Orphan Drug Exclusivity for CRISPR/Cas-Based Therapeutics – The National Law Review

Posted: September 28, 2020 at 2:56 pm

Monday, September 28, 2020

The prospect of genetic engineering using CRISPR (clustered regularly interspaced short palindromic repeats) and CRISPR-associated nucleases (Cas) has long been hailed as a revolutionary development in medicine.

This technology is rapidly advancing, and several CRISPR/Cas-based drugs have entered clinical trials over the past several years. One kind of product in clinical trials is CRISPR-modified cells, such as CTX001 (CRISPR-Cas9-modified autologous hematopoietic stem cells), currently under study for the treatment ofb-thalassemiaand severe sickle cell anemia. Another CRISPR-based product,AGN-151587, is injected into the eye with the goal of eliminating a genetic mutation in patients with Leber congenital amaurosis 10, a leading cause of childhood blindness. In parallel, others are working to harness theCRISPR/Cas system to develop drugs for rare diseases, including bespoketherapiestailored to an individual patients needs.

Given CRISPR/Cas-based drugs potential to treat rare diseases, issues relating to orphan drug exclusivity will arise as these products are developed. In May 2020, for example, CTX001 received anorphan drug designationfor transfusion-dependent b-thalassemia.

In January 2020, the FDA provideddraft guidanceregarding orphan drug exclusivity for gene therapy products, whichincludesCRISPR/Cas gene editing (Draft Guidance). This guidance focuses on the analysis of whether two gene therapy products are the same under the Orphan Drug Act. Although informative, the limited scope of the Draft Guidance invites more questions than it answers.

Obtaining orphan drug exclusivity involves a two-step process. First, a sponsor requests designation of a drug for a particular rare disease or condition.See21 C.F.R. 316.20. If this drug is the same drug as a drug already approved to treat the same rare disease or condition, the sponsor must provide a plausible hypothesis that the new drug is clinically superior to the previously-approved drug.Id.Whether two drugs are the same depends on consideration of structural features relevant to that type of drug.See id. 316.3(b)(14).

If the new drug later obtains marketing approval for a use or indication within the rare disease or condition for which it received orphan drug designation, the FDA will determine if the drug is eligible for orphan drug exclusivity.See21 C.F.R. 316.31(a). In this situation, to receive exclusivity, the sponsor of the new drug must show that its drug is clinically superior to the same previously-approved drug for the same rare disease or condition.See id. 316.34(c). A clinical superiority determination is based on the new drugs greater efficacy, greater safety, or a major contribution to patient care.See id. 316.3(b)(3).

To determine whether one gene therapy product is the same as another, per 316.3(b)(14)(ii), the FDA will evaluate the principal molecular structural features of the two products, particularly transgenes (e.g., transgenes that encode different enzymes for treatment of the same rare disease) and vectors. For example:

If two gene therapy products express different transgenes, the FDA generally intends to consider them to be different drugs even if they have or use the same vector.

Conversely, if two gene therapy products have or use vectors from a different viral class (e.g., gammaretrovirus or adeno-associated virus), the FDA generally intends to consider them to be different drugs even if they express the same transgene.

In the case of two vectors from the same class (e.g., AAV2 or AAV5), the FDA intends to determine their same-ness on a case-by-case basis.

However, the FDA generally does not intend to consider these principal molecular structural features to be different based solely on minor differences between the transgenes and/or the vectors.

Additionally, [w]hen applicable, the FDA generally intends to consider additional features of the final gene therapy product, such as regulatory elements or, in the case of genetically-modified cells, the type of cell that is transduced. It generally intends to consider requests for designation and exclusivity of gene therapy products to evaluate whether such additional features may also be considered to be principal molecular structural features.

The Draft Guidance helps answer certain high-level questions relating to whether two gene therapy products would be considered the same under the Orphan Drug Act. As various stakeholders haverecognized, however, it is short on the details that meaningfully aid the process of drug research and development.

It is clear from the Draft Guidance that a new product can be considered the same as a previously-approved product even if the two products are not perfectly identical, but the guidance does not explain what would constitute a minor difference between such products, or what the scope of additional features would be.

For example, the Draft Guidance does not clarify what makes two transgenes the same. Nor does it cite to prior guidance or regulations that may answer this question. The question is significant becauseCas nucleasesand otherpartsof the CRISPR/Cas system may be modified in various ways. To address whether these modifications bar a finding of same-ness, the FDA could potentially import the kinds of considerations that govern same-ness of other kinds of large-molecule products, such as polynucleotide drugs or closely related, complex partly definable drugs with similar therapeutic intent (e.g., viral vaccines).See21 C.F.R. 316.3(b)(14)(ii)(C), (D). However, this is not clear from the Draft Guidance.

The Draft Guidance also does not explain what will factor into the case-by-case basis assessment of whether viral vectors from the same viral class are the same. In the case of AAV2 and AAV5the two viruses identified in the guidanceresearchers have foundthat these viruses differ with respect to sequence analysis, tissue tropism, and heparin sensitivity. It is not clear from the guidance, however, whether a plausible hypothesis of clinical superiority will be required to seek orphan drug designation for a drug based on AAV2 if the previously-approved drug expresses the same transgene(s) but is based on AAV5.

It would be beneficial to sponsors and other stakeholders if these aspects of gene therapy drugs sameness are clarified further before they invest significant resources into the design and development of these therapeutics.

2020 Proskauer Rose LLP. National Law Review, Volume X, Number 272

More:
Orphan Drug Exclusivity for CRISPR/Cas-Based Therapeutics - The National Law Review

Related Post

Comments are closed.

Archives