen rich blood to the heart. Plaque is caused by the presence of cholesterol, calcium, fat, and other substances in the blood. When plaque builds up in the blood vessels it narrows the arteries causing them to harden and weaken, reducing the amount of oxygen rich blood to the heart. As a result, the heart cannot pump blood effectively to the rest of the body potentially leading to heart failure and ultimately death.

If the plaque building up in the coronary arteries breaks, a blood clot forms around the plaque. If the clot cuts off the blood flow to the heart muscle completely, the heart muscle is unable to get the necessary oxygen and nutrients causing a part of the heart muscle to die. The result is a heart attack or myocardial infarction,

Coronary artery disease, high blood pressure or a previous heart attack can lead to the onset of heart failure. Heart failure is a chronic, progressive disease typically caused by another heart condition resulting in the heart muscle losing its ability to supply the rest of body with enough blood and oxygen.

Atherosclerosis can also cause peripheral artery disease. Peripheral arterial disease occurs when the narrowed peripheral arteries cannot send enough blood flow to the extremities, usually the legs. The most common symptoms of peripheral artery disease are; cramping, pain, and/or tiredness in the leg or hip muscles during exertion. The most severe symptom of peripheral artery disease is critical limb ischemia, pain at rest due to reduced blood flow to the limb.

Approximately 85% of strokes are ischemic strokes. Atherosclerosis is the most common cause of ischemic stroke. If the arteries become too narrow due to plaque buildup, the blood cells may collect and form a clot. A larger clot can block the artery where it is formed (thrombotic stroke) while a smaller clot may travel until it reaches an artery closer to the brain (embolic stroke). When the arteries to your brain become narrow or blocked, the required blood flow is reduced resulting in stroke. Other causes of ischemic stroke are clots due to an irregular heartbeat or heart attack.

Stem cell therapy at the Stem Cells Transplant Institute may be a good alternative for patients seeking a safe, non-surgical treatment for cardiovascular disease.

Notably, adult stem and progenitor cells including.mesenchymal stem cells have progressed into clinical trials and have shown positive benefits.5

Stem cell transplantation uses healthy cells to promote the repair of damaged cells and regeneration of healthy and functional cells to repair injured tissue.1 The therapeutic effect of stem cell transplantation in patients with cardiovascular disease may be due to the paracrine effect. The theory is transplanted stem cells repair damaged tissue by releasing factors that promote regeneration of healthy stem cells, reduce inflammation, promote the growth of new blood vessels, inhibit cell death, and reduce hypertrophy.1

The results of initial research using mesenchymal stem cell transplantation:

Heart Failure

Adipose derived stem cells improve left ventricular function, promote angiogenesis, lower fibrosis, and decrease inflammation. Several months following treatment, stem cells continue to migrate to the heart muscle regenerating and renewing healthy heart function. Stem cell therapy cannot help all patients with cardiovascular disease but for many patients stem cell therapy combined with lifestyle modification may be a safe, effective, non-surgical alternative treatment.

Lifestyle changes that can help improve cardiovascular disease include:

The Stem Cells Transplant Institute uses autologous mesenchymal stem cells for the treatment of cardiovascular disease. Autologous means the stem cells are collected from the recipient so the risk of rejection is virtually eliminated. Mesenchymal stem cells are one type of adult stem cells that are found in a variety of tissues including; adipose tissue, lung, bone marrow, and blood. Mesenchymal stem cells have several advantages over other types of stem cells; ability to migrate to sites of tissue injury, strong immunosuppressive effect, and better safety after infusion.2,3 Mesenchymal stem cells are a promising treatment for cardiovascular disease. Treatment at the Stem Cells Transplant Institute may improve the symptoms and long-term complications of cardiovascular disease.

A team of stem cell experts developed an FDA approved method and protocol for harvesting and isolating adipose derived stem cells for autologous reimplantation. The collection and use of adult stem cells does not require the destruction of embryos and for this reason, more U.S. federal funding is being spent on stem cell research.

The stem cells are administered intravenously.

Costa Rica has one of the best healthcare systems in world and is ranked among the highest for medical tourism. Using the most advanced technologies, the team of experts at The Stem Cells Transplant Institute believes in the potential of stem cell therapy for the treatment of cardiovascular disease. We are committed to providing personalized service and the highest quality of care to every patient. Contact us to see if stem cell therapy may be a treatment option for you.

1.Sun R.Advances in stem cell therapy for cardiovascular disease (Review). National Journal of Mol. Med. 38: 23-29, 2016. 2 Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, et al: Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308: 2369-2379, 2012.3 Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et al: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12: 459-465, 2006. 4 Mazo M, Planat-Bnard V, Abizanda G, Pelacho B, Lobon B, Gavira JJ, Peuelas I, Cemborain A, Pnicaud L, Laharrague P, et al: Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 10: 454-462, 2008. 5 Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease Luqia Hou,1,2 Am J Physiol Heart Circ Physiol 310: H455H465, 2016. 6 Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94: 678685, 2004. 7 Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109: 15431549, 2004.

8 Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrowderived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308: 23692379, 2012.

Go here to see the original:
Stem Cell Treatment Cardiovascular Disease, Heart Disease ...

Recommendation and review posted by Bethany Smith

Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

Presented At:Gibco - 24 Hours of Stem Cells Virtual Event

Presented By:Kapil Bharti - Stadtman Investigator, NIH, Unit on Ocular Stem Cell & Translational Research

Speaker Biography:Dr. Kapil Bharti holds a bachelor's degree in Biophysics from the Panjab University, Chandigarh, India, a master's degree in biotechnology from the M.S. Rao University, Baroda, India, and a diploma in molecular cell biology from Johann Wolfgang Goethe University, Frankfurt, Germany. He obtained his Ph.D. from the same institution, graduating summa cum laude. His Ph.D. work involved research in the areas of heat stress, chaperones, and epigenetics.

Webinar:Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

Webinar Abstract:Induced pluripotent stem (iPS) cells are a promising source of personalized therapy. These cells can provide immune-compatible autologous replacement tissue for the treatment of potentially all degenerative diseases. We are preparing a phase I clinical trial using iPS cell derived ocular tissue to treat age-related macular degeneration (AMD), one of the leading blinding diseases in the US. AMD is caused by the progressive degeneration of retinal pigment epithelium (RPE), a monolayer tissue that maintains vision by maintaining photoreceptor function and survival. Combining developmental biology with tissue engineering we have developed clinical-grade iPS cell derived RPE-patch on a biodegradable scaffold. This patch performs key RPE functions like phagocytosis of photoreceptor outer segments, ability to transport water from apical to basal side, and the ability to secrete cytokines in a polarized fashion. We confirmed the safety and efficacy of this replacement patch in animal models as part of a Phase I Investigational New Drug (IND)-application. Approval of this IND application will lead to transplantation of autologous iPS cell derived RPE-patch in patients with the advanced stage of AMD. Success of NEI autologous cell therapy project will help leverage other iPS cell-based trials making personalized cell therapy a common medical practice.

LabRoots on Social:Facebook: LinkedIn: Instagram: Pinterest: SnapChat: labroots_inc

Excerpt from:
Autologous iPS cell therapy for Macular Degeneration: From bench-to-bedside

Recommendation and review posted by Bethany Smith

Is Male Infertility Genetic? | Hereditary Fertility Issues …

Why does it matter if infertility has a genetic cause?

Developed in the early 1990s, assisted reproduction in the form of IVF and ICSI (intracytoplasmic sperm injection) is a revolutionary laboratory technique in which a single sperm is placed directly inside an egg for fertilization. This technique has opened the door to fertility for men who formerly had few available treatment options, as it allows men who were previously considered severely infertile or sterile the possibility of fatherhood. However, with ICSI sperm are chosen by laboratory technicians and not by nature and because of this, it is not clear what barriers to natural selection are altered. Thus, along with this technology comes the possibility of passing on to a child certain genetic issues that may have caused the fathers infertility, or even more severe conditions. Another reason to know whether male infertility is genetic or not is because classic treatments such asvaricocelerepair or medications given to improve male infertility. In fact, Dr Turek was one of the first to publishonthis issue, showing thatvaricocelerepair was not effective in improving fertility in men with genetic infertility. Because he recognized these issues early on, Dr. Turek, while at UCSF in 1997, founded the first formal genetic counseling and testing program for infertility in the U.S. Called the Program in the Genetics of Infertility (PROGENI), Dr.Tureksprogram has helped over 2000 patients at risk for genetic infertility to navigate the decision-making waters that surround this condition.

Men with infertility should be seen by a urologist for a thorough medical history, physical examination, and appropriate medical testing. If genetic infertility is a possibility, then a genetic counselor can help couples understand the possible reasons, offer appropriate genetic testing, and discuss the complex emotional and medical implications of the test results. The approach taken early on by Dr. Turek is outlined in Figure 1. Just like the medical diagnosis from a urologist or fertility specialist, information about family history plays a critical role in genetic risk assessment. This approach to genetic evaluation, termed non-prescriptive, has been the cornerstone of Dr. Tureks critically acclaimed clinical program that now has over a dozen publications contributing to our current knowledge in the field. It is important to note that a lack of family history of infertility or other medical problems does not eliminate or reduce the risk of genetic infertility. In fact, a family history review will often be unremarkable. However, family history can provide crucial supporting information toward making a genetic diagnosis (such as a family history of recurrent miscarriages or babies born with problems). Dr. Turek has published thathaving a genetic counselor obtainfamily history information is much more accurate than simply giving patients a written questionnaire to fill out and bring to their visit. A genetic counselor can also discuss appropriate genetic testing options and review the test results in patients in a meaningful way.

