Genetic engineering for synthetic semiconductors

Posted: June 8, 2012 at 7:23 pm

SAN FRANCISCO--Genetic engineering could hold the key to artificially creating semiconductors in a lab. According to technology news site Ars Technica, a team of academics at the University of California, Santa Barbara is looking at ways to create synthetic proteins that could form new structures of silicon dioxide to make computer chips with.

These chips would then be used in all kinds of electronics.

The proteins could also form titanium dioxide, used in solar cells.

The process is a bit different from regular genetic engineering because it uses synthetic cells made of the randomly combined genes of two related silicateins replete with random mutations, surrounded by a nucleus of minute plastic beads.

The artificial cells are put through the proverbial wringer, killing many along the way. Those that survive the process have their genes cherry picked by the scientists from either the silicon or titanium dioxide-forming proteins.

The results were somewhat surprising, with researchers finding not just the original silicateins used to form the artificial cell in the first place, but also another, different gene.

Tests on the new gene found it contained a silica-forming protein which has been dubbed silicatein X1, which may prove useful in the making of folded sheets of silica-protein fibers.

Silica skeletons of radiolaria in false color

Now that scientists know its possible to create entirely different silica proteins, the next step will be to change the conditions in order to achieve things like semiconductor performance.

Here is the original post:
Genetic engineering for synthetic semiconductors

Related Post

Comments are closed.