Page 788«..1020..787788789790..800810..»

Stem cell treatment holds hope for better stroke recovery

A new first-of-its kind pilot study has revealed that stem cell treatment can significantly improve recovery from stroke in humans.

The therapy uses a type of cell called CD34+ cells, a set of stem cells in the bone marrow that give rise to blood cells and blood vessel lining cells. Rather than developing into brain cells themselves, the cells are thought to release chemicals that trigger the growth of new brain tissue and new blood vessels in the area damaged by stroke.

The patients were treated within seven days of a severe stroke, in contrast to several other stem cell trials, most of which have treated patients after six months or later. The Imperial researchers believe early treatment might improve the chances of a better recovery.

Dr Soma Banerjee, Consultant in Stroke Medicine at Imperial College Healthcare NHS Trust, said that the treatment appeared to be safe and that it's feasible to treat patients early when they might be more likely to benefit.

However, it's too early to draw definitive conclusions about the effectiveness of the therapy and more tests to work out the best dose and timescale for treatment before starting larger trials, she further added.

The study is published in the journal Stem Cells Translational Medicine.

(Posted on 09-08-2014)

Original post:
Stem cell treatment holds hope for better stroke recovery

Recommendation and review posted by simmons

Stem Cell Therapy – Am I A Candidate – Video


Stem Cell Therapy - Am I A Candidate
Farhan Saddiqi, MD discusses the process of determining whether you are a candidate for Stem Cell Therapy at the Trinity Stem Cell Institute.

By: SMU Productions - Tampa Video Production

Continue reading here:
Stem Cell Therapy - Am I A Candidate - Video

Recommendation and review posted by Bethany Smith

Due to a radical new approach by stem cell bank BioEden future generations could be guaranteed a stem cell match

(PRWEB UK) 9 August 2014

Stem cell therapy and treatments continue to move on in finding cures for diseases that in the past were thought to be incurable. The success of stem cell treatment and therapy relies to a great extent on the ability for the patient to have a stem cell match. Although stem cell banking has been available for a number of years, the cost for many has been a barrier.

Specialist stem cell bank BioEden who operate in 21 countries have come up with a solution that brings this potentially life saving opportunity within an affordable range for the majority.

Their aim is to make stem cell therapy an affordable reality and hope that their new approach which includes a low monthly membership option will do just that.

As more and more people bank their children's stem cells for their future use, the problem of finding a stem cell match could become a thing of the past.

Read the original here:
Due to a radical new approach by stem cell bank BioEden future generations could be guaranteed a stem cell match

Recommendation and review posted by Bethany Smith

Nihilum Genetic Monstrosity Wildstar Genetics Archive Esper Healer POV – Video


Nihilum Genetic Monstrosity Wildstar Genetics Archive Esper Healer POV
Our second raid group taking down the genetic monstrosity miniboss with 16 raid members. Nihilum August 7th. Esper Healer POV -- Watch live at http://www.twitch.tv/bigglet1990.

By: Bigglettt

More here:
Nihilum Genetic Monstrosity Wildstar Genetics Archive Esper Healer POV - Video

Recommendation and review posted by Bethany Smith

Experiment at Fred Hutch raises hopes in battling brain tumors

A gene-therapy experiment at Fred Hutchinson Cancer Research Center only involved a handful of brain-tumor patients, and on average, extended their lives by months, not years.

Even so, it was the first real progress in 30 years for patients with glioblastoma, the most common and most aggressive type of primary brain tumor the type that killed U.S. Sen. Edward Kennedy within 15 months of diagnosis.

I think this is actually one of those proof-of-concept milestones, said Dr. Stanton Gerson, director of the Case Comprehensive Cancer Center at Case Western Reserve University in Cleveland, who was not involved in the study. This is the very first clinical validation that all that science made sense.

The new approach, led by Dr. Hans-Peter Kiem and Dr. Jennifer Adair at Fred Hutch in Seattle, was published Friday in The Journal of Clinical Investigation.

It began with the usual therapy for such tumors powerful chemotherapy combined with a drug that disables a protein that makes some of these tumors particularly resistant to chemotherapy. More than half the patients with glioblastomas, including all seven patients enrolled in the study, have such a protein, Kiem said.

The protein-disabling drug, benzylguanine, is critically important because it allows chemotherapy to attack the tumor. But the drug also damages bone marrow, killing blood cells so people are left vulnerable to infection and bleeding, he said. For that reason, patients typically can receive only one or two cycles of chemotherapy.