When speaking to Dr.Tureksgenetic counselor about genetic testing, keep in mind that he or she will not tell you what to do. Genetic counselors are trained to provide information, address questions and concerns, and support you in the decision making process. A genetic counselor does not assume which decisions are most appropriate for you.

Among the various infertility diagnoses that men have, some are more commonly associated with genetic causes. Diagnoses that can have genetic causes include men nonobstructive azoospermia (no sperm count), oligospermia (low sperm count), and congenital absence of the vas deferens. A list of some of the best- described causes of genetic male infertility and their frequencies and associated conditions are listed in Table 1.

Nonobstructiveazoospermiais defined aszero sperm countin the ejaculate due to an underlying sperm production problem within the testicles. This is quite different from obstructive azoospermia in which sperm production within the testes is normal, but there is a blockage in the reproductive tract ducts that prevents the sperm from leaving the body. There can be changes in the levels of reproductive hormones, such as follicle stimulating hormone (FSH), observed withnonobstructiveazoospermia. Most commonly, the FSH is elevated in this condition, which is an appropriate and safe hormone responseofthe pituitary gland to states of low or no sperm production. This diagnosis is associated with a 15%chance forhaving chromosome abnormalities(Figure 2) and a 13% chance for having gene regions missing on the Y chromosome (termed Y chromosome microdeletions, Figure3). To detect these changes, blood tests are typically offered to men with nonobstructive azoospermia.

Oligospermiathat places men at risk for genetic infertility occurs when the ejaculate contains a sperm concentration of

Congenital absence of the vas deferens is characterized by the malformation or absence of the ducts that allow sperm to pass from the testicles into the ejaculate and out of the body during ejaculation. The duct that is affectedinthis condition is thevasdeferens. This is the sameductthat is treated during a vasectomy, a procedure for men who want birth control. Men with this condition are essentially born with a natural vasectomy. This congenital condition is associated with mutations and/or variations in the genes for cystic fibrosis (the CFTR gene) in 70-80% men if thevasdeferensis absent on both sides, but less than this if the duct is missing on only one side. For most men with this condition with a mutation in the cystic fibrosis gene, the missingvasdeferensis the only problem that results from this genetic change and they do not have the full spectrum of symptoms associated with cystic fibrosis, the most common genetic disease in the U.S.andgenerally lethal in early adulthood.

A less common reason for mento havea zero sperm count (azoospermia) than nonobstructive azoospermia is obstructive azoospermia. In essence, this is an unexplained zero sperm count due to a blockage of the reproductive tract ducts leading from the testicle to the ejaculate. Blockages are most commonly found in theepididymisbut can also be located in thevasdeferensor ejaculatory ducts. Most cases of obstructive azoospermia are amendable to surgical repair and naturally fertility is common. However, a high proportion of these men (47%) have mutations in the cystic fibrosis gene (CFTR) or harbor variations in the CFTR gene, termed 5T alleles. As such, genetic counseling and testing is also important in these patients.

These conditions represent only the most common genetic conditions encountered when evaluating men for genetic infertility. For this reason, consider readingDr.Turekspublished paperthat discusses most of the currently understood syndromes and conditions that are associated with infertility. It is also important to remember that if all genetic test results are normal, there is still a possibility that the infertility has a genetic cause. However, in many cases, medical science is currently unable to offer testing to detect it.

If a man has a chromosome abnormality identified as the cause of infertility, then depending on the chromosome abnormality detected, there may be a higher risk for children to be born with birth defects or mental impairment. This occurs as a result of a child inheriting from the father an imbalance in chromosome material. A genetic counselor can provide more detailed information about such potential risks, and offer other resources for individuals who have been diagnosed with a chromosome abnormality. There may be support organizations available to help men with genetic diagnoses and their partners cope with the impact of this information. Some couples find it helpful to talk to others in similar circumstances.

If a man is diagnosed with a Y chromosome deletion, then he will pass on that Y chromosome deletion to anysonhe conceives. To his daughters, he will pass on his X chromosome, instead of the Y chromosome. It is assumed that any son inheriting a Y chromosome deletion from his father will also have infertility. It is unclear whether the type and severity of the infertility will be different from the fathers. So far, there have only been a few reports of sons born to fathers with Y chromosome deletions after conception by assisted reproduction. As expected, there has not been an increase in the rate of birth defects or other problems for these boys, although this group is still small in number, and too young to have fertility evaluations.

Transmission of CFTR mutations in cases of infertility due to congenital absence of the vasdeferensis somewhat more complex than either Ymicrodeletionsor a chromosome abnormality. This is because there are over 1400 described mutations in the CFTR gene and the impact of mutations differs depending on which one is present. In general, the partner of an affected man should be tested as well, so that the residual risk of a child having either congenital absence of the vas deferens or full-blown cystic fibrosis can be estimated.

Read the original here:
Is Male Infertility Genetic? | Hereditary Fertility Issues ...

Recommendation and review posted by Bethany Smith

About Hormone Clinics – Hormone Clinics

Welcome to the Hormone Clinic !

At the hormone clinics we have been helping men and women to live well and achieve peak performance at any age through hormone therapy.

Our medical director, Dr. Richard Gaines was one of the pioneers in hormone therapy for men and women. He, and all of the staff with the hormone clinic possess a unique insight and decades of experience in the safe and effective use of hormone replacement therapies such as HGH Therapy,Testosterone Therapy and Bio-Identical Hormone Therapy.

We use hormone therapy to give you back what time and nature can take away.

The hormone clinic takes a very different approach to hormone therapy than you will find at Cenegenics, or any other provider of hormone therapy. At the hormone clinic you will always be treated as an individual.

We tailor your hormone therapy to your unique needs and lifestyle. Beyond that, we incorporate your hormone therapy into a program of Holistic Health and Wellness.

It is an approach to hormone therapy that is designed to help you get the most out of your treatments, in mind, body and spirit.

During your hormone therapy, you will be assigned one of our Holistic Wellness coaches. He or she will work with you to design a program of fitness, diet, stress reduction and exercise that will help you to maximize, and maintain the benefits of your hormone therapy.

You will also find the cost of hormone therapy more reasonable at the hormone clinic than you would at most other providers of hormone therapy. This is not only because of our precise and individualized dosing. We have developed long-standing relationships with certified local compounding pharmacies, which helps us to keep the costs of our bioidentical hormones low.

Also, unlike some other hormone centers, The Hormone Clinic will never lock you into a long term hormone therapy program. In addition, The Hormone Clinic will never try to sell you products or supplements along with your hormone therapy that you do not need.

All of the doctors, physicians assistants, and nurse practitioners at the Hormone Clinic are highly trained and experienced in hormone therapy. Many of them are over 45 and on the program themselves, and are running marathons, racing motorcycles, climbing mountains, and doing other great things!

The Hormone Clinic is led by well-known expert in hormone therapy Dr. Richard Gaines. For decades, Dr. Gaines has been helping men and women of any age stay young, healthy, and accomplish great things in life, by offering customized hormone therapy.

In our Miami Beach location, our hormone clinic can provide you with not only the very best in Miami hormone therapy, but is also within the building of South Floridas first integrated wellness center.

As soon as you step into any hormone clinic location, you will know immediately that you are in a unique ultra-modern facility.

At the Hormone Clinic you will be treated with the ultimate in individualized medicine. At every point of contact with our hormone therapy staff you will receive executive treatment, all delivered in a setting that is as unique as you are.

Excerpt from:
About Hormone Clinics - Hormone Clinics

Recommendation and review posted by Bethany Smith

Low Rates of Genetic Testing in Ovarian, Breast Cancer …

April 9, 2019, by NCI Staff

Many women diagnosed with ovarian and breast cancers are not receiving tests for inherited genetic mutations, according to a new study.

Credit: iStock

Tests for inherited genetic mutations can provide women diagnosed with ovarian or breast cancer with important information that can have implications for family members and potentially guide treatment decisions and longer-term screening for second cancers. However, many women with ovarian and breast cancers are not receiving these genetic tests, a new study suggests.

An NCI-funded analysis of data on more than 83,000 women from large cancer registries in California and Georgia found that, in 2013 and 2014, only about one-quarter of women with breast cancer and one-third of women with ovarian cancer underwent testing for known harmful variants in breast and ovarian cancer susceptibility genes.

The study also found that among patients who did receive genetic testing, 8% of breast cancer patients and 15% of ovarian cancer patients had actionable gene variants, meaning variants that might warrant changes in treatment, screening, and risk-reduction strategies.

The findings, published April 9, 2019, in the Journal of Clinical Oncology, were surprising, especially the low rate of testing among women with ovarian cancer, said lead author Allison Kurian, M.D., M.Sc., of Stanford University School of Medicine.

Genetic testing has become quite cheap and accessible, and this study includes a time period when it was becoming much cheaper, so its striking that we still see low rates of testing, Dr. Kurian said. I think that suggests that there are most likely other barriers outside of cost.

The study also revealed racial and socioeconomic disparities in testing rates among women diagnosed with ovarian cancer. Genetic testing rates were far lower for black women than for white women, and they were also lower for uninsured patients than for insured patients.

These findings have uncovered a [disparities] gap that is much more substantial than I would have thought, Dr. Kurian said.

About 15% of ovarian cancers are caused by inherited mutations, and several medical organizations recommend that all women diagnosed with ovarian cancer receive genetic testing.

For women with breast cancer, the recommendations for genetic counseling and testing are generally more limited, typically relying on factors such as age at cancer diagnosis and family history. However, some organizations, including the American Society of Breast Surgeons, recommend that genetic testing be made available to all women diagnosed with breast cancer.

