Future Visioning The Role Of CRISPR Gene Editing: Navigating Law And Ethics To Regenerate Health And Cure Disease – Technology – United States -…
Posted: November 27, 2020 at 1:50 pm
"Despite the projected growth in market applications andabundant investment capital, there is a danger that legal andethical concerns related to genetic research could put the brakeson gene editing technologies and product programs emanatingtherefrom."
There are thousands of diseases occurring in humans, animals,and plants caused by aberrant DNA sequences. Traditional smallmolecule and biologic therapies have only had minimal success intreating many of these diseases because they mitigate symptomswhile failing to address the underlying genetic causes. While humanunderstanding of genetic diseases has increased tremendously sincethe mapping of the human genome in the late 1990s, our ability totreat them effectively has been limited by our historical inabilityto alter genetic sequences.
The science of gene editing was born in the 1990s, as scientistsdeveloped tools such as zinc-finger nucleases (ZFNs) and TALEnucleases (TALENs) to study the genome and attempt to altersequences that caused disease. While these systems were anessential first step to demonstrate the potential of gene editing,their development was challenging in practice due to the complexityof engineering protein-DNA interactions.
Then, in 2011, Dr. Emmanuelle Charpentier, a French professor ofmicrobiology, genetics, and biochemistry, and Jennifer Doudna, anAmerican professor of biochemistry, pioneered a revolutionary newgene-editing technology called CRISPR/Cas9. Clustered Regularly InterspacedShort Palindromic Repeats (CRISPR) and Cas9 stands forCRISPR-associated protein 9. In 2020, the revolutionary work ofDrs. Charpentier and Doudna developing CRISPR/Cas9 were recognizedwith the Nobel Prize for Chemistry. The technology was also thesource of a long-running and high-profile patent battle between two groups ofscientsists.
CRISPR/Cas9 for gene editing came about from a naturallyoccurring viral defense mechanism in bacteria. The system ischeaper and easier to use than previous technologies. It deliversthe Cas9 nuclease complexed with a synthetic guide RNA (gRNA) intoa cell, cutting the 'cell's genome at the desired location,allowing existing genes to be removed and new ones added to aliving organism's genome. The technique is essential inbiotechnology and medicine as it provides for the genomes to beedited in vivo with extremely high precision, efficiently, and withcomparative ease. It can create new drugs, agricultural products,and genetically modified organisms or control pathogens and pests.More possibilities include the treatment of inherited geneticdiseases and diseases arising from somatic mutations such ascancer. However, its use in human germline genetic modification ishighly controversial.
The following diagram from CRISPR Therapeutics AG, a Swisscompany, illustrates how it functions:
In the 1990s, nanotechnology and gene editing were necessaryplot points for science fiction films. In 2020, developments likenano-sensors and CRISPR gene editing technology have moved thesetechnologies directly into the mainstream, opening a new frontierof novel market applications. According to The Business ResearchCompany, the global CRISPR technology market reached a value ofnearly $700 million in 2019, is expected to more than double in2020, and reach $6.7 billion by 2030. Market applications targetall forms of life, from animals to plants to humans.
Gene editing's primary market applications are for thetreatment of genetically-defined diseases. CRISPR/Cas9 gene editingpromises to enable the engineering of genomes of cell-basedtherapies and make them safer and available to a broader group ofpatients. Cell therapies have already begun to make a meaningfulimpact on specific diseases, and gene editing helps to acceleratethat progress across diverse disease areas, including oncology anddiabetes.
In the area of human therapy, millions of people worldwidesuffer from genetic conditions. Gene-editing technologies likeCRISPR-Cas9 have introduced a way to address the cause ofdebilitating illnesses like cystic fibrosis and create betterinterventions and therapies. They also have promising marketapplications for agriculture, food safety, supply, anddistribution. For example, grocery retailers are even looking athow gene editing could impact the products they sell. Scientistshave created gene-edited crops like non-browning mushrooms andmildew-resistant grapes - experiments that are part of an effort toprevent spoilage, which could ultimately change the way food issold.