The gene-therapy approach involved taking the patients stem cells and engineering them to become resistant to benzylguanine, so their blood cells werent damaged by the drug. When the stem cells were returned to the patients, their blood was protected but their tumors were left vulnerable to the chemotherapy.

Better protected against infection and bleeding, the seven patients in the study were able to receive more cycles of chemotherapy.

We can sensitize the tumor, while the blood cells are resistant, Kiem said. That is the trick.

Typical median survival for glioblastoma patients with the tumor-protecting protein is less than 13 months. The patients in this study, on average, survived 20 months, and all survived beyond one year. This is quite remarkable, he said.

The rest is here:
Experiment at Fred Hutch raises hopes in battling brain tumors

Recommendation and review posted by Bethany Smith

Rick Kittles Personalized Medicine – Video


Rick Kittles Personalized Medicine

By: State of The Cancer Union

Read the original:
Rick Kittles Personalized Medicine - Video

Recommendation and review posted by sam

Cancer trials at LSU Health Sciences Center will expand after receiving $5.6 million in grant money – Video


Cancer trials at LSU Health Sciences Center will expand after receiving $5.6 million in grant money
The National Cancer Institute awarded 53 new 5-year grants, which included $5.6 million in funding to LSU Health Sciences Center. The funding will help improve cancer prevention and treatment...

By: NOLA.com | The Times-Picayune

Continue reading here:
Cancer trials at LSU Health Sciences Center will expand after receiving $5.6 million in grant money - Video

Recommendation and review posted by sam

Lorna Tolentino reveals the secret to her youthful looks

Kasi kaka-quit ko lang ng smoking, Lorna Tolentino proudly announces.

The 52-year-old actress also adds, Mag-wa-one month na sa August 14.

Asked whether shes having a hard time adjusting her lifestyle, she says, Ay no, hindi naman talaga ako ganun Im not really talaga sobrang sobrang smoker.

Right now, Lorna is taking supplements such as vitamin B1, B complex, glutathione, and mangosteen and malunggay capsules.

Siyempre nung nag-50 ako, mas iniisip ko na mas tumagal pa.

Kasi siyempre, 'di ba, gone too soon si Rudy [Fernandez], kaya siyempre kailangan mas mahaba pa, lalo na because of my apo, yun ang nag-i-inspire sa akin, she confesses.

When asked whether shes ok with Lyla Victoria, Raphael's (Lorna's eldest son) daughter, entering showbiz, Lorna answers, Commercial kung meron, oo tatangapin ko.

Lorna enthusiastically talks about her two-year-old apo, whom she refers to as still being in her makulit stage, Shes ok, actually yung kanya intellectual [maturity] ano, something na pinapaano sa mga doctor, for four years old na.

She also complements Leana, Lylas mother, for teaching her grandchild, Talagang kinu-congratulate ko si Leana, because shes a teacher, talagang mas kaya niya i-guide.

STEM CELL THERAPY.Lorna Tolentino, who has undergone stem cell therapy, narrates how the procedure helped her health concerns.

Continue reading here:
Lorna Tolentino reveals the secret to her youthful looks

Recommendation and review posted by simmons

Stem cells show promise for stroke in pilot study

A stroke therapy using stem cells extracted from patients' bone marrow has shown promising results in the first trial of its kind in humans.

Five patients received the treatment in a pilot study conducted by doctors at Imperial College Healthcare NHS Trust and scientists at Imperial College London.

The therapy was found to be safe, and all the patients showed improvements in clinical measures of disability.

The findings are published in the journal Stem Cells Translational Medicine. It is the first UK human trial of a stem cell treatment for acute stroke to be published.

The therapy uses a type of cell called CD34+ cells, a set of stem cells in the bone marrow that give rise to blood cells and blood vessel lining cells. Previous research has shown that treatment using these cells can significantly improve recovery from stroke in animals. Rather than developing into brain cells themselves, the cells are thought to release chemicals that trigger the growth of new brain tissue and new blood vessels in the area damaged by stroke.

The patients were treated within seven days of a severe stroke, in contrast to several other stem cell trials, most of which have treated patients after six months or later. The Imperial researchers believe early treatment may improve the chances of a better recovery.

A bone marrow sample was taken from each patient. The CD34+ cells were isolated from the sample and then infused into an artery that supplies the brain. No previous trial has selectively used CD34+ cells, so early after the stroke, until now.