There are many reasons why women with ovarian and breast cancer would get tested, Dr. Kurian explained.

We know that if patients have a specific inherited gene mutation, they will likely have more benefit from a new class of drugs called PARP inhibitors, she said.

The Food and Drug Administration has approved three PARP inhibitors for BRCA1-and BRCA2-associated ovarian cancer and two for BRCA1/2-associated metastatic breast cancer. Harmful variants of both BRCA1 and BRCA2 are known to increase the risk of breast and ovarian cancer, as well as of several other types of cancer.

Another reason to get tested is that patients with a genetic mutation that is associated with breast or ovarian cancer may be at higher risk of a second cancer, so you dont want to miss a second cancer that could be a problem, Dr. Kurian said.

The findings could also be life-saving information for a patients relatives. If you find that she carries a mutation, every first-degree relative, male or female, has a 50% chance of having the same mutation, she said.

Testing, then, could allow for enhanced screening and prevention for family members who are carriers, she explained.

The study included all women older than age 20 who were diagnosed with breast or ovarian cancer in California and Georgia from 20132014 and whose data were reported to NCIs Surveillance, Epidemiology and End Results (SEER) registries. There were 77,085 patients with breast cancer and 6,001 with ovarian cancer. The registry data were linked to results from four laboratories that performed nearly all the genetic testing for inherited, or germline, mutations in these states during the study period.

According to the authors, this is the first population study of hereditary cancer genetic testing in the United States with laboratory-confirmed testing results.

Weve never had this kind of linkage available before, giving us a baseline to let us know if the standard of care [for testing] was being followed, said study coauthor Lynne Penberthy, M.D., M.P.H., associate director for NCIs Surveillance Research Program. Thats why this is really important. These data can be used to see where we are and where were going. We can continue to provide this information, so people can see, hopefully, an increase in the appropriate use of genetic testing over time.

Linking the SEER registry data to the testing data in this study provides really objective data about the massive undertesting of ovarian cancer patients, said Susan Domchek, M.D., executive director of the Basser Center for BRCA at the University of Pennsylvania Abramson Cancer Center, who was not involved in the study.

Testing is recommended for all patients with ovarian cancer, she added, so the fact that only one-third of these patients had it done in this time period is a clear-cut example that were not testing ovarian cancer patients the way that we should be.

While large racial and socioeconomic disparities in testing rates were not observed among women with breast cancer, among women with ovarian cancer, testing rates were far lower in black women than white women (21.6% versus 33.8%) and in uninsured women than insured women (20.8% versus 35.3%).

Understanding why genetic testing rates are so low in women with ovarian cancer and why racial and socioeconomic disparities in testing exist among women with the disease is tricky, Dr. Kurian said.

Testing in ovarian cancer has not been widely studied beforedefinitely not at the population leveland not in such a diverse population, she added, so theres a lot we dont know about barriers.

For example, she said, its unclear whether genetic testing is on the radar screen of doctors treating patients with ovarian cancer as much as it is for patients with breast cancer. Dr. Domchek said there could also be misconceptions among patients about the costs of genetic testing.

But if access to genetic counseling or information on testing is difficult, clearing up these misconceptions can be a challenge, she said. So, trying to figure out how to better streamline [counseling and education] into practice to make sure all of these individuals with ovarian cancer get tested is a subject of ongoing research.

Dr. Domchek noted that NCI is looking to fund studies that offer genetic testing to women with a personal or family history of ovarian cancer to see if it can help to identify members of their families who may be at increased cancer risk.

Although variants in the BRCA1 and BRCA2 genes were the most frequently found in the study, the laboratories also looked for other inherited cancer-related genetic mutations using tests known as multigene panels.

The results provide an understanding, on a broader scale, of how common these mutations are, Dr. Kurian said.

The multigene panel testing led to other noteworthy findings, Dr. Penberthy said.

What was really interesting was that while BRCA1 and BRCA2 were the most common germline mutations that we found in the study, there were other mutations that were not uncommon and that were actionable in terms of treatment as well, she explained.

For example, 60 women with breast cancer in the study had a mutation in the CDH1, PALB2, or PTEN genes. These mutations are associated with a substantially increased breast cancer risk, Dr. Kurian said, so women who have these mutations may consider having both breasts removed (a risk-reducing bilateral mastectomy), rather than just the breast in which the tumor was found.

And widely used clinical guidelines recommend that women with breast cancer who have certain inherited genetic mutations,including in genes such as ATM and CHEK2,undergo more intensive screening for second cancers. In the study, mutations in ATM and CHEK2 were found in 0.7% and 1.6% of women with breast cancer, respectively.

Mutations in CHEK2 and PALB2and several other genes were found both in women with breast cancer and women with ovarian cancer. Studies havent yet linked these genes with increased ovarian cancer risk, so further study is warranted, the authors wrote.

However, the key message from this study is the undertesting of ovarian cancer patients, who clearly need it, Dr. Domchek said.

Its not to say we shouldnt debate population screening [for inherited mutations], or which genes to test for, and how were going to do it, she said. But first, for heavens sake, lets test the people who absolutely need testing, not only because it impacts family members, but also because now we have first-line therapy with PARP inhibitors. Every woman with ovarian cancer should know her BRCA1 or BRCA2 status.

Originally posted here:
Low Rates of Genetic Testing in Ovarian, Breast Cancer ...

Recommendation and review posted by Bethany Smith

Genetic testing –

The originating document has been archived. We cannot confirm the completeness, accuracy and currency of the content.

Medically reviewed on Jul 19, 2018

Genetic testing involves examining your DNA, the chemical database that carries instructions for your body's functions. Genetic testing can reveal changes or alterations in your genes that may cause illness or disease.

Although genetic testing can provide important information for diagnosing, treating and preventing illness, there are limitations. For example, if you're a healthy person, a positive result from genetic testing doesn't always mean you will develop a disease. On the other hand, in some situations, a negative result doesn't guarantee that you won't have a certain disorder.

Talking to your doctor or a genetic counselor about what you will do with the results is an important step in the process of genetic testing.

Several types of genetic testing are done for different reasons:

Before you undergo genetic testing, gather as much information as you can about your family's medical history. Then, talk with your doctor or a genetic counselor about your personal and family medical history. This can help you better understand your risk. Discuss questions or concerns you have about genetic testing at that meeting. Also, talk about your options, depending on the results of the test.

If you are being tested for a genetic disorder that runs in families, you may want to consider discussing your decision to undergo genetic testing with your family. Having these conversations before testing can give you a sense of how your family might respond to your test results and how it will affect them.

Not all health insurance pays for genetic testing. So, before you have a genetic test, check with your insurance provider to see what will be covered. In the United States, the federal Genetic Information Nondiscrimination Act (GINA) helps prevent health insurers or employers from discriminating against you based on test results. Most states offer additional protection.

Your doctor, medical geneticist or nurse practitioner may administer a genetic test. Depending on the type of test, a sample of your blood, skin, amniotic fluid or other tissue will be collected and sent to a lab for analysis.

The amount of time it takes for you to receive your genetic testing results will depend on the type of test and your health care facility. Talk to your doctor before the test about when you can expect the results. The lab will likely provide the test results to your doctor in writing. Your doctor can then discuss them with you.

If the genetic test result is positive, that means the genetic alteration that was being tested for was detected. The steps you take after you receive a positive result will depend on the reason you underwent genetic testing. If the purpose was to diagnose a specific disease or condition, a positive result will help you and your doctor determine the right treatment and management plan.

If you were tested to find out if you are carrying an altered gene that could cause disease in your child, and the test is positive, your doctor or a genetic counselor can help you determine your child's risk of actually developing the disease. The test results can also provide information to consider as you and your partner make family planning decisions.

If you were having gene testing to determine if you might develop a certain disease, a positive test doesn't necessarily mean you will get that disorder. For example, having a breast cancer gene (BRCA1 or BRCA2) means you are at high risk of developing breast cancer at some point in your life, but it doesn't indicate with certainty that you will get breast cancer. However, there are some conditions, such as Huntington's disease, for which having the altered gene does indicate that the disease will eventually develop.

Talk to your doctor about what a positive result means for you. In some cases, you can make lifestyle changes that may decrease your risk of developing a disease, even if you have an altered gene that makes you more susceptible to a disorder. Results may also help you make choices related to family planning, careers and insurance coverage.

In addition, you may choose to participate in research or registries related to your genetic disorder or condition. These options may help you stay updated with new developments in prevention or treatment.

A negative result means a genetic alteration was not detected by the test. But a negative result doesn't guarantee that you don't have an alteration. The accuracy of genetic tests to detect alterations varies, depending on the condition being tested for and whether or not an alteration has been previously identified in a family member.

Even if you don't have the genetic alteration, that doesn't necessarily mean you will never get the disease. For example, people who don't have a breast cancer gene (BRCA1 or BRCA2) can still develop breast cancer. Also, genetic testing may not be able to detect all genetic defects.

In some cases, a genetic test may not be able to provide helpful information about the gene in question. Everyone has variations in the way genes appear (polymorphisms), and often, these variations don't affect your health. But sometimes it can be difficult to distinguish between a disease-causing gene alteration and a harmless gene variation. In these situations, follow-up testing may be necessary.

No matter what the results of your genetic testing, talk with your doctor or genetic counselor about questions or concerns you may have. This will help you understand what the results mean for you and your family.

