The addition of human iPS cell-derived neural progenitors …

Posted: June 3, 2019 at 3:49 pm

JavaScript is disabled on your browser. Please enable JavaScript to use all the features on this page.Highlights

Human iPS cell-derived neural progenitors influence the contractile property of cardiac spheroid.

The contractile function of spheroids depends on the ratio of neural progenitors to cardiac cells.

Neural factors may influence the contractile function of the spheroids.

We havebeen attempting to use cardiac spheroids to construct three-dimensional contractilestructures for failed hearts. Recent studies have reported that neuralprogenitors (NPs) play significant roles in heart regeneration. However, theeffect of NPs on the cardiac spheroid has not yet been elucidated.

This studyaims to demonstrate the influence of NPs on the function of cardiac spheroids.

Thespheroids were constructed on a low-attachment-well plate by mixing humaninduced pluripotent stem (hiPS) cell-derived cardiomyocytes and hiPScell-derived NPs (hiPS-NPs). The ratio of hiPS-NPs was set at 0%, 10%, 20%,30%, and 40% of the total cell number of spheroids, which was 2500. The motionwas recorded, and the fractional shortening and the contraction velocity weremeasured.

Spheroidswere formed within 48 h after mixing the cells, except for the spheroidscontaining 0% hiPS-NPs. Observation at day 7 revealed significant differencesin the fractional shortening (analysis of variance; p=0.01). The bestfractional shortening was observed with the spheroids containing 30% hiPS-NPs.Neuronal cells were detected morphologically within the spheroids under aconfocal microscope.

Theaddition of hiPS-NPs influenced the contractile function of the cardiacspheroids. Further studies are warranted to elucidate the underlying mechanism.

Human iPS cell

Cardiomyocyte

Neural progenitor

Spheroid

Recommended articlesCiting articles (0)

2018 Elsevier Ltd. All rights reserved.

Go here to see the original:
The addition of human iPS cell-derived neural progenitors ...

Related Post

Comments are closed.

Archives