Although the trial was mainly designed to assess the safety and tolerability of the treatment, the patients all showed improvements in their condition in clinical tests over a six-month follow-up period.

Four out of five patients had the most severe type of stroke: only four per cent of people who experience this kind of stroke are expected to be alive and independent six months later. In the trial, all four of these patients were alive and three were independent after six months.

Dr Soma Banerjee, a lead author and Consultant in Stroke Medicine at Imperial College Healthcare NHS Trust, said: "This study showed that the treatment appears to be safe and that it's feasible to treat patients early when they might be more likely to benefit. The improvements we saw in these patients are very encouraging, but it's too early to draw definitive conclusions about the effectiveness of the therapy. We need to do more tests to work out the best dose and timescale for treatment before starting larger trials."

Continue reading here:
Stem cells show promise for stroke in pilot study

Recommendation and review posted by simmons

Stem cell stroke therapy shows promise after first human trial

A pilot study undertaken by researchers from Imperial College Healthcare NHS Trust and Imperial College London has shown promise in rapid treatment of serious strokes. The study, the first of its kind published in the UK, treated patients using stem cells from bone marrow.

Imagine a perfectly ordinary beginning to your day, say burned toast, no matching pair of socks and the usual damp commute to work. Except at some point through the usual minutiae you suffer a massive stroke. If you dont die outright, you may soon afterwards. Even supposing you survive those first days or weeks, the chance of your life resuming its comforting tedium is impossibly remote. You may need assistance for the rest of your shortened life.

According to the Stroke Association, about 152,000 people suffer a stroke in the UK alone each year. However, the five patients treated in the recent Imperial College pilot study all showed improvements. According to doctors, four of those had suffered the most severe kind of stroke, which leaves only four percent of people alive or able to live independently six months after the event. All four of the patients were alive after six months.

A particular set of CD34+ stem cells was used, as they help with the production of blood cells and blood vessels lining cells. These same cells have been found to improve the effects of stroke in animals, and they assist in brain tissue and blood growth in the affected areas of the brain. The CD34+ cells were isolated from samples taken from patients bone marrow and then infused into the affected area via an artery that leads to the brain, using keyhole surgery.

The innovative stem cell treatment differs from others in one important way: patients are treated within seven days of their stroke, rather than six months hence. The stroke sufferers all recorded improvements in terms of clinical measures of disability, despite four of the five having suffered the most severe kind of stroke.

It's still early days for the research, and much more will need to be done to expand clinical trials, but eventually it is hoped that a drug may be developed that can be administered to stroke sufferers as soon as they are admitted to hospital. This could ameliorate longer term effects and allow for speedier recovery and a faster entry into therapy.

A paper detailing the research was published in journal Stem Cells Translational Medicine.

Source: Imperial College London

More here:
Stem cell stroke therapy shows promise after first human trial

Recommendation and review posted by Bethany Smith

Hope for stroke victims after radical stem cell treatment enables patients to move and talk again

5 stroke victims were treated with stem cells extracted from bone marrow Treatment triggers rapid regeneration of damaged brain cells Patients regained power of speech and use of their arms and legs More than 150,000 people have a stroke in England every year Treatment is at early stage and needs years of testing Imperial College London scientists says it shows 'great potential'

By Ben Spencer

Published: 09:25 EST, 8 August 2014 | Updated: 19:30 EST, 8 August 2014

257 shares

15

View comments

Five people who had suffered severe strokes (illustrated) regained the power of speech and mobility thanks to a radical new treatment

Stroke patients have shown remarkable signs of recovery after they were given a radical new treatment.

Five people who had suffered severe strokes regained the power of speech, use of their arms and legs and improved cognition after just six months, according to British research published today.

The three men and two women, aged between 45 and 75, were treated with stem cells extracted from their own bone marrow in the first experiment of its kind.

More here:
Hope for stroke victims after radical stem cell treatment enables patients to move and talk again

Recommendation and review posted by Bethany Smith

Stem cell hope for stroke victims

Brain damage caused by strokes could be repaired through the use of stem cells in a discovery that may revolutionise treatment, a study has suggested.

Researchers at Imperial College London found that injecting a patient's stem cells into their brain may be able to change the lives of the tens of thousands of people who suffer strokes each year.

Their results have been called "one of the most exciting recent developments in stroke research".

Doctors said the procedure could become routine in 10 years after larger trials are conducted to examine its effectiveness.