Last updated: July 19th, 2013

1998-2017 Mayo Foundation for Medical Education and Research (MFMER). All rights reserved. Terms of use

See original here:
Genetic testing -

Recommendation and review posted by Bethany Smith

What are the types of genetic tests? – Genetics Home …

Genetic testing can provide information about a person's genes and chromosomes. Available types of testing include:

Newborn screening is used just after birth to identify genetic disorders that can be treated early in life. Millions of babies are tested each year in the United States. All states currently test infants for phenylketonuria (a genetic disorder that causes intellectual disability if left untreated) and congenital hypothyroidism (a disorder of the thyroid gland). Most states also test for other genetic disorders.

Diagnostic testing is used to identify or rule out a specific genetic or chromosomal condition. In many cases, genetic testing is used to confirm a diagnosis when a particular condition is suspected based on physical signs and symptoms. Diagnostic testing can be performed before birth or at any time during a person's life, but is not available for all genes or all genetic conditions. The results of a diagnostic test can influence a person's choices about health care and the management of the disorder.

Carrier testing is used to identify people who carry one copy of a gene mutation that, when present in two copies, causes a genetic disorder. This type of testing is offered to individuals who have a family history of a genetic disorder and to people in certain ethnic groups with an increased risk of specific genetic conditions. If both parents are tested, the test can provide information about a couple's risk of having a child with a genetic condition.

Prenatal testing is used to detect changes in a fetus's genes or chromosomes before birth. This type of testing is offered during pregnancy if there is an increased risk that the baby will have a genetic or chromosomal disorder. In some cases, prenatal testing can lessen a couple's uncertainty or help them make decisions about a pregnancy. It cannot identify all possible inherited disorders and birth defects, however.

Preimplantation testing, also called preimplantation genetic diagnosis (PGD), is a specialized technique that can reduce the risk of having a child with a particular genetic or chromosomal disorder. It is used to detect genetic changes in embryos that were created using assisted reproductive techniques such as in-vitro fertilization. In-vitro fertilization involves removing egg cells from a womans ovaries and fertilizing them with sperm cells outside the body. To perform preimplantation testing, a small number of cells are taken from these embryos and tested for certain genetic changes. Only embryos without these changes are implanted in the uterus to initiate a pregnancy.

Predictive and presymptomatic types of testing are used to detect gene mutations associated with disorders that appear after birth, often later in life. These tests can be helpful to people who have a family member with a genetic disorder, but who have no features of the disorder themselves at the time of testing. Predictive testing can identify mutations that increase a person's risk of developing disorders with a genetic basis, such as certain types of cancer. Presymptomatic testing can determine whether a person will develop a genetic disorder, such as hereditary hemochromatosis (an iron overload disorder), before any signs or symptoms appear. The results of predictive and presymptomatic testing can provide information about a persons risk of developing a specific disorder and help with making decisions about medical care.

Forensic testing uses DNA sequences to identify an individual for legal purposes. Unlike the tests described above, forensic testing is not used to detect gene mutations associated with disease. This type of testing can identify crime or catastrophe victims, rule out or implicate a crime suspect, or establish biological relationships between people (for example, paternity).

View post:
What are the types of genetic tests? - Genetics Home ...

Recommendation and review posted by Bethany Smith AncestryDNA: Genetic Testing Ethnicity: Health …

').appendTo(flyout.elem());var panelGroup=flyout.getName()+'SubCats';var hideTimeout=null;var sloppyTrigger=createSloppyTrigger($parent);var showParent=function(){if(hideTimeout){clearTimeout(hideTimeout);hideTimeout=null;} if(visible){return;} var height=$('#nav-flyout-shopAll').height(); $parent.css({'height': height});$parent.animate({width:'show'},{duration:200,complete:function(){$parent.css({overflow:'visible'});}});visible=true;};var hideParentNow=function(){$parent.stop().css({overflow:'hidden',display:'none',width:'auto',height:'auto'});panels.hideAll({group:panelGroup});visible=false;if(hideTimeout){clearTimeout(hideTimeout);hideTimeout=null;}};var hideParent=function(){if(!visible){return;} if(hideTimeout){clearTimeout(hideTimeout);hideTimeout=null;} hideTimeout=setTimeout(hideParentNow,10);};flyout.onHide(function(){sloppyTrigger.disable();hideParentNow();this.elem().hide();});var addPanel=function($link,panelKey){var panel=dataPanel({className:'nav-subcat',dataKey:panelKey,groups:[panelGroup],spinner:false,visible:false});if(!flyoutDebug){var mouseout=mouseOutUtility();mouseout.add(flyout.elem());mouseout.action(function(){panel.hide();});mouseout.enable();} var a11y=a11yHandler({link:$link,onEscape:function(){panel.hide();$link.focus();}});var logPanelInteraction=function(promoID,wlTriggers){var logNow=$F.once().on(function(){var panelEvent=$.extend({},event,{id:promoID});if(config.browsePromos&&!!config.browsePromos[promoID]){panelEvent.bp=1;} logEvent(panelEvent);phoneHome.trigger(wlTriggers);});if(panel.isVisible()&&panel.hasInteracted()){logNow();}else{panel.onInteract(logNow);}};panel.onData(function(data){renderPromo(data.promoID,panel.elem());logPanelInteraction(data.promoID,data.wlTriggers);});panel.onShow(function(){var columnCount=$('.nav-column',panel.elem()).length;panel.elem().addClass('nav-colcount-'+columnCount);showParent();var $subCatLinks=$('.nav-subcat-links > a',panel.elem());var length=$subCatLinks.length;if(length>0){var firstElementLeftPos=$subCatLinks.eq(0).offset().left;for(var i=1;i'+ catTitle+'');panel.elem().prepend($subPanelTitle);}} $link.addClass('nav-active');});panel.onHide(function(){$link.removeClass('nav-active');hideParent();a11y.disable();sloppyTrigger.disable();});panel.onShow(function(){a11y.elems($('a, area',panel.elem()));});sloppyTrigger.register($link,panel);if(flyoutDebug){${if(panel.isVisible()){panel.hide();}else{;}});} var panelKeyHandler=onKey($link,function(){if(this.isEnter()||this.isSpace()){;}},'keydown',false);$link.focus(function(){panelKeyHandler.bind();}).blur(function(){panelKeyHandler.unbind();});panel.elem().appendTo($parent);};var hideParentAndResetTrigger=function(){hideParent();sloppyTrigger.disable();};for(var i=0;i Skip to main content Image Unavailable

Image not available forColor:

Your Shopping Cart is empty.

Give it purposefill it with books, DVDs, clothes, electronics, and more.

If you already have an account, sign in.

Read the original here: AncestryDNA: Genetic Testing Ethnicity: Health ...

Recommendation and review posted by Bethany Smith

Hypogonadism | California Center for Pituitary Disorders

Hypogonadism is separated into two types: primary hypogonadism (resulting from dysfunction of the testis or ovary) or central hypogonadism (resulting from pituitary or hypothalamic dysfunction that leads to loss of lutenizing horomne [LH] and follicle-stimulating hormone [FSH]).

Causes of hypogondaism include genetic, menopausual, autoimmune, viral, radiation, and chemotherapeutic agents. Central hypogonadism is often due to pituitary adenomas. Through compression of the gland, these tumors can cause destruction of pituitary tissue or interference with gonadotropin-releasing hormone (GnRH) input from the hypothalamus. Gonadotropin dysfunction is the second most common hormonal disorder from compression of the pituitary gland from a pituitary adenoma after GH suppression. Hypothalamic disorders such as tumors and hypothalamic amenorrhea, as well as exposure to radiation, can lead to hypogonadism. Fasting, weight loss, anorexia nervosa, bulimia, exercise, or stressful conditions result in defects in pulsatile GnRH secretion ("hypothalamic amenorrhea"). Elevated prolactin levels can also suppress GnRH pulses and lead to hypothalamic hypogonadism. Diagonisis requires measurement of LH, FSH, and testosterone or estrogen, with reference to age-adjusted normal values.

Hypogonadism in prepubertal children causes no symptoms, whereas in adolescents, it leads to delayed or absent sexual development.

In adult women, hypogonadism causes:

Prolonged periods of hypogonadism can cause osteoporosis.

In men, hypogonadism leads to:

Most cases of hypogonadism can be successfully treated. Treatment of hypogonadism in men and premenopausal women is effectively accomplished by replacement hormonal therapy. Fertility can be restored by administration of human chorionic gonadotropin, which acts like LH, often in combination with FSH, or by the pulsatile administration of GnRH. Treatment for hypogonadism resulting from a pituitary tumor includes surgery to remove the tumor.

View post:
Hypogonadism | California Center for Pituitary Disorders

Recommendation and review posted by Bethany Smith

Banking Menstrual Stem Cells | What are Menstrual Stem …

Stem cells in menstrual blood have similar regenerative capabilities as thestem cells in umbilical cord blood and bone marrow. Cryo-Cell's patent-pendingmenstrual stem cell service offers women in their reproductive years the ability to store and preserve these cells for potential use by herself or a family memberfree from ethical or political controversy.

Cryo-Cell is the only stem cell bank in the world that can offer womenthe reassurance and peace of mind that comes with this opportunity.

What are menstrual stem cells?Stem cells in menstrual blood are highly proliferativeandpossess the unique ability to develop into various other types of healthy cells. During a womans menstrual cycle, these valuable stem cells are discarded.

Cryo-Cell'smenstrual stem cell bankingservice captures those self-renewing stem cells, processes and cryopreserves them for emerging cellular therapies that hold the promise of potentially treatinglife-threatening diseases.

How are menstrual stem cells collected, processed and stored?The menstrual blood is collected in a physicians officeusing a medical-grade silicone cup in place of a tampon orsanitary napkin. The sample is shipped to Cryo-Cell via a medical courier and processed in our state-of-the-art ISO Class 7 clean room.