Despite the inability to travel and conduct face-to-facemeetings, attend industry conferences or conduct business otherthan remotely or with social distance, the investment markets forventure, growth, and private equity capital, as well as corporateR&D budgets, have remained buoyant through 2020 to date.Indeed, the third quarter of 2020 was the second strongest quarterever for VC-backed companies, with 88 companies raising roundsworth $100 million or more according to the latest PwC/Moneytreereport. Healthcare startups raised over $8 billion in the quarterin the United States alone. Gene-editing company MammouthBiosciences raised a $45 million round of Series B capital in thesecond quarter of 2020. CRISPR Therapeutics AG raised more in thepublic markets in primary and secondary capital.
Bayer, Humboldt Fund and Leaps are co-leading a $65 million Series A round for Metagenomi, abiotech startup launched by UC Berkeley scientists. Metagenomi,which will be run by Berkeley's Brian Thomas, is developing atoolbox of CRISPR- and non-CRISPR-based gene-editing systems beyondthe Cas9 protein. The goal is to apply machine learning to searchthrough the genomes of these microorganisms, finding new nucleasesthat can be used in gene therapies. Other investors in the Series Ainclude Sozo Ventures, Agent Capital, InCube Ventures and HOFCapital. Given the focus on new therapies and vaccines to treat thenovel coronavirus, we expect continued wind in the sails forgene-editing companies, particularly those with strong productportfolios that leverage the technology.
Despite the projected growth in market applications and abundantinvestment capital, there is a danger that legal and ethicalconcerns related to genetic research could put the brakes ongene-editing technologies and product programs emanating therefrom.The possibility of off-target effects, lack of informed consent forgermline therapy, and other ethical concerns could cause governmentregulators to put a stop on important research and developmentrequired to cure disease and regenerate human health.
Gene-editing companies can only make money by developingproducts that involve editing the human genome. The clinical andcommercial success of these product candidates depends on publicacceptance of gene-editing therapies for the treatment of humandiseases. Public attitudes could be influenced by claims that geneediting is unsafe, unethical, or immoral. Consequently, productscreated through gene editing may not gain the acceptance of thegovernment, the public, or the medical community. Adverse publicreaction to gene therapy, in general, could result in greatergovernment regulation and stricter labeling requirements ofgene-editing products. Stakeholders in government, third-partypayors, the medical community, and private industry must work tocreate standards that are both safe and comply with prevailingethical norms.
The most significant danger to growth in gene-editingtechnologies lies in ethical concerns about their application tohuman embryos or the human germline. In 2016, a group of scientistsedited the genome of human embryos to modify the gene forhemoglobin beta, the gene in which a mutation occurs in patientswith the inherited blood disorder beta thalassemia. Althoughconducted in non-viable embryos, it shocked the public thatscientists could be experimenting with human eggs, sperm, andembryos to alter human life at creation. Then, in 2018, abiophysics researcher in China created the first human geneticallyedited babies, twin girls, causing public outcry (and triggeringgovernment sanctioning of the researcher). In response, the WorldHealth Organization established a committee to advise on thecreation of standards for gene editing oversight and governancestandards on a global basis.
Some influential non-governmental agencies have called for amoratorium on gene editing, particularly as applied to altering thecreation or editing of human life. Other have set forth guidelineson how to use gene-editing technologies in therapeuticapplications. In the United States, the National Institute ofHealth has stated that it will not fund gene-editing studies inhuman embryos. A U.S. statute called "The Dickey-WickerAmendment" prohibits the use of federal funds for researchprojects that would create or destroy human life. Laws in theUnited Kingdom prohibit genetically modified embryos from beingimplanted into women. Still, embryos can be altered in researchlabs under license from the Human Fertilisation and EmbryologyAuthority.
Regulations must keep pace with the change that CRISPR-Cas9 hasbrought to research labs worldwide. Developing international guidelines could be a steptowards establishing cohesive national frameworks. The U.S.National Academy of Sciences recommended seven principles for thegovernance of human genome editing, including promoting well-being,transparency, due care, responsible science, respect for persons,fairness, and transnational co-operation. In the United Kingdom, anon-governmental organization formed in 1991 called The NuffieldCouncil has proposed two principles for the ethical acceptabilityof genome editing in the context of reproduction. First, theintervention intends to secure the welfare of the individual borndue to such technology. Second, social justice and solidarityprinciples are upheld, and the intervention should not result in anintensifying of social divides or marginalizing of disadvantagedgroups in society. In 2016, in application of the same, the CrickInstitute in London was approved to use CRISPR-Cas9 in humanembryos to study early development. In response to a cacophony ofconflicting national frameworks, the International Summit on HumanGene Editing was formed in 2015 by NGOs in the United States, theUnited Kingdom and China, and is working to harmonize regulationsglobal from both the ethical and safety perspectives. As CRISPRco-inventor Jennifer Doudna has written in a now infamous editorialin SCIENCE, "stakeholders must engage in thoughtfullycrafting regulations of the technology without stiflingit."
