UMMS to develop a model for predicting gene expression in dendritic cells

Posted: January 6, 2015 at 5:45 am

Insight into regulation of the genes that allow the immune system to recognize pathogens will help scientists rationally design new vaccines and prevent autoimmunity

WORCESTER, MA - UMass Medical School scientists Jeremy Luban, MD, and Manuel Garber, PhD, will be principal investigators on a 3-year, $6.1 million grant to develop a model for predicting whether a given gene will be turned on or off under specific conditions. Funding for the grant comes from the recently launched Genomics of Gene Regulation (GGR) program at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. In total, $28 million in new grants aimed at deciphering the language of gene expression were awarded.

"Why a certain gene is expressed in a specific cell at a given time is an essential biological question that is fundamental to our understanding of life and disease," said Dr. Luban, MD, the David J. Freelander Professor in AIDS Research and professor of molecular medicine. "This grant will help us decipher the rules that govern gene expression. Ultimately, such information will help explain why one person survives a viral infection and another person does not."

Dr. Garber, PhD, director of the Bioinformatics Core and associate professor of molecular medicine said "Understanding of the regulatory code network - the DNA elements that control when and for how long a gene is expressed - has been elusive. The work we'll carry out in this project will allow us to model and test the regulatory code of dendritic cells. As a result, we would be able to predict the impact of mutations that do not directly affect the gene product but that affect how and when the gene is made."

Over the past decade, new scientific evidence suggests that genomic regions outside of the primary protein-coding regions of our DNA harbor variations that play an important role in disease. These regions contain elements that control gene expression and, when altered, can increase the risk for a disease.

The GGR grants will allow researchers to study complex gene networks and pathways in different cells types and systems. The resulting insight into the mechanisms controlling gene expression may ultimately lead to new avenues for developing treatments for diseases affected by faulty gene regulation, such as cancer, diabetes and Parkinson's disease.

"There is a growing realization that the ways genes are regulated to work together can be important for understanding disease," said Mike Pazin, PhD, a program director in the Functional Analysis Program in NHGRI's Division of Genome Sciences. "The Genomics of Gene Regulation program aims to develop new ways for understanding how the genes and switches in the genome fit together as networks. Such knowledge is important for defining the role of genomic differences in human health and disease."

Luban and Garber will be working with UMMS colleagues Job Dekker, PhD, co-director of the Program in Systems Biology and professor of biochemistry & molecular pharmacology; Oliver Rando, PhD, MD, professor of biochemistry & molecular pharmacology, and Scot Wolfe, associate professor of biochemistry & molecular pharmacology, to develop a model system for exploring gene regulation using human dendritic cells.

The dendritic cell is a key part of the innate immune system that distinguishes self from non-self and, when appropriate, directs the body to attack invading pathogens. In its immature state dendritic cells help prevent autoimmunity by keeping the immune system's T-cells from attacking the body's own cells. When an immature dendritic cell encounters a pathogen, though, a developmental switch is activated and the cell undergoes profound changes in gene expression as it matures. In contrast to immature dendritic cells, these mature cells elicit a potent immune response from T-cells that targets the pathogen.

Luban, Garber and colleagues will examine the changes that the dendritic cell undergoes when it encounters a pathogen and moves from the immature to the mature state. Among the factors they will look at are the genes that are turned on and off during this process. They will examine changes in transcription factors, chromatin modifying enzymes and the cis-acting DNA elements. Linking these elements to specific changes in gene expression should provide a model for predicting the expression of specific genes in dendritic and other cells.

Read more:
UMMS to develop a model for predicting gene expression in dendritic cells

Comments are closed.