The menstrual stem cells are stored in two cryovials that are overwrapped to safeguard them during storage. The overwrapped vials are cryogenically preserved in a facility that isclosely monitored at all times to ensure that your menstrual stem cells are safe and ready for future use.

What are the benefits of banking menstrual stem cells?Cryo-Cell's innovative menstrual stem cell banking service provides women with the exclusive opportunity to build their own personal healthcare portfolio with stem cells that will be a 100% match for the donor. Menstrual stem cells have demonstrated the capability of differentiating into many other types of stem cells such as cardiac, neural, bone, fat and cartilage.

Bankingmenstrual stem cells now is an investment in your future medical needs. Currently, they are being studied to treat stroke, heart disease, diabetes, neurodegenerative disease, and ischemic wounds in pre-clinical and clinical models.

Cryo-Cells activities for New York State residents are limited to collection, processing, and long-term storage ofmenstrual stem cells. Cryo-Cells possession of a New York State license for such collection, processing, and long-term storage does not indicate approval or endorsement of possible future uses or future suitability of these cells.

See original here:
Banking Menstrual Stem Cells | What are Menstrual Stem ...

Recommendation and review posted by Bethany Smith

Cryonics: does it offer humanity a chance to return from the …

The decision of a teenage girl to have her body cryogenically frozen in the hope of being reanimated by medical advances in the future is one with which many could sympathise. But does current evidence suggest the gamble will pay off, or does cryonics simply give desperate people false hope dressed up in the language of science?

There are two advances that make cryonics a little less far-fetched that it once was. The first is vitrification. As Arctic explorers and mountaineers have learned, humans are not designed to be frozen and defrosted. When our cells freeze, they fill with ice crystals, which break down cell walls as they expand, reducing our body to mush once it is warmed up again.

Vitrification prevents this by replacing the blood with a mixture of antifreeze-like chemicals and an organ preservation solution. When cooled to below -90C, the fluid becomes a glass-like solid.

The technique has substantially improved the reliability of freezing and thawing embryos, and particularly eggs, in fertility treatment and it works for small pieces of tissue and blood vessels. Earlier this year, scientists managed to cryogenically freeze the brain of a rabbit and recover it in an excellent state although it is not clear if the brains functions would have been preserved as well as its superficial appearance. However, even vitrifying larger structures, such as human kidneys for transplantation, has never been done clinically and remains some way off.

Barry Fuller, a professor in surgical science and low temperature medicine, at University College London, said: There is ongoing research into these scientific challenges, and a potential future demonstration of the ability to cryopreserve human organs for transplantation would be a major first step into proving the concept, but at the moment we cannot achieve that.

This is the growing appreciation that our personality, skills and memories are to some extent defined by the connections between neurons. This has led some to speculate that rather than bringing the actual body back to life, the brains contents could be downloaded on to a computer, allowing the person to live as a robot in the future.

This might have the whiff of nonsense, but Nick Bostrom, a professor of philosophy at the University of Oxfords Future of Humanity Institute, and his colleague, Anders Sandberg, are both banking on this possibility. As a head, my life would be limited, but by then we will be able to make real connections to computers, Anders said in a 2013 interview. So my hope is that, once revived, my memories and personality could be downloaded into a computer.

However, many neuroscientists have pointed out that even if you could code the astronomical number of connections between the brains 100bn neurons, even this would not capture the full complexity of the human mind.

From a purely scientific perspective, your money is probably better spent while you are still alive.

Cryonics: does it offer humanity a chance to return from the ...

Recommendation and review posted by Bethany Smith

Stem Cells For Heart Health: What The Current Research …

Stem cells are incredible. Science is only starting to scratch the surface of how these amazing cells can help people suffering from heart failure and other cardiovascular issues. Heres some information on what stem cells are, and how they may help heart attack patients and others who have problems involving their heart tissue.

There are more than 200 kinds of cells in the body, and each type is specifically structured for the job its supposed to do. There are skin cells, nerve cells, and cells that form heart tissue and other tissues in the body.1

Theyre found in bone marrow, blood vessels, the liver, the brain, and other parts of the body. Stem cells are even found in the umbilical cord. These sophisticated cells change over time as the body matures. Some of them disappear shortly after youre born, while others stay with you for a lifetime.2

There are three main types of stem cells tissue-specific (adult stem cells), embryonic stem cells, and induced pluripotent (iPS) stem cells. Heres a quick look at each type:

These typically reside in a specific organ, generating other cells to support the health of that organ. They replace those that are lost through injury, or through everyday living.3

Embryonic stem cells form about three to five days after a sperm fertilizes an egg. These are also known as pluripotent cells. This simply means they can develop into any sort of cell the body needs to develop.4

Embryonic cells have been the source of a massive controversy. The main reason is that harvesting these cells destroys the embryo.5 Scientists are working to develop iPS cells that come from adult stems cells rather than embryonic cells. Early research indicates that these cells may share many of the same characteristics of embryonic cells. But there are differences between the two, and there is more work to be done before scientists know exactly what those differences are.6

Research is ongoing into the potential use of stem cells for heart health. For example, work is being done to see if stem cells can help improve heart attack survival rates. Scientists are also looking into the potential for giving a patient their own cardiac stem cells after a heart attack, or even giving patients non-cardiac stem cells from a donor after an attack takes place.7

The goal of this research is to eventually provide cardiac patients with stem cells that can regenerate heart tissue that has been damaged. Some researchers feel that these advances are imminent, while others believe there is a great deal of work yet to be done.8

Early results from ongoing clinical trials involving stem cells for heart health are extremely promising. In one study, a group of 109 patients suffering from heart failure received either stem cell therapy or a placebo. According to the results, the patients who received stem cells were at significantly lower risk of hospitalization or death due to a sudden worsening of their condition.9

Heart failure affects more than 5 million people in the U.S.10 It occurs when the heart gradually weakens to the point to where it cant pump enough blood to meet the needs of the rest of the body. For those with severe heart failure, the only options are either to have a heart transplant or have a device planted to help the heart continue pumping. And even this is only a temporary measure theyll still need a transplant.11

Another study involved the use of stem cells from the umbilical cord. This trial involved 30 heart failure patients. Like the previous study, one group received stem cells while the other received a placebo. The umbilical cords were donated by healthy mothers whose babies were delivered through cesarean section.12

According to the results, the hearts of patients who received the umbilical cord stem cells pumped better than those of the placebo group. The stem cell patients also showed improved quality of life and day-to-day functioning. In addition, the stem cell group did not report any adverse effects, such as immune system reactions.13

As you can see, the use of stem cells to treat heart patients shows great promise. But this is still an extremely young scientific field, and a great deal more research must be performed. Many questions have to be answered, such as what approaches to stem cell harvesting will work the best and what types of side effects are possible from stem cell treatment.

However, this research does bring hope. And hope is something that is incredibly important to many of those suffering from severe cardiac illnesses.

Learn More:How Cardio Can Change Your Brain (And Why Thats Good News!)NEWS: A Vaccine For Arthritis Is Closer Than You ThinkAre Organ Donors At Risk of Becoming Obsolete?


Read the original post:
Stem Cells For Heart Health: What The Current Research ...

Recommendation and review posted by Bethany Smith

CRISPR gene editing explained: What is it and how does it …

We are in the midst of a gene-editing revolution.

For four decades, scientists have tinkered with our genes. Since the 1970s, they've experimentally switched them on and off, uncovering their functions; mapped their location within our genome; and even inserted or deleted them in animals, plants and human beings.

And in November 2018, aChinese scientist claimedto have created the world's first genetically modified human beings.

Though scientists have made great inroads into understanding human genetics, editing our genes has remained a complex process requiring imprecise, expensive technology, years of expertise and just a little luck, too.

In 2012, a pair of scientists developed a new tool to modify genes, reshaping the entire field of gene-editing forever: CRISPR. Often described as "a pair of molecular scissors," CRISPR is widely considered the most precise, most cost-effective and quickest way to edit genes. Its potential applications are far-reaching, affecting conservation, agriculture, drug development and how we might fight genetic diseases. It could even alter the entire gene pool of a species.

Now playing: Watch this: CRISPR explained with crisps (and assorted snacks)


The field of CRISPR research is still remarkably young, yet we've already seen how it might be used to fight HIV infection, combat invasive species and destroy antibiotic-resistant bacteria. Many unknowns remain, however, including how CRISPR might damage DNA, leading to pathologies such as cancer.

Such a monumental leap in genetic engineering is full of complexities that ask big, often philosophical questions about science, ethics, how we conduct research and the future of humanity itself. With the confirmation that two human embryos were modified using CRISPR and carried to term, those questions have come sharply into focus. The future of gene-editing seemingly arrived overnight.

But what exactly is CRISPR and what are the outstanding concerns about such a powerful tool?

Let's break it all down.

CRISPR has the potential to be used in editing human embryos to create "designer babies."

Few predicted how important CRISPR would become for gene editing upon its discovery 30 years ago.

As early as 1987, researchers at Osaka University studying the function of Escherichia coli genes first noticed a set of short, repeated DNA sequences, but they didn't understand the significance.

Six years later, another microbiologist, Francisco Mojica, noted the sequences in a different single-celled organism, Haloferax mediterranei. The sequences kept appearing in other microbes and in 2002, the unusual DNA structures were given a name: Clustered regularly interspaced short palindromic repeats.


Studying the sequences more intensely revealed that CRISPR forms an integral part of the "immune system" in bacteria, allowing them to fight off invading viruses. When a virus enters the bacteria, it fights back by cutting up the virus' DNA. This kills the virus and the bacteria stores some of the leftover DNA.