The COVID-19 pandemic has forced us to rely more on newtechnologies to keep us healthy, adapt to working from home, andmore. The pandemic makes us more reliant on innovative digital,biological, and physical solutions. It has created a united senseof urgency among the public and private industry (together withgovernment and academia) to be more creative about using technologyto regenerate health. With continued advances in computing power, networkarchitecture, communications bandwidths, artificial intelligence,machine learning, and gene editing, society will undoubtedly findmore cures for debilitating disease and succeed in regeneratinghuman health. As science advances, it inevitably intersects withlegal and ethical norms, both for individuals and civil society,and there are new externalities to consider. Legal and ethicalnorms will adapt, rebalancing the interests of each. The fourthindustrial revolution is accelerating, and hopefully towards curingdisease.
Originally published by IPWatchdog.com, November 24,2020.
The content of this article is intended to provide a generalguide to the subject matter. Specialist advice should be soughtabout your specific circumstances.
Here is the original post:
Future Visioning The Role Of CRISPR Gene Editing: Navigating Law And Ethics To Regenerate Health And Cure Disease - Technology - United States -...
- Advarra Announces New Gene Therapy Ready Site Network - PRNewswire - January 23rd, 2021
- UK biotech Ixaka scores additional funding for cell and gene therapy research - PharmaTimes - January 23rd, 2021
- Neurogene and University of Edinburgh Announce Research Collaboration to Advance Next Generation Gene Therapies - Business Wire - January 23rd, 2021
- Cure Genetics Collaborates with Boehringer Ingelheim to Develop Novel AAV Vectors Enabling the Next-generation Liver-targeted Gene Therapy - BioSpace - January 23rd, 2021
- Cancer Gene Therapy Market Size Study with COVID-19 Impact 2020, Share, Industry Analysis, Growth, Segmentation and Forecast to 2026 KSU | The... - January 23rd, 2021
- Chinese scientists develop new gene therapy that can delay the aging process - National Post - January 23rd, 2021
- Gene therapy developed to delay ageing - The Financial Express - January 23rd, 2021
- Bone Therapeutics provides fourth quarter 2020 business update and 2021 outlook - GlobeNewswire - January 23rd, 2021
- How 2 scientific pioneers teamed up to run AskBio, Bayer's new gene therapy division - BioPharma Dive - January 22nd, 2021
- Neurogene in tie up with university to advance gene therapy technologies - BioPharma-Reporter.com - January 22nd, 2021
- Cell and Gene Therapy Consumables Market 2020 Key Manufacturers, Development Trends and Competitive Analysis 2026 KSU | The Sentinel Newspaper - KSU... - January 22nd, 2021
- New Research Grant Seeks to Clarify the Role Genes Play in Modulating Inflammation - NYU Langone Health - January 22nd, 2021
- Lilly Completes Acquisition of Prevail Therapeutics - BioSpace - January 22nd, 2021
- Cancer Gene Therapy Market : Future Prospects With Covid-19 Impact Analysis 2027 | Top Players- Adaptimmune, GlaxoSmithKline plc, bluebird bio, Inc -... - January 22nd, 2021
- Global Gene Therapy Market Worth $38.41 Million by 2025- Exclusive Report by Fior Markets - PharmiWeb.com - January 22nd, 2021
- Covance boosts Franklin to lead its cell and gene therapy unit - FierceBiotech - January 22nd, 2021
- Explore why Cancer Gene Therapy Market is thriving by 2025 with top key players like Genelux Corporation, Cell Genesys, Advantagene, GenVec,... - January 22nd, 2021
- The global transient protein expression market is expected to reach US$ 983.10 million by 2027 from US$ 660.00 million in 2019 - GlobeNewswire - January 22nd, 2021
- Regenerative Medicine Market Size Worth $23.57 Bn By 2027; High demand for 3D bioprinting of tissues and organs to better understand their mechanism... - January 22nd, 2021
- Cancer Gene Therapy Market Segmentation, Parameters, Prospects 2021 And Forecast Research Report To 2027 - The Courier - January 22nd, 2021
