Genetics Society of America's Genetics journal highlights for December 2012

Posted: December 5, 2012 at 1:40 am

Public release date: 4-Dec-2012 [ | E-mail | Share ]

Contact: Phyllis Edelman pedelman@genetics-gsa.org 301-634-7302 Genetics Society of America

Bethesda, MDDecember 4, 2012 Listed below are the selected highlights for the December 2012 issue of the Genetics Society of America's journal, Genetics. The December issue is available online at http://www.genetics.org/content/current. Please credit Genetics, Vol. 192, December 2012, Copyright 2012.

Please feel free to forward to colleagues who may be interested in these articles.

ISSUE HIGHLIGHTS

Genetic variation in Saccharomyces cerevisiae: Circuit diversification in a signal transduction network, pp. 1523-1532 Brian L. Chin, Owen Ryan, Fran Lewitter, Charles Boone, and Gerald R. Fink The plummeting cost of genome sequencing has revealed increasing amounts of genetic variation within a species. How much of that variation affects function, and how might it help us understand evolution? The authors addressed these questions by looking at how cell adhesion is controlled in two closely related yeast strains. Despite their similar genomic sequences, these two strains use different sets of genes to regulate adhesion. A signal transduction pathway has been rewired, partly because of polymorphisms in a transcription factor.

Gene functional trade-offs and the evolution of pleiotropy, pp. 1389-1409 Frdric Guillaume and Sarah P. Otto Pleiotropythe property of genes affecting multiple features of an organismis often considered to be an unavoidable by-product of a gene's evolutionary history. These authors explored how the pleiotropic degree of a gene may evolve, providing clues to why pleiotropy varies among genes. They found two common outcomes of the evolution of multifunctional genes: increased pleiotropy of genes more highly expressed, and specialization of all genes on the trait most important to fitness.

Receptors and other signaling proteins required for serotonin control of locomotion in Caenorhabditis elegans, pp. 1359-1371 Gliz Grel, Megan A. Gustafson, Judy S. Pepper, H. Robert Horvitz, and Michael R. Koelle This article offers insight into the mechanism of signaling by serotonin, a neurotransmitter involved in mood disorders in humans. The authors carried out screens for C. elegans mutants that fail to respond properly to this neurotransmitter, which worms use to control locomotion. They identified mutations in more than eight genes required for serotonin signaling. Two encode serotonin receptors, while the others encode proteins that in some cases are implicated for the first time in serotonin signaling by this work. There are similar human proteins that may mediate serotonin signaling in our brains. The two C. elegans serotonin receptors appear to act in parallel in different cells to coordinate behavioral responses to serotonin.

Long-term and short-term evolutionary impacts of transposable elements on Drosophila, pp. 1411-1432 Yuh Chwen G. Lee and Charles H. Langley Transposable elements are ubiquitous genomic parasites. Even though they are primarily vertically inherited as part of the genome, their interactions with the host are often likened to the coevolution of host genes and nongenomic, horizontally transferred pathogens. Here Lee and Langley show that genes involved in the interaction with transposable elements indeed show strong signals of positive selection similar to those of immunity genes in Drosophila, but with a fundamentally different mechanism from that of host-pathogen coevolution.

Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.), pp. 1347-1358 Hiroaki Matsuhira, Hiroyo Kagami, Masayuki Kurata, Kazuyoshi Kitazaki, Muneyuki Matsunaga, Yuko Hamaguchi, Eiki Hagihara, Minoru Ueda, Michiyo Harada, Aki Muramatsu, Rika Yui-Kurino, Kazunori Taguchi, Hideto Tamagake, Tetsuo Mikami, and Tomohiko Kubo Plant pollen production is often impaired by incompatibility between the mitochondria and nucleus. A nuclear gene termed Rf can cancel this cytoplasmic male sterility. These authors report that sugar beet Rf encodes a metalloprotease-like gene, in contrast to other Rfs which encode proteins supposed to bind RNA. Interestingly, the sugar beet Rf locus exhibits the gene clustering often seen in plant Rf loci, suggesting a common evolutionary mechanism regardless of the Rf gene products.

More here:
Genetics Society of America's Genetics journal highlights for December 2012

Related Posts

Comments are closed.

Archives