Advertisement

Researcher Dr Paul Bentley, from the college's Department of Medicine, said: "Currently, the main form of treatment is an unblocking of the blood vessel, and that only helps one-third of the patients who are treated and only 10 per cent are eligible anyway. So we said, 'What about the other 90 per cent?' "

The team targeted patients who had suffered severe strokes involving a clot in a blood vessel in the middle of the brain. Typically, there is a high mortality rate in these patients and those who survive are often severely disabled, unable to walk, talk, feed or dress themselves. The experimental procedure was carried out on five such patients, aged 40 to 70, all of whom showed improvement over the following six months, and three were living independently.

Dr Madina Kara, a neuroscientist at the Stroke Association, said: "This is one of the most exciting recent developments in stroke research. However, it's still early days in stem cell research, but the findings could lead to new treatments for stroke patients in the future.

"In the UK, someone has a stroke every three and a half minutes, and around 58 per cent of stroke survivors are left with a disability."

The experimental procedure involved harvesting the patient's own bone marrow, which was then sent to a specialist laboratory so specific stem cells, called CD34+, could be selected. The patient then has a wire inserted into the area of the brain damage. Once there, the stem cells are released and the wire retracted. During the trials the whole process took half a day, but it is hoped that with refinement it could be reduced.

See the original post here:
Stem cell hope for stroke victims

Recommendation and review posted by Bethany Smith

Hope for future treatment of thousands of stroke sufferers from stem cells

"So we said what about the other 90 per cent?"

The team targeted patients who had suffered massive strokes involving a blood clot in the blood vessel in the middle of the brain. Typically there is a high mortality rate in these patients and those who survive are often severely disabled, are unable to walk, talk, feed or dress themselves.

The experimental procedure was carried out on five patients aged between 40 and 70, all of whom showed improvement over the following six months and three were living independently.

More than 152,000 people suffer a stroke in England per year and the research team said that the new procedure could eventually help most of them.

Dr Madina Kara, a neuroscientist at The Stroke Association, said: Previous studies have shown that a type of stem cell, called CD34+ cells, shows promise to aid stroke recovery. These latest results suggest that this type of treatment could be administered safely and were looking forward to seeing the outcomes of further studies to see exactly how they are aiding recovery.

This is one of the most exciting recent developments in stroke research; however, its still early days in stem cell research but the findings could lead to new treatments for stroke patients in the future.

"In the UK, someone has a stroke every three and half minutes, and around 58 per cenrt of stroke survivors are left with a disability.

"One of the few existing treatments which can limit brain damage caused by stroke is thrombolysis. However, this drug can only be used to treat strokes caused by blood clots and must be administered within the first 4.5 hours after a stroke. There is an urgent need for alternative treatments to help prevent the debilitating impact of stroke."

The experimental procedure involves several stages, first the patient's own bone marrow is harvested, which was then sent to a specialist laboratory so the specific stem cells, called CD34+ can be selected.

Then the patient undergoes a procedure in which a wire is inserted into a vein in the neck and up into the area of brain damage. Once there the stem cells are released and the wire retracted.

See more here:
Hope for future treatment of thousands of stroke sufferers from stem cells

Recommendation and review posted by Bethany Smith

Scientists Inch Closer Toward Using Stem Cells for Spinal Injuries

By Amy Norton HealthDay Reporter

THURSDAY, Aug. 7, 2014 (HealthDay News) -- In a step toward using stem cells to treat paralysis, scientists were able to use cells from an elderly man's skin to regrow nerve connections in rats with damaged spinal cords.

Reporting in the Aug. 7 online issue of Neuron, researchers say the human stem cells triggered the growth of numerous axons -- the fibers that extend from the body of a neuron (nerve cell) to send electrical impulses to other cells.

Some axons even reached the animals' brains, according to the team led by Dr. Mark Tuszynski, a professor of neurosciences at the University of California, San Diego.

"This degree of growth in axons has not been appreciated before," Tuszynski said. But he cautioned that there is still much to be learned about how the new nerve fibers behave in laboratory animals.

Tuszynski likened the potential for stem-cell-induced axon growth to nuclear fusion. If it's contained, you get energy; if it's not contained, you get an explosion.

"Too much axon growth into the wrong places would be a bad thing," Tuszynski said.

For years, researchers have studied the potential for stem cells to restore functioning nerve connections in people with spinal cord injuries. Stem cells are primitive cells that have the capacity to develop into various types of body tissue. Stem cells can come from embryos or be generated from cells taken from a person.

For their study, Tuszynski's team used so-called induced pluripotent stem cells. They took skin cells from a healthy 86-year-old man and genetically reprogrammed them to become similar to embryonic stem cells.