The leftover DNA is like a fingerprint, stored in the CRISPR database. If invaded again, the bacteria produce an enzyme called Cas9 that acts like a fingerprint scanner. Cas9 uses the CRISPR database to match the stored fingerprints with those of the new invader. If it can find a match, Cas9 is able to chop up the invading DNA.

Nature often provides great templates for technological advances. For instance, the nose of a Japanese bullet train is modeled on the kingfisher's beak because the latter is expertly "designed" by evolution to minimize noise as the bird dives into a stream to catch fish.

In a similar way, CRISPR/Cas9's ability to efficiently locate specific genetic sequences, and cut them, inspired a team of scientists to ask whether that ability could be mimicked for other purposes.

The answer would change gene editing forever.

In 2012, pioneering scientists Jennifer Doudna, from UC Berkeley, and Emmanuelle Charpentier, at Umea University Sweden, showed CRISPR could be hijacked and modified. Essentially, they'd turned CRISPR from a bacterial defense mechanism into a DNA-seeking missile strapped to a pair of molecular scissors. Their modified CRISPR system worked marvelously well, finding and cutting any gene they chose.

An illustration of the CRISPR-Cas9 gene editing complex. The Cas9 nuclease protein (white and green) uses a guide RNA (red) sequence to cut DNA (blue) at a complementary site.

Several research groups followed up on the original work, showing that the process was possible in yeast and cultured mouse and human cells.

The floodgates opened, and CRISPR research, which had long been the domain of molecular microbiologists, skyrocketed. The number of articles referencing CRISPR in preeminent research journal Nature has increased by over 6,000 percent between 2012 and 2018.

While other gene-editing tools are still in use, CRISPR provides a gigantic leap because of its precision and reliability. It's really good at finding genes and making accurate cuts. That allows genes to be cut out with ease, but it also provides an opportunity to paste new genes into the gap. Previous gene-editing tools could do this, too, but not with the ease that CRISPR can.

Another huge advantage CRISPR has over alternative gene-editing techniques is its expense. While previous techniques might cost a laboratory upward of $500 to edit a single gene, a CRISPR kit can do the same thing for under $100.

The CRISPR/Cas9 system has been adapted to enable gene editing in organisms including yeast, fungi, rice, tobacco, zebrafish, mice, dogs, rabbits, frogs, monkeys, mosquitoes and, of course, humans -- so its potential applications are enormous.

For research scientists, CRISPR is a tool that provides better, faster tinkering with genes, allowing them to create models of disease in human cell lines and mouse models with much higher proficiency. With better models of say, cancer, researchers are able to fully understand the pathology and how it develops, and that could lead to improved treatment options.

One particular leap in cancer therapy options is the genetic modification of T cells, a type of white blood cell that's critical for the human immune system. A Chinese clinical trial extracted T cells from patients, used CRISPR to delete a gene that usually acts as an immune system brake, and then reintroduced them into the patients in an effort to combat lung cancer. And that's just one of the many trials underway using CRISPR edited cells to fight particular types of cancer.

Beyond cancer, CRISPR has the potential to treat diseases caused by a mutation in a single gene, such as sickle cell anemia or Duchenne muscular dystrophy. Correcting a defective gene is known as gene therapy, and CRISPR is potentially the most powerful way to perform it. Using mouse models, researchers have demonstrated the efficacy of such treatments but human gene therapies using CRISPR remain untested.

Mosquitoes will be targeted using CRISPR gene drives, which could potentially drive malaria-carrying species to extinction.

Then there are CRISPR gene drives, which use CRISPR to guarantee a genetic trait will be passed from parent to offspring -- essentially rewriting the rules of inheritance. Guaranteeing certain genes will spread through a population provides an unprecedented opportunity to tackle mosquito-borne diseases such as malaria, enabling scientists to create infertile mosquitoes in the lab and release them in the wild to crash the population -- or even render a species extinct. CNET published an extensive report of their proposed use and the ethical concerns that surround them in February 2019.

And CRISPR's potential benefits don't end there. The tool opens up new ways of creating antimicrobials to combat rising levels of antibiotic resistance, targeted manipulation of agricultural crops such as wheat to make them hardier or more nutritious, and, potentially, the ability to design human beings, gene by gene.

CRISPR may be the most precise way to cut DNA we've yet discovered, but it's not always perfect.

One of the chief barriers to getting CRISPR effectively working in humans is the risk of "off-target effects." When CRISPR is tasked with hunting down a gene, it sometimes finds genes that look very similar to its target and cuts them, too.

An unintended cut may cause mutations in other genes, leading to pathologies such as cancer, or it may have no effect at all -- but with safety a major concern, scientists will need to ensure CRISPR acts only on the gene it's intended to impact. This work has already begun, and several teams of researchers have tinkered with CRISPR/Cas9 to increase its specificity.

Now playing: Watch this: DNA data storage could solve a big problem


To date, CRISPR work in humans has been confined to cells that don't pass on their genome to the next generation. But gene editing can also be used to edit embryos and thus, change the human gene pool. In 2015, an expert panel of CRISPR scientists suggested that such editing -- known as germline editing -- would be irresponsible until consensus can be reached on safety, efficacy, regulation and social concerns.

Still, research into germline editing has been occurring for several years. In 2017, scientists in the UK edited human embryos for the first time, and researchers in the US used CRISPR to correct a defective gene that causes heart disease. The ability to edit embryos begins to raise ethical concerns about so-called designer babies, wherein scientists may select beneficial genes to increase physical fitness, intelligence or muscle strength, creeping into the controversial waters of eugenics.

That particular future is likely a long way off -- but the era of editing the human genome has already begun.

On Nov. 25, 2018, Chinese scientist Jiankui He said he had created the world's first CRISPR babies. By using CRISPR, He was able to delete a gene known as CCR5. The modified embryos resulted in the birth of twin girls, known by the pseudonyms Lulu and Nana.

The scientific community widely condemned the research, criticizing He's lack of transparency and asking whether there was an unmet medical need for the two girls to receive such a modification. In the wake of the research, several high-profile researchers involved with CRISPR's creation even suggested a global moratorium on using the tool for germline editing.

Few would argue that He's work highlights a need for stricter regulatory controls and effective oversight of clinical trials in which embryos are edited. While He maintains his own experiment was concerned with improving the health of the twin girls by making them HIV-resistant, the experiment was deemed reckless and ethically wrong and the potential consequences overlooked. Recent research suggests that the deletion He created in the CCR5 gene may affect brain activity, after a study in mice showed that blocking CC5 improves cognition and recovery from stroke.

In January 2019, the Chinese government said that He acted both unlawfully and unethicallyand would face charges. He was later dismissed by his university.

Jiankui He claimed to have created the world's first gene-edited babies.

The most recent International Summit for Human Genome Editing, in November 2018, concluded, as it did in 2015, "the scientific understanding and technical requirements for clinical practice remain too uncertain and the risks too great to permit clinical trials of germline editing at the time."

He's work, which remains unpublished, heralds the first clinical trial and birth of genetically modified human beings -- which means, whether it was the intention or not, a new era for CRISPR has begun.

As the revolution surges forward, the greatest challenges will continue to be effective oversight and regulation of the technology, the technical hurdles that science must overcome to ensure it is precise and safe, and managing the larger societal concerns of tinkering with the stuff that makes usus.

CRISPR continues to make headlines as scientists refine its specificity and turn it toward myriad genetic diseases. On Feb. 4, researchers at UC Berkeley, including CRISPR pioneer Jennifer Douda, revealed that another enzyme, CasX, could be used to edit genes in place of Cas9.

The scientists identified CasX in a ground-dwelling bacteria not normally present in humans, which means our immune systems are less likely to rebel against it. Because it's smaller and potentially more specific than Cas9, it can clip genes with greater success and less chance of any negative effects.

Then, on Feb. 18, scientists at UC San Francisco revealedthey had used CRISPR to make stem cells "invisible" to the immune system. Stem cells are able to mature into adult cells of any tissue, so they have been proposed as a way to repair damaged organs. However, the immune system typically tries to annihilate any foreign invader and stem cells are seen as such. CRISPR has enabled the stem cells to evade the immune system so they can get to work at healing.

Only a day later, researchers at the Salk Institute for Biological Sciencespublished in Nature Medicine their findings on a CRISPR therapy for Hutchinson-Gilford progeria, a disease associated with rapid aging. The disease is caused by a genetic mutation that results in a buildup of abnormal proteins, ultimately leading to premature cell death. A single dose of CRISPR/Cas9 was shown to suppress the disease in a mouse model, paving the way for further exploration of CRISPR's therapeutic potential.

And still more CRISPR success stories continue to roll in. On Feb. 25, CRISPR Therapeutics, a company co-founded by CRISPR visionary Emmanuelle Charpentier, announced thatthe first human patients had been infused with a CRISPR/Cas9 drug to treat the disease beta-thalassemia. The illness is caused by a genetic mutation that results in red blood cells being unable to create the oxygen-transport molecule haemoglobin. To combat this, the CRISPR Therapeutics team takes stem cells from a patient, edits them with CRISPR/Cas9 outside the body to increase haemoglobin production and then transfuses them back into the bloodstream. The company plans to use a similar approach to treating the blood disease known as sickle cell anemia.

CRISPR research is advancing at a rapid pace, and it can be hard to keep up. In only seven years, CRISPR went from an evolutionary adaptation in bacteria to a gene-editing tool that created the very first genetically modified human beings. We've already seen CRISPR transform the entire field of molecular biology and that effect has rippled across the biological and medical fields.

First published, Jan. 23, 2019.Update, on Feb. 28 5 a.m. PT: Adds recent advances section

More here:
CRISPR gene editing explained: What is it and how does it ...