- Taysha Gene Therapies Receives Rare Pediatric Disease and Orphan Drug Designations for TSHA-105 for the Treatment of Epilepsy Caused by SLC13A5... - January 22nd, 2021
- The Global Cancer Gene Therapy Market is expected to grow by $ 2.96 bn during 2021-2025 progressing at a CAGR of 20% during the forecast period -... - January 22nd, 2021
- Gene Therapy Technologies Market Estimated to Experience a Hike in Growth by 2021 2026: Bluebird bio, Adaptimmune, GlaxoSmithKline - KSU | The... - January 22nd, 2021
- Unleashing the cancer-fighting gene TP53 in leukemia with a novel combination treatment - FierceBiotech - January 22nd, 2021
- Big Boom in Gene Therapy Market Detailed Analysis of Current and Future Industry Figures till 2028 |Novartis AG, Gilead Sciences, Inc., UniQure N.V.,... - January 22nd, 2021
- Gene therapy developed to delay ageing - The Financial Express BD - January 22nd, 2021
- Biogen and ViGeneron to Collaborate on Ophthalmic Gene Therapy Development - JD Supra - January 9th, 2021
- With decades in gene therapy under his belt, Ronald Crystal launches new venture with up to 18 candidates in the pipe - Endpoints News - January 9th, 2021
- GeneOne to supply plasmid DNA therapy worth $2 million to US - Korea Biomedical Review - January 9th, 2021
- Fujifilm triples down on viral vector manufacturing with new $40M Boston site - FiercePharma - January 9th, 2021
- REGENXBIO Announces Update on RGX-314 and Pivotal Program for the Treatment of Wet AMD and New Gene Therapy Program for the Treatment of Duchenne... - January 9th, 2021
- Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin - Science Advances - January 9th, 2021
- Chinese researchers discover new anti-aging gene therapy - The Star Online - January 9th, 2021
- Engineered stem cells that evade immune detection could boost cell therapy and I-O - FierceBiotech - January 9th, 2021
- article image Advances in gene therapy to help paralysis - Digital Journal - January 9th, 2021
- Oncternal Therapeutics and Karolinska Institutet Establish Collaboration for Research and Development of ROR1-targeting CAR-T and CAR-NK Cell... - January 9th, 2021
- AllStripes Announces Collaboration with Taysha Gene Therapies for SURF1-Associated Leigh Syndrome Program - Business Wire - January 9th, 2021
- Regenerative Medicine Market to Reach Valuation US$ 23.7 Bn by 2027 - GlobeNewswire - January 9th, 2021
- Global Cell and Gene Therapy Market Report 2020-2030: COVID-19 Impacts, Growth and Changes - GlobeNewswire - January 9th, 2021
- Mana joins the hectic fight against solid tumors with an 'off-the-shelf' candidate angling for an IND this year - Endpoints News - January 9th, 2021
- Dewpoint forges another big pharma partnership and a potential rivalry - BioPharma Dive - January 9th, 2021
- IsoPlexis scores big backer for personalized protein 'barcodes' as Perceptive jumps on board new funding round - Endpoints News - January 9th, 2021
- Global Soft Tissue Repair Market- Featuring 3M Co., Arthrex Inc., and Baxter International Inc. Among Others - Business Wire - January 9th, 2021
- Looking to solve the solid tumor puzzle box, Carisma aims to take 'CAR-M' groundbreaker into early-stage trial - Endpoints News - January 9th, 2021
- DiCE gets its 'library' card ready as it speeds development of DNA database-derived molecules with more investor cash - Endpoints News - January 9th, 2021
- Study: Too few with high blood pressure tested for hormone disorder - UPI News - December 30th, 2020
- These Families Raised Millions To Fund Treatment For Their Kids' Genetic Disorders. It Hasn't Happened. - KCUR - December 26th, 2020
- Taysha Gene Therapies Announces Queen's University's Receipt of Clinical Trial Application Approval from Health Canada for Phase 1/2 Clinical Trial of... - December 26th, 2020
- After years of potential, cell and gene therapy is ready for the pharmaceutical mainstream - PMLiVE - December 26th, 2020
- Regenerative Medicine in Pharma 2020 - Opportunities, Challenges, and Unmet Needs - GlobeNewswire - December 26th, 2020