Those stem cells were then used to create primitive neurons, which the researchers embedded into a special scaffold created with the help of proteins called growth factors. From there, the human neurons were grafted into lab rats with spinal cord injuries.

Read more:
Scientists Inch Closer Toward Using Stem Cells for Spinal Injuries

Recommendation and review posted by Bethany Smith

Stem cell behavior of human bowel discovered for first time

For the first time, scientists have uncovered new information on how stem cells in the human bowel behave, revealing vital clues about the earliest stages in bowel cancer development and how we may begin to prevent it.

The study, led by Queen May University of London (QMUL) and published today in the journal Cell Reports, discovered how many stem cells exist within the human bowel and how they behave and evolve over time. It was revealed that within a healthy bowel, stem cells are in constant competition with each other for survival and only a certain number of stem cells can exist within one area at a time (referred to as the 'stem cell niche'). However, when investigating stem cells in early tumours, the researchers saw increased numbers of stem cells within each area as well as intensified competition for survival, suggesting a link between stem cell activity and bowel cancer development.

The study involved studying stem cells directly within the human body using a specially developed 'toolkit'. The toolkit worked by measuring random mutations that naturally accrue in aging stem cells. The random mutations recorded how the stem cells had behaved, similarly to how the rings on a tree trunk record how a tree grew over time. The techniques used were unique in that scientists were able to study the human stem cells within their natural environment, giving a much more accurate picture of their behaviour.

Until this research, the stem cell biology of the human bowel has remained largely a mystery. This is because most stem cell research is carried out in mice, and it was uncertain how research findings in mice could be applied to humans. However, the scientists in fact found the stem cell biology of human bowels to have significant similarities to mice bowels. This means researchers can continue investigating stem cell activity within mice with the knowledge it is representative of humans -- hopefully speeding up bowel cancer research.

Importantly, these new research methods can also now be applied to investigate stem cells in other parts of the human body such as skin, prostate, lung and breast, with the aim of accelerating cancer research in these areas too.

Dr Trevor Graham, Lecturer in Tumour Biology and Study Author at Queen Mary University of London, comments: "Unearthing how stem cells behave within the human bowel is a big step forward for stem cell research. Until now, stem cell research was mostly conducted in mice or involved taking the stem cells out of their natural environment, thus distorting their usual behaviour. We now want to use the methods developed in this study to understand how stem cells behave inside bowel cancer, so we can increase our understanding of how bowel cancer grows. This will hopefully shed more light on how we can prevent bowel cancer -- the fourth most common cancer in the UK. We are positive this research lays important foundations for future bowel cancer prevention work, as well as prevention work in other cancers."

Dr Marnix Jansen, Histopathologist and Study Author at Queen Mary University of London, comments: "This study was made possible through the involvement of patients either diagnosed with bowel cancer or born with a tendency to develop bowel cancer. Only by investigating tissues taken directly from patients could we study how bowel cancers develop. Our work underlines the importance of patient involvement in scientific research if we are to tackle bowel cancer and help the greatest number of people."

Story Source:

The above story is based on materials provided by Queen Mary, University of London. Note: Materials may be edited for content and length.

Here is the original post:
Stem cell behavior of human bowel discovered for first time

Recommendation and review posted by Bethany Smith

Gene and cell therapy – Video


Gene and cell therapy

By: teresa adell

The rest is here:
Gene and cell therapy - Video

Recommendation and review posted by Bethany Smith

Sharp Rise in Risk With New Breast Cancer Gene, Scientists Say

By Dennis Thompson HealthDay Reporter

WEDNESDAY, Aug. 6, 2014 (HealthDay News) -- Mutated versions of a gene called PALB2 can dramatically increase a woman's risk of breast cancer, a new study has found.

Women carrying the PALB2 mutation have a one in three chance of developing breast cancer by the age of 70, British researchers report in the Aug. 7 issue of the New England Journal of Medicine.

The risk is even higher for women with a family history of breast cancer, the investigators found.

"If a mutation carrier has a strong family history, the risk would go up to about six in 10 by age 70," said senior study author Marc Tischkowitz, a researcher with the department of medical genetics at the University of Cambridge.

Those odds place PALB2 just behind the BRCA1 and BRCA2 genes as a top genetic risk factor for breast cancer, Tischkowitz said.

Women who carry a mutated form of either of the BRCA genes have a 45 percent to 65 percent risk of breast cancer by age 70, according to the U.S. National Cancer Institute.