Recommendation and review posted by Bethany Smith

Start genome editing with CRISPR-Cas9 |

Alt-R CRISPR-Cas9 System

Simple delivery of ribonucleoprotein complexes (crRNA:tracrRNA:Cas9 or sgRNA:Cas9).

CRISPR-Cas9 genome editing methods use a Cas9 endonuclease to generate double-stranded breaks in DNA. Cas9 endonuclease requires a CRISPR RNA (crRNA) to specify the DNA target sequence, and the crRNA must be combined with the transactivating crRNA (tracrRNA) to activate the endonuclease and create a functional editing ribonucleoprotein complex (Figure 1A). In an alternative approach, the crRNA and tracrRNA can be delivered as a single RNA oligonucleotide (Figure 1B). After cleavage, DNA is then repaired by non-homologous end-joining (NHEJ) or homology-directed recombination (HDR), resulting in a modified sequence. Alt-R CRISPR-Cas9 reagents and kits provide essential, optimized tools needed to use this pathway for genome editing research.

Option 1: Alt-R CRISPR-Cas9 crRNA:tracrRNA


Alt-R CRISPR-Cas9 tracrRNA

The Alt-R CRISPR-Cas9 System offers two options for generating synthetic guide RNAs. The two-part system pairs an optimized, shortened universal tracrRNA oligonucleotide (67 nt) with an optimized, shortened, target-specific crRNA oligonucleotide (36 nt) for improved targeting of Cas9 to dsDNA targets (Figure 2). The single guide RNA (sgRNA) option combines the crRNA and tracrRNA segments into one long RNA molecule, reducing the number of components and simplifying the CRISPR workflow.

While delivering Cas9 nuclease as part of an RNP is the preferred method, the Alt-R CRISPR-Cas9 System is also compatible with S. pyogenes Cas9 from any source, including cells that stably express S. pyogenes Cas9 endonuclease, or when Cas9 is introduced as a DNA or mRNA construct.

All Alt-R CRISPR-Cas9 crRNAs are 3536 nt RNA oligos containing the 19 or 20 nt target-specific protospacer region, along with the 16 nt tracrRNA fusion domain. We recommend 20 nt protospacers for most applications. crRNAs must be duplexed with Alt-R CRISPR-Cas9 tracrRNA before RNP complex formation.

Alt-R CRISPR-Cas9 crRNAs are synthesized with proprietary chemical modifications, which protect the crRNA from degradation by cellular RNases and further improve on-target editing performance. When using 2-part gRNAs under highly challenging conditions (e.g., high nuclease environments or with Cas9 mRNA), use Alt-R CRISPR-Cas9 crRNA XT, which have additional chemical modifications for the highest level of stability and performance.

We guarantee* our predesigned guide RNAs targeting human, mouse, rat, zebrafish, or nematode genes. For other species, you may use our proprietary algorithms to design custom guide RNAs. If you have protospacer designs of your own or from publications, use our design checker tool to assess their on- and off-targeting potential before ordering guide RNAs that are synthesized using our Alt-R guide RNA modifications.

The 67 nt Alt-R tracrRNA is much shorter than the classical 89 bases of the natural S. pyogenes tracrRNA. We find that shortening the tracrRNA increases on-target performance. Alt-R CRISPR tracrRNA also contains proprietary chemical modifications that confer increased nuclease resistance.

Alt-R CRISPR-Cas9 tracrRNA labeled with ATTO 550 (ATTO-TEC) provide the same function as their unlabeled counterparts. However, the fluorescent dye allows you to monitor transfection or electroporation efficiency during preliminary experiments to optimize transfection conditions in your cell types (Figure 3).

Labeled tracrRNAs can also help concentrate transfected cells via FACS (fluorescence-activated cell sorting) analysis, which can simplify your screening process for cells with CRISPR events. (For more information and tips on using Alt-R CRISPR-Cas9 tracrRNA ATTO 550, see the application note.)

Alt-R CRISPR tracrRNA orders include Nuclease-Free Duplex Buffer for forming the complex between crRNA and tracrRNA oligos. Alt-R tracrRNA can be ordered in larger scale and paired with all of your target specific crRNAs, allowing for an easy and a cost-effective means of studying many CRISPR sites.


Alt-R CRISPR-Cas9 sgRNAs are long RNA oligonucleotides (99100 bases) containing the target-specific crRNA region and the Cas9-interacting tracrRNA region within a single molecule (i.e., 1920 base protospacer region and 80-base universal sgRNA region). Like other Alt-R RNAs, it contains chemical modifications to stabilize the RNA, increasing resistance to nuclease activity. For challenging conditions (e.g., high nuclease environments or with Cas9 mRNA), sgRNAs may provide increased potency.

The Alt-R S.p. Cas9 Nuclease V3 enzyme is a high purity, recombinant S. pyogenes Cas9. The enzymes include nuclear localization sequences (NLSs) and C-terminal 6-His tags. The S. pyogenes Cas9 enzyme must be combined with a gRNA to produce a functional, target-specific editing complex. For the best editing, combine the Alt-R S.p. Cas9 Nuclease V3 enzyme with the optimized Alt-R CRISPR gRNA in equimolar amounts.

The Alt-R S.p. HiFi Cas9 Nuclease V3 offers improved specificity over wild-type Cas9, greatly reducing the risk of off-target cutting events. This Cas9 variant also preserves the high level of editing efficiency expected from a Cas9 nuclease, maintaining 90100% on-target editing activity at most sites. For applications that are sensitive to off-target events, combining the Alt-R S.p. HiFi Cas9 Nuclease V3 with optimized Alt-R CRISPR-Cas9 gRNA (crRNA:tracrRNA) is highly recommended.

Cas9 nickases allow specific cutting of only one strand at the DNA target site. Cuts to both strands of DNA are accomplished by using either Alt-R S.p. Cas9 D10A Nickase V3 or Alt-R S.p. Cas9 H840A Nickase V3, with 2 gRNAs that target two neighboring Cas9 sites, one on either strand of the target region. This functionally increases the length of the recognition sequence from 20 to 40 bases. For more information about using Cas9 nickases, see the application note.

Alt-R S.p. dCas9 Protein V3 has mutations that result in the loss of nuclease activity. This protein can form RNP complexes with Alt-R gRNAs and bind to the target region specified by the gRNA without cutting the DNA.

In some cases, transfection of RNP or the creation of stably transfected cells is not possible. In those applications, AltR S.p. Cas9 Expression Plasmid is designed to provide expression of Cas9 endonuclease under CMV promoter control. Note that the plasmid contains no eukaryotic selectable marker, making expression of S.p. Cas9 transient. The Alt-R CRISPR-Cas9 System Plasmid User Guide provides instructions for using this plasmid.

Optional controls for human, mouse, and rat are available for the 2-part Alt-R CRISPR-Cas9 System.

We recommend using the appropriate Alt-R CRISPR-Cas9 Control Kit for studies in human, mouse, or rat cells. The control kits include an Alt-R CRISPR HPRT Positive Control crRNA targeting the HPRT (hypoxanthine phosphoribosyltransferase) gene and a computationally validated Alt-R CRISPR-Cas9 Negative Control crRNA. The kit also includes the Alt-R CRISPR-Cas9 tracrRNA for complexing with the crRNA controls, Nuclease-Free Duplex Buffer, and validated PCR primers for amplifying the targeted HPRT region in the selected organism. The inclusion of the PCR assay makes the kits ideal for verification of HPRT modification using the Alt-R Genome Editing Detection Kit.

Alt-R control kit components can also be ordered individually.

For information about sgRNA controls, contact

If you are studying primary or hard-to-transfect cells, electroporation is often a viable alternative to lipid-based transfection in CRISPR experiments. The Alt-R Cas9 Electroporation Enhancer is a Cas9-specific carrier DNA that is optimized to work with the Amaxa Nucleofector device (Lonza) and Neon System (Thermo Fisher) to increase transfection efficiency and thereby increase genome editing efficiency (Figure 4).

Alt-R HDR Enhancer is a small molecule compound that increases homology-directed repair. Alt-R HDR Enhancer exhibits its activity in multiple cell lines, including both adherent and suspension cell lines. Its activity is independent of the enzyme employed; for example, it can be used either with Alt-R S.p. Cas9 Nuclease V3 or Alt-R A.s. Cas12a (Cpf1) Nuclease V3.This versatile reagent is also compatible with electroporation and lipofection methods.

Use this kit to detect on-target genome editing and estimate genome editing efficiency in CRISPR experiments. Learn more >>

Visit link:
Start genome editing with CRISPR-Cas9 |

Recommendation and review posted by Bethany Smith

Hypopituitarism | Johns Hopkins Medicine

What is hypopituitarism?Hypopituitarism happens when your pituitary gland is not active enough. The front lobe of the gland may only partly work. Or it may not work at all. As a result the gland does not make enough hormones.What causes hypopituitarism?

Causes of hypopituitarism can directly affect the pituitary gland. Or they can indirectly affect the glandthrough changes inthe hypothalamus. Direct causes are:

Indirect causes are:

Symptoms are different for each person. They happen over time or right away. They depend on which hormones the pituitary gland is not making enough of. The following are common symptoms linked to certain hormones:

These symptoms may look like other health problems. Always see your health care provider for a diagnosis.