- Gene Therapy for Rare Disease Market Prospects Pinpoint Higher Traction from Developed Nations during 2020-2026 | Coherent Market Insights | Kite... - December 26th, 2020
- Gene Therapy Market Regions, Type and Application, Futuristic Study - Factory Gate - December 26th, 2020
- News briefing: Merck buys into A2's T cell therapy platform; Small Soligenix reports PhIII fail in head and neck cancer - Endpoints News - December 26th, 2020
- Biopharma Money on the Move: December 16-22 - BioSpace - December 26th, 2020
- Ziopharm Oncology Announces Clearance of Taiwan's First IND of Non-viral CAR-T for the Treatment of Relapsed CD19+ Leukemias and Lymphomas -... - December 26th, 2020
- Ocugen Establishes Vaccine Scientific Advisory BoardLeading experts to evaluate the clinical and regulatory path to approval in the US market of... - December 26th, 2020
- Allogene Therapeutics Receives IND Clearance from the U.S. Food and Drug Administration for ALLO-715 in Combination with Nirogacestat in... - December 26th, 2020
- Gyroscope Therapeutics and the University of Pennsylvania Announce Research Agreement to Develop Gene Therapies for Serious Eye Diseases - Business... - December 19th, 2020
- Every Patient Treated With CRISPR Gene Therapy for Blood Diseases Continues to Thrive, More Than a Year On - Good News Network - December 19th, 2020
- The next generation of gene therapy for rare diseases forges ahead as developers weather hurdles - FierceBiotech - December 19th, 2020
- Atsena Therapeutics Raises $55 Million Series A Financing to Advance LCA1 Gene Therapy Clinical Program, Two Preclinical Assets, and Novel Capsid... - December 19th, 2020
- Repurposing a proven gene therapy approach to treat, prevent COVID-19 - Penn Today - December 19th, 2020
- Locanabio Raises $100 Million to Advance RNA-Targeted Gene Therapies - BioSpace - December 19th, 2020
- Technical Report on Gene Therapy in Oncology Market 2021 - LionLowdown - December 19th, 2020
- Biopharma Money on the Move: December 9-15 - BioSpace - December 19th, 2020
- Global Gene Expression Market Analysis and Forecasts - A $6.78 Billion Market by 2027 - PRNewswire - December 19th, 2020
- Though Promising, Gene Therapies Face Durability And Reimbursement Headwinds - Forbes - December 17th, 2020
- Lilly scores gene therapy programme in $1bn Prevail Therapeutics acquisition deal - PMLiVE - December 17th, 2020
- Gene Therapy in One Eye Improves Vision in Both Eyes - The Scientist - December 17th, 2020
- Gene Therapy Market Worth USD 35.67 Billion at 33.6% CAGR; Rising Prevalence of Spinal Muscular Atrophy to Augment Growth: Fortune Business Insights -... - December 17th, 2020
- Health Canada approves Zolgensma, the one-time gene therapy for pediatric patients with spinal muscular atrophy (SMA) - Canada NewsWire - December 17th, 2020
- Global Gene Therapy Market Report 2020-2030 Featuring Novartis, Bluebird Bio, Spark Therapeutics, Audentes Therapeutics, Voyager Therapeutics,... - December 17th, 2020
- Passage Bio Invests In Gene Therapy Manufacturing R&D Site - Contract Pharma - December 17th, 2020
- Experimental Therapy Injected in One Eye Unexpectedly Improves Vision in The Other - ScienceAlert - December 17th, 2020
- After leaving Wall Street to launch a gene therapy upstart, Rachel McMinn nabs $115M to drive her first candidate to the clinic - Endpoints News - December 17th, 2020
- They thought their gene therapy failed. Instead, it spawned a medical mystery - Endpoints News - December 17th, 2020
- Cell And Gene Therapy Market Trends, Growth, Size, Analysis and Forecast by 2024 with Top Players: JW CreaGene,Vericel,Tego Sciences,GC... - December 17th, 2020
- Single gene therapy injection surprisingly boosts vision in both eyes - New Atlas - December 17th, 2020
- Cell and Gene Therapy Global Market Report 2020-30: COVID-19 Growth and Change - GlobeNewswire - December 17th, 2020
- Cancer Gene Therapy Market Global Opportunities and Industry Share Expected Surpass $2082 Million b - PharmiWeb.com - December 17th, 2020