Researchers first identified the PALB2 gene in 2006, and it was further associated with breast cancer in a study published in 2007, Tischkowitz said.

This new study provides the first solid evidence regarding the breast cancer risk associated with PALB2, said Dr. Roger Greenberg, an associate professor of cancer biology with the Abramson Family Cancer Research Institute at the University of Pennsylvania School of Medicine in Philadelphia.

Armed with this knowledge, women with a PALB2 mutation can talk with their doctor about whether they should undergo a mastectomy to reduce their breast cancer risk. Such surgery has been shown to reduce cancer risk by 90 percent, Greenberg noted.

Read more here:
Sharp Rise in Risk With New Breast Cancer Gene, Scientists Say

Recommendation and review posted by Bethany Smith

Key piece to cancer cell survival puzzle found

An international team led by Eric A. Hendrickson of the University of Minnesota and Duncan Baird of Cardiff University has solved a key mystery in cancer research: What allows some malignant cells to circumvent the normal process of cell death that occurs when chromosomes get too old to maintain themselves properly?

Researchers have long known that chromosomal defects that occur as cells repeatedly divide over time are linked to the onset of cancer. Now, Hendrickson, Baird and colleagues have identified a specific gene that human cells require in order to survive these types of defects.

"We have identified a gene that, as cells age, seems to regulate whether the cells become cancerous or not," Hendrickson said. "This gene has never been identified before in this role, so this makes it a potentially very important therapeutic target."

As cells divide their telomeres -- the DNA "caps" that protect the ends of chromosomes from damage -- shorten, leaving the chromosomes vulnerable to sticking to each other. In normal cells, this chromosome stickiness is a death knell -- a signal to defective-cell cleanup crews to move in and finish them off. Malignant cells, however, are somehow able to elude the cleanup crews.

The current research, published in the August 7 issue of the journal Cell Reports, identifies an essential component that allows older cells to evade death. Using sophisticated gene-targeting techniques to disable particular genes in human cells and then studying the impact on telomere fusion, the researchers found that cells escaped death only when the gene Ligase 3 was active but not when its action, which appears to promote fusion within like chromosomes rather than between different chromosomes, was blocked.

"Telomere dysfunction has been identified in many human cancers, and as we have shown previously, short telomeres can predict the outcome of patients with [chronic lymphocytic leukemia] and probably many other tumor types," said Baird. "Thus, the discovery that Ligase 3 is required for this process is fundamentally important."

Interestingly, the research was made possible by a chance meeting between Hendrickson, who is an expert in using gene targeting to create cells missing key components (such as Ligase 3), and Baird, who is a leading expert in analyzing telomeres. When the two discovered at a scientific conference that they were both looking at the role of Ligase 3 in cancer, they decided to collaborate.

"The collaboration paid off as we were able to uncover something that neither one of us could have done on our own," Hendrickson says.

Importantly, additional studies are already underway. In particular, the reliance on Ligase 3 appears, in turn, to be dependent upon the activity of another key DNA repair gene, p53.

"Since p53 is the most commonly mutated gene in human cancer, it now behooves us to discover how these two genes are interacting and to see if we can't use that information to develop synergistic treatment modalities," says Hendrickson.

Go here to see the original:
Key piece to cancer cell survival puzzle found

Recommendation and review posted by Bethany Smith

Jeffrey Smith’s ‘challenge’ to Neil deGrasse Tyson EVISCERATED (part 1) – Video


Jeffrey Smith #39;s #39;challenge #39; to Neil deGrasse Tyson EVISCERATED (part 1)
On August 5th, Jeffrey Smith, the creator of the #39;Institute for Responsible Technology #39; issued a challenge to Neil deGrasse Tyson. In it, he displays a TITANIC lack of knowledge on the topic...

By: Jeff Holiday

Read the rest here:
Jeffrey Smith's 'challenge' to Neil deGrasse Tyson EVISCERATED (part 1) - Video

Recommendation and review posted by Bethany Smith

Genetically modified crops: Ignoring genetic engineering at our own peril

Hari Pulakkat, ET Bureau Aug 8, 2014, 05.21AM IST

(Humanity will find it difficult)

Some British newspapers have been reporting the imminent harvest of a variety of nutrition-enriched genetically modified (GM) crop in the UK. It is a crop called camelina, also called false flax, a plant that usually grows in the Mediterranean. An institute called Rothamsted Research has tweaked the plant's genes and produced a variety that is full of omega-3 fatty acids, normally found only in oily fish.

