RNA targeting with CRISPRCas13 | Nature

Posted: May 21, 2019 at 5:45 am

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806811 (1998)

Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494498 (2001)

Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S. & Sabatini, D. M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715719 (2006)

Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635637 (2003)

Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods 6, 331338 (2009)

Shmakov, S. et al. Diversity and evolution of class 2 CRISPRCas systems. Nat. Rev. Microbiol. 15, 169182 (2017)

Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPRCas systems. Mol. Cell 60, 385397 (2015)

Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016)

Gootenberg, J. S. et al. Nucleic acid detection with CRISPRCas13a/C2c2. Science 356, 438442 (2017)

Dahlman, J. E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 11591161 (2015)

Hutchinson, J. N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007)

East-Seletsky, A. et al. Two distinct RNase activities of CRISPRC2c2 enable guide-RNA processing and RNA detection. Nature 538, 270273 (2016)

Zetsche, B. et al. Multiplex gene editing by CRISPRCpf1 using a single crRNA array. Nat. Biotechnol. 35, 3134 (2017)

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 1554515550 (2005)

Rath, S. et al. Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome. Proc. Natl Acad. Sci. USA 112, 1591615921 (2015)

Gross, G. G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971985 (2013)

Unsworth, H., Raguz, S., Edwards, H. J., Higgins, C. F. & Yage, E. mRNA escape from stress granule sequestration is dictated by localization to the endoplasmic reticulum. FASEB J. 24, 33703380 (2010)

Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488496 (2016)

Tourrire, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823831 (2003).

Tafer, H. et al. The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26, 578583 (2008)

Mann, D. G. et al. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol. J. 10, 226236 (2012)

Zhang, Y. et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30 (2011)

Joung, J. et al. Genome-scale CRISPRCas9 knockout and transcriptional activation screening. Nat. Protocols 12, 828863 (2017)

Jain, M., Nijhawan, A., Tyagi, A. K. & Khurana, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646651 (2006)

Bernhart, S. H., Hofacker, I. L. & Stadler, P. F. Local RNA base pairing probabilities in large sequences. Bioinformatics 22, 614615 (2006)

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011)

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676682 (2012)

Read more:
RNA targeting with CRISPRCas13 | Nature

Related Post

Comments are closed.