Your health care provider will ask about your past health. You will also need an exam. Other tests you may need:

Your health care provider will figure out the best treatment for you based on:

Treatment of hypopituitarism depends on what is causing it. The goal of treatment is have the pituitary gland work as it should. Treatment may include:

See the rest here:
Hypopituitarism | Johns Hopkins Medicine

Recommendation and review posted by Bethany Smith

Female genetic hair loss? | Yahoo Answers

In women, hair loss usually begins at menopause. Although hair loss in females normally occurs after the age of 50 or even later when it does not follow events like pregnancy, chronic illness, crash diets, and stress among others, there has been rare cases reported, in which hair loss affects women as young as 15 or 16. However, unlike with men, hair loss in women typically begins later and is generally not to the full-head state that is generally seen in men.

Balding is genetic and hereditary, and it's thereby logical to think that by looking at family members can be helpful in determining the fate of one's hairline. Sometime it is the case that grandson and maternal grandfather will end up with the similar hairlines, but it's not that foolproof, not the ultimate reference point it's treated as, so better not to consider it at all when wondering if the baldness gene is one you have inherited. Genetic hair loss affects both men and women equally.

Go here to read the rest:
Female genetic hair loss? | Yahoo Answers

Recommendation and review posted by Bethany Smith

hypogonadism | Definition, Causes, Symptoms, & Treatment …

Hypogonadism, in men, decreased testicular function that results in testosterone deficiency and infertility.

Hypogonadism is caused by hypothalamic, pituitary, and testicular diseases. Hypothalamic and pituitary diseases that may cause decreased testicular function include tumours and cysts of the hypothalamus, nonsecreting and prolactin-secreting pituitary tumours, trauma, hemochromatosis (excess iron storage), infections, and nonendocrine disorders, such as chronic illness and malnutrition. The primary testicular disorders that result in hypogonadism in postpubertal men include Klinefelter syndrome and related chromosomal disorders, although these disorders usually manifest at the time of puberty.

Other causes of hypogonadism in men include testicular inflammation (orchitis) caused by mumps; exposure to gonadal toxins, including alcohol, marijuana, and several anticancer drugs (e.g., cyclophosphamide, procarbazine, and platinum); and radiation with X-rays. Many of the disorders that cause delayed puberty are sufficiently mild that affected men do not seek care until well into adult life. This particularly applies to those disorders that decrease spermatogenesis and therefore fertility but spare Leydig cell function.

The clinical manifestations of hypogonadism in adult men include decreased libido, erectile dysfunction (inability to have or maintain an erection or to ejaculate), slowing of facial and pubic hair growth and thinning of hair in those regions, drying and thinning of the skin, weakness and loss of muscle mass, hot flashes, breast enlargement, infertility, small testes, and osteoporosis (bone thinning). The evaluation of men suspected to have hypogonadism should include measurements of serum testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin, in addition to the analysis of semen. Men with hypogonadism who have decreased or normal serum gonadotropin concentrations are said to have hypogonadotropic hypogonadism and may need to be evaluated for hypothalamic or pituitary disease with computerized axial tomography or magnetic resonance imaging (MRI) of the head. Men with hypogonadism who have increased serum gonadotropin concentrations are said to have hypergonadotropic hypogonadism, and their evaluation should be focused on the causes of testicular disease, including chromosomal disorders.

Men with hypogonadism caused by a hypothalamic disorder, pituitary disorder, or testicular disorder, such as Klinefelter syndrome, are treated with testosterone, which may be injected, applied transdermally (i.e., as a skin patch), or taken orally. Testosterone treatment reverses many of the symptoms and signs of hypogonadism but will not increase sperm count. Sperm count cannot be increased in men with testicular disease, although it is sometimes possible to increase sperm count in men with hypothalamic or pituitary disease by prolonged administration of gonadotropin-releasing hormone or gonadotropins. In men with testicular disease, viable sperm can sometimes be obtained by aspiration from the testes for in vitro fertilization.

Read the original here:
hypogonadism | Definition, Causes, Symptoms, & Treatment ...

Recommendation and review posted by Bethany Smith

Human iPS cell-derived dopaminergic neurons function in a …

Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinsons disease. Nature 480, 547551 (2011)

Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2, 337350 (2014)

Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 1254312548 (2004)

Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275280 (2009)

Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports 1, 703714 (2012)

Doi, D. et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinsons disease. Stem Cells 30, 935945 (2012)

Hargus, G. et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 1592115926 (2010)

Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267280 (2011)

Snchez-Dans, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinsons disease. EMBO Mol. Med. 4, 380395 (2012)

Kikuchi, T. et al. Idiopathic Parkinsons disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J. Neurosci. Res. 95, 18291837 (2017)

Ono, Y. et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 32133225 (2007)

Joksimovic, M. et al. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat. Neurosci. 12, 125131 (2009)

Smidt, M. P. et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA 94, 1330513310 (1997)

Katsukawa, M., Nakajima, Y., Fukumoto, A., Doi, D. & Takahashi, J. Fail-safe therapy by gamma-ray irradiation against tumor formation by human-induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev. 25, 815825 (2016)

Imbert, C., Bezard, E., Guitraud, S., Boraud, T. & Gross, C. E. Comparison of eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the Macaque monkey. J. Neurosci. Methods 96, 7176 (2000)

Kikuchi, T. et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinsons disease. J. Parkinsons Dis. 1, 395412 (2011)

Takagi, Y. et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 115, 102109 (2005)

Hallett, P. J. et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinsons disease. Cell Stem Cell 16, 269274 (2015)

Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinsons disease. N. Engl. J. Med. 344, 710719 (2001)

Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinsons disease. Ann. Neurol. 54, 403414 (2003)

Kurowska, Z. et al. Signs of degeneration in 1222-year old grafts of mesencephalic dopamine neurons in patients with Parkinsons disease. J. Parkinsons Dis. 1, 8392 (2011)

Li, W. et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl Acad. Sci. USA 113, 65446549 (2016)

Yin, D. et al. Striatal volume differences between non-human and human primates. J. Neurosci. Methods 176, 200205 (2009)

Redmond, D. E. Jr, Vinuela, A., Kordower, J. H. & Isacson, O. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinsons disease. Neurobiol. Dis. 29, 103116 (2008)

Turkheimer, F. E. et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J. Nucl. Med. 48, 158167 (2007)

Shukuri, M. et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J. Nucl. Med. 52, 10941101 (2011)

Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinsons disease. Cell Stem Cell 20, 135148 (2017)

Liechti, R. et al. Characterization of fetal antigen 1/delta-like 1 homologue expressing cells in the rat nigrostriatal system: effects of a unilateral 6-hydroxydopamine lesion. PLoS ONE 10, e0116088 (2015)

Christophersen, N. S. et al. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp. Neurol. 204, 791801 (2007)

Bauer, G. et al. In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol. Ther. 16, 13081315 (2008)

Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458466 (2013)

Miyazaki, T. et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun. 3, 1236 (2012)

Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014)

Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J. Neurosci. Res. 89, 117126 (2011)

Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 (Suppl. 1), S208S219 (2004)

Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143155 (2002)

Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143156 (2001)

Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825841 (2002)

Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 4557 (2001)

Frey, S. et al. An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55, 14351442 (2011)

Warschausky, S., Kay, J. B. & Kewman, D. G. Hierarchical linear modeling of FIM instrument growth curve characteristics after spinal cord injury. Arch. Phys. Med. Rehabil. 82, 329334 (2001)

Jucaite, A., Fernell, E., Halldin, C., Forssberg, H. & Farde, L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatry 57, 229238 (2005)

Leroy, C. et al. Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J. Nucl. Med. 48, 538546 (2007)

Logan, J. et al. Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16, 834840 (1996)

Patlak, C. S. & Blasberg, R. G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5, 584590 (1985)

Sossi, V., Holden, J. E., de la Fuente-Fernandez, R., Ruth, T. J. & Stoessl, A. J. Effect of dopamine loss and the metabolite 3-O-methyl-[18F]fluoro-dopa on the relation between the 18F-fluorodopa tissue input uptake rate constant Kocc and the [18F]fluorodopa plasma input uptake rate constantKi. J. Cereb. Blood Flow Metab. 23, 301309 (2003)

Read the rest here:
Human iPS cell-derived dopaminergic neurons function in a ...

Recommendation and review posted by Bethany Smith

Stem Cells from Fat vs. Bone Marrow Best Sources for …

Stromal vascular fraction was dramatically better than bone marrow concentrate in its ability to differentiate into cartilage.Two other important features were also well documented in this study. SVF created significantly more colony forming units than BMC, another significant predictor of healing response. Perhaps most importantly, SVF was dramatically better than BMC in its ability to differentiate into cartilage.

Second, a study by Han Chao et al has also demonstrated that fat derived stem cells also have a higher proliferation potential for neural tissue and are a better source for not only cartilage regeneration but also for nervous system regeneration.

The studies gave a very comprehensive look at comparing BMC and SVF in the ability to repair cartilage damage in a same procedure protocol. Every significant measurement comparing bone marrow to adipose tissue for stem cell harvesting demonstrated that adipose derived stem cells provided better cell content and superior ability to differentiate into cartilage than bone marrow. Our extensive clinical experience with the procedure for Colorado patients suffering from pain in the knees, other joints, soft tissue, and a wide range of back problems clearly demonstrates the same.

Using the most effective combination of autologous stem cell sources is one of several criteria to identify a legitimate stem cell clinic. Other important characteristics we recommend paying attention to when choosing a stem cell clinic, include the presence of a physician who owns and operates the clinic, X-ray guided injections administered by a trained injection specialist, and a clinic that takes time to discuss your questions. A review of your imaging and clinical data is needed in order to determine if stem cell therapy is right for you.

*Individual patient results may vary. Contact us today to find out if stem cell therapy may be able to help you.

View original post here:
Stem Cells from Fat vs. Bone Marrow Best Sources for ...

Recommendation and review posted by Bethany Smith