Consumption of omega-3 fatty acids is supposed to be beneficial in a number of ways, and so this crop would provide the first real chance for vegetarians to get the vital nutrient through their normal diet. This would be great news for many people, but what is equally important is the fact that GM crops are set to finally break the resistance in Europe.

Despite considerable opposition from various pressure groups, GM crops are slowly advancing in Europe, with regulators relenting in several countries. Two months ago, almost all the environment ministers in Europe - only two countries resisted - decided to let individual countries follow their own course: whether to allow or not allow the cultivation of GM crops.

This will let the pro-GM countries go ahead with their plans, which will probably force the rest to consider GM crop trials and commercial launches. For some time now, Europe is cited as a model - often wrongly - to those around the world to resist commercial cultivation and even research in GM crops.

If Europe cultivates GM crops on a large scale, resistance will slowly reduce in China and African countries, and later in India as well. All these countries have so far seen some resistance against GM crops. China, despite funding GM crop research, has been reluctant to commercialise these widely.

Africa has been uneven in its acceptance, with countries like South Africa being adopters and other countries like Tanzania and Kenya holding out. India commercialised Bt cotton more than a decade ago, but progress of GM crops in the country has been slow since then.

From a scientific viewpoint, genetic engineering is like atomic energy; it depends on how you use it. So while it is difficult to say that all GM crops are bad, there could be situations where they would do some damage, depending on the genes that one chooses to introduce.

Most of the genes being tried now are known to be safe. It is highly unlikely that they will cause damage to our agricultural system, but it is impossible to prove it the other way.

Follow this link:
Genetically modified crops: Ignoring genetic engineering at our own peril

Recommendation and review posted by Bethany Smith

Expert insights on in vitro alternatives for drug and chemical toxicity testing

PUBLIC RELEASE DATE:

7-Aug-2014

Contact: Kathryn Ryan kryan@liebertpub.com 914-740-2100 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, August 7, 2014In vitro toxicity testing is rapidly being adopted in the pharmaceutical, chemical, and cosmetics industries, for example, as an alternative to animal studies to predict adverse health effects of drugs and personal care products and the health consequences of environmental exposures. An insightful Roundtable Discussion focused on how to apply these novel toxicology models to everyday hazard prediction, risk assessment, and decision making in industry is published in the preview issue of the new journal Applied In Vitro Toxicology, a peer-reviewed publication from Mary Ann Liebert, Inc., publishers. The article is available free on the Applied In Vitro Toxicology website.

In the Roundtable Discussion "Comments on How to Make the New Vision of Toxicity Testing in the 21st Century a Reality," Moderator Jim McKim, Editor-in-Chief of Applied In Vitro Toxicology and Founder and CEO, IONTOX, LLC, challenges the panelists to present a realistic view of how far the field has advanced in implementing the strategy put forth in a National Academy of Sciences report to improve toxicity testing.

Panelists Alan Goldberg, Consulting Editor of the Journal, Nicole Kleinstreuer, ILS/National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (Research Triangle Park, NC), Francois Busquet, Center for Alternatives to Animal Testing (Konstanz, Germany), and Melvin Andersen, The Hamner Institutes for Health Sciences (RTP, NC) participate in an interactive discussion on the use of human cell models combined with high-throughput screening methods to test for toxicity, and the complexity of applying adverse outcome pathways (AOPs). The conversation covers topics ranging from policy issues, challenges related to data interpretation and understanding the information gained from in vitro models, the emergence of three-dimensional tissue culture models that integrate cells from multiple human organs, and the different approaches being used to assess risk from high-dose, short-term exposures compared to exposure to lower concentrations of a chemical over longer periods of time.

"Improved analytical technologies and improvements in human tissue models will allow us to change the animal safety testing paradigm," says Jim McKim.

###

About the Journal

Applied In Vitro Toxicology is a new peer-reviewed journal providing the latest research on the application of alternative in vitro testing methods for predicting adverse effects in the pharmaceutical, chemical, and personal care industries. Led by Editor-in-Chief James M. McKim, PhD, DABT, IONTOX, LLC, the Journal addresses important issues facing these diverse industries, including regulatory requirements; the reduction, refinement, and replacement of animal testing; new screening methods; evaluation of new cell and tissue models; and the most appropriate methods for assessing safety and satisfying regulatory demands. The Journal is published quarterly online with Open Access options and in print. A sample issue may be viewed on the Applied In Vitro Toxicology website (http://www.liebertpub.com/aivt).

