Scientists reprogram skin cells into brain cells

Posted: June 8, 2012 at 7:25 pm

SAN FRANCISCO Scientists at the UCSF-affiliated Gladstone Institutes have for the first time transformed skin cells with a single genetic factor into cells that develop on their own into an interconnected, functional network of brain cells.

The research offers new hope in the fight against many neurological conditions because scientists expect that such a transformation orreprogramming of cells may lead to better models for testing drugs for devastating neurodegenerative conditions such as Alzheimers disease.

This research comes at a time of renewed focus on Alzheimers disease, which currently afflicts 5.4 million people in the United States alone a figure expected to nearly triple by 2050. Yet there are no approved medications to prevent or reverse the progression of this debilitating disease.

In findings appearing online today inCell Stem Cell, researchers in the laboratory of Gladstone investigator Yadong Huang, M.D., Ph.D., describe how they transferred a single gene called Sox2 into both mouse and human skin cells. Within days the skin cells transformed into early-stage brain stem cells, also called induced neural stem cells (iNSCs). These iNSCs began to self-renew, soon maturing into neurons capable of transmitting electrical signals. Within a month, the neurons had developed into neural networks.

Many drug candidates especially those developed for neurodegenerative diseases fail in clinical trials because current models dont accurately predict the drugs effects on the human brain, said Huang, who also is an associate professor of neurology at UCSF. Human neurons derived from reengineered skin cells could help assess the efficacy and safety of these drugs, thereby reducing risks and resources associated with human trials.

Huangs findings build on the work of other Gladstone scientists, starting with Gladstone investigator Shinya Yamanaka, M.D., Ph.D. In 2007, Yamanaka used four genetic factors to turn adult human skin cells into cells that act like embryonic stem cells called induced pluripotent stem cells.

Also known as iPS cells, these cells can become virtually any cell type in the human body just like embryonic stem cells. Then last year, Gladstone senior investigatorSheng Ding, PhD, announced that he had used a combination of small molecules and genetic factors to transform skin cellsdirectlyinto neural stem cells. Today, Huang takes a new tack by using one genetic factor Sox2 to directly reprogram one cell type into another without reverting to the pluripotent state.

Avoiding the pluripotent state as Drs. Ding and Huang have done is one approach to avoiding the potential danger that rogue iPS cells might develop into a tumor if used to replace or repair damaged organs or tissue.

We wanted to see whether these newly generated neurons could result in tumor growth after transplanting them into mouse brains, said Karen Ring, UCSF Biomedical Sciences graduate student and the papers lead author. Instead we saw the reprogrammed cells integrate into the mouses brain and not a single tumor developed.

This research has also revealed the precise role of Sox2 as a master regulator that controls the identity of neural stem cells. In the future, Huang and his team hope to identify similar regulators that guide the development of specific neural progenitors and subtypes of neurons in the brain.

Read the original post:
Scientists reprogram skin cells into brain cells

Related Post

Comments are closed.