Read the rest here:
Expert insights on in vitro alternatives for drug and chemical toxicity testing

Recommendation and review posted by Bethany Smith

The Sims 3 | Perfect Genetics Challenge Part 17: Engagement – Video


The Sims 3 | Perfect Genetics Challenge Part 17: Engagement
In this part, Hunter proposes to Cassandra and Riley ages up into a teenager! Backstory: "Once upon a time, the Mighty Player sent a Sim to live in the world where all its creations were...

By: simplyapril

Read the original post:
The Sims 3 | Perfect Genetics Challenge Part 17: Engagement - Video

Recommendation and review posted by Bethany Smith

QASA Protest outside UIA Durban 2014 Campus – Video


QASA Protest outside UIA Durban 2014 Campus
"QASA is a co-ordinating, policy-making, governing and supporting organisation. The Association strives to prevent spinal cord injury, as well as protect and promote the interests of people...

By: Pedro Buccellato

Excerpt from:
QASA Protest outside UIA Durban 2014 Campus - Video

Recommendation and review posted by sam

WOW….regenerative medicine with stem cells natural activation ! – Video


WOW....regenerative medicine with stem cells natural activation !
NEW 100% NATURAL STEM CELLS ACTIVATOR !

By: Juan Perez

Read more:
WOW....regenerative medicine with stem cells natural activation ! - Video

Recommendation and review posted by sam

Single-cell analysis holds promise for stem cell and cancer research

UC San Francisco researchers have identified cells' unique features within the developing human brain, using the latest technologies for analyzing gene activity in individual cells, and have demonstrated that large-scale cell surveys can be done much more efficiently and cheaply than was previously thought possible.

"We have identified novel molecular features in diverse cell types using a new strategy of analyzing hundreds of cells individually," said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. "We expect to use this approach to help us better understand how the complexity of the human cortex arises from cells that are spun off through cell division from stem cells in the germinal region of the brain."

The research team used technology focused on a "microfluidic" device in which individual cells are captured and flow into nano-scale chambers, where they efficiently and accurately undergo the chemical reactions needed for DNA sequencing. The research showed that the number of reading steps needed to identify and spell out unique sequences and to successfully identify cell types is 100 times fewer than had previously been assumed. The technology, developed by Fluidigm Corporation, can be used to individually process 96 cells simultaneously.

"The routine capture of single cells and accurate sampling of their molecular features now is possible," said Alex Pollen, PhD, who along with fellow Kriegstein-lab postdoctoral fellow Tomasz Nowakowski, PhD, conducted the key experiments, in which they analyzed the activation of genes in 301 cells from across the developing human brain. Their results were published online August 3 in Nature Biotechnology.

Kriegstein said the identification of hundreds of novel biomarkers for diverse cell types will improve scientists' understanding of the emergence of specialized neuronal subtypes. Ultimately, the combination of this new method of focusing on gene activity in single cells with other single-cell techniques involving microscopic imaging is likely to reveal the origins of developmental disorders of the brain, he added.

The process could shed light on several brain disorders, including lissencephaly, in which the folds in the brain's cortex fail to develop, as well as maladies diagnosed later in development, such as autism and schizophrenia, Kriegstein said.

According to the Nature Biotechnology study co-authors, this strategy of analyzing molecules in single cells is likely to find favor not only among researchers who explore how specialized cells arise at specific times and locations within the developing organism, but also among those who monitor cell characteristics in stem cells engineered for tissue replacement, and those who probe the diversity of cells within tumors to identify those responsible for survival and spread of cancerous cells.

No matter how pure, in any unprocessed biological sample there are a variety of cells representing various tissue types. Researchers have been sequencing the combined genetic material within these samples. To study which genes are active and which are dormant, they use the brute repetition of sequencing steps to capture an adequate number of messenger RNA sequences, which are transcribed from switched-on genes. However, it is difficult to conclude from mixed tissue samples which genes are expressed by particular cell types.

Pollen and Nowakowski showed that fewer steps -- and less time and money -- are needed to distinguish different cell types through single-cell analysis than had previously been thought.

"We are studying an ecosystem of different, but related, cell types in the brain," Pollen said. "We are breaking that community down into the different populations of cells with the goal of understanding their functional parts and components so we can accurately predict how they will develop."

Read the rest here:
Single-cell analysis holds promise for stem cell and cancer research

Recommendation and review posted by simmons


Archives