Page 19«..10..18192021..3040..»

Archive for the ‘Gene Therapy Research’ Category

Cancer Gene Therapy Market : Future Prospects With Covid-19 Impact Analysis 2027 | Top Players- Adaptimmune, GlaxoSmithKline plc, bluebird bio, Inc -…

Databridgemarketresearch.com Present Cancer Gene Therapy Market Industry Trends and Forecast to 2027 new report to its research database. This report is always helpful to business or organization in every subject of trade for taking better decisions, solving the toughest business questions and minimizing the risk of failure. The studies of this report carefully analyzes the market status, growth rate, future trends, market drivers, opportunities, challenges, risks, entry barriers, sales channels, and distributors. The most advanced tools and techniques have been used to structure this Cancer Gene Therapy Market report such as SWOT analysis and Porters Five Forces Analysis. Moreover, different segments of the market taken into consideration in this market research report give better market insights with which reach to the success gets extended.

Cancer gene therapy market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account to USD 6407.88 million by 2027 growing with the CAGR of 32.54% in the above-mentioned forecast period. The high success rate of cancer gene therapy along with clinical trial and preclinical trial is gaining popularity among the patient which is leading towards the market.

Download Exclusive Sample Report (350 Pages PDF with All Related Graphs & Charts) @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-cancer-gene-therapy-market&pm

The major players covered in the cancer gene therapy market report are Adaptimmune, GlaxoSmithKline plc, bluebird bio, Inc, Merck & Co., Inc., CELGENE CORPORATION, Anchiano Therapeutics, Achieve Life Sciences, Inc among other domestic and global players.

Competitive Landscape and Cancer Gene Therapy Market Share Analysis

Cancer gene therapy market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies focus related to cancer gene therapy market.

Global Cancer Gene Therapy Market Scope and Market Size

Cancer gene therapy market is segmented on the basis of therapy and end user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Increase in funding of research and development in the activities of cancer gene therapy along with rise in prevalence of cancer is likely to accelerate the growth of the cancer gene therapy market in the forecast period of 2020-2027. On the other hand, the favourable government regulations for therapy is further going to boost various opportunities that will lead to the growth of the cancer gene therapy market in the above mentioned forecast period.

High cost involved in gene therapy along with unwanted immune responses wills likely to hamper the growth of the cancer gene therapy market in the above mentioned forecast period.

This cancer gene therapy market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographical expansions, technological innovations in the market. To gain more info on Cancer gene therapy market contactData Bridge Market Researchfor anAnalyst Brief, our team will help you take an informed market decision to achieve market growth.

For More Insights Get FREE Detailed TOC @ https://www.databridgemarketresearch.com/toc/?dbmr=global-cancer-gene-therapy-market&pm

Cancer Gene Therapy Market Country Level Analysis

Cancer gene therapy market is analysed and market size insights and trends are provided by country, therapy and end user as referenced above.

The countries covered in the cancer gene therapy market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

North America dominates the cancer gene therapy market due to the advanced healthcare infrastructure along with rise in R & D expenditure, while Asia-Pacific is expected to grow with the highest growth rate in the forecast period of 2020 to 2027 due to the improving healthcare infrastructure and government initiatives.

The country section of the cancer gene therapy market report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

TO UNDERSTAND HOW COVID-19 IMPACT IS COVERED IN THIS REPORT GET FREE COVID-19 SAMPLE@ https://www.databridgemarketresearch.com/covid-19-impact/global-cancer-gene-therapy-market?pm

Healthcare Infrastructure Growth Installed Base and New Technology Penetration

Cancer gene therapy market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipment, installed base of different kind of products for cancer gene therapy market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the cancer gene therapy market. The data is available for historic period 2010 to 2018.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @Corporatesales@databridgemarketresearch.com

Read more from the original source:
Cancer Gene Therapy Market : Future Prospects With Covid-19 Impact Analysis 2027 | Top Players- Adaptimmune, GlaxoSmithKline plc, bluebird bio, Inc -...

Global Gene Therapy Market Worth $38.41 Million by 2025- Exclusive Report by Fior Markets – PharmiWeb.com

GlobalGene TherapyMarket Research Report and Forecast 2020-2025is the latest report byFior Marketswhich is the fastest growing market research company. The report provides a comprehensive scope of the market which includes future supply and demand scenarios, changing market trends, high growth opportunities, and in-depth analysis of the future market prospects. The report features real-time developments in the globalGene Therapymarket encompasses a highly structured and comprehensive outlook of the market. It shows market types and applications that are categorized as ideal market segments. The report covers the competitive data analysis of the emerging and prominent players of the market. Along with this, it provides comprehensive data analysis on the risk factors, challenges, and possible new market avenues.

The report has viewed the current top players and the forthcoming contenders. Business procedures of the vital participants and the new entering market ventures are concentrated in detail in this report. The report also encompasses SWOT investigation, income offer, and contact data. The report throws light on specific drivers, restraints, opportunities, challenges, and other determinants that tremendously favor and oppose normal growth in the globalGene Therapymarket. It also covers the product pricing factors, growth, emerging and dominant trends, overall market dynamics, and market size. The report includes a wide spectrum of the market to provide insightful data for the forecast period 2020-2025.

NOTE:Our analysts monitoring the situation across the globe explains that the market will generate remunerative prospects for producers post the COVID-19 crisis. The report aims to provide an additional illustration of the latest scenario, economic slowdown, and COVID-19 impact on the overall industry.

DOWNLOAD FREE SAMPLE REPORT:https://www.fiormarkets.com/report-detail/376052/request-sample

The report gives the market segments that have been fragmented into sub-segments. The study gives a transparent view of the global market and includes a thorough competitive scenario and portfolio of the key players functioning in it. The report offers fundamental opinions regarding the market landscape, emerging and high-growth sections of the globalGene Therapymarket, high-growth regions, and market drivers, restraints, and also market chances. It targets estimating the current market size and growth potential of the global market across sections such as also applications and representatives.

Competitive Analysis:

Te report accurately profiles key vendors and players functioning in the globalGene Therapymarket, in terms of their ranking and core competencies, together with determining the competitive landscape. It also studies competitive developments such as partnerships and collaborations, mergers, and acquisitions (M&A), research and development (R&D) activities, product developments, and expansions in the global market.

The top key players profiled in this report are:Spark Therapeutics LLC, Bluebird Bio, UniQure N.V., Juno Therapeutics, GlaxoSmithKline, Chiesi Farmaceutici S.p.A., Bristol Myers Squibb, Celgene Corporation, Human Stem Cell Institute, Voyager Therapeutics, Shire Plc, Sangamo Biosciences, Dimension Therapeutics

Other Segment Analysis:

Segment classification of the market structure has been encouraged by our research experts to allow readers to comprehend the versatility of the market in terms of product and service variation. The market has been examined with vital market-specific developments across segment categories. Market segments such as type and application are also determined by quantitative and qualitative review. Type market size bifurcated into its product typeGermline Gene Therapy and Somatic Gene Therapyin terms of Volume (K Units) and Value (USD Million). Market segment by application, split into:Cardio Vascular Diseases, Infectious Diseases, Genetic Disorders, Neuro Disorders, Cancer, Others

Request forCustomization:https://www.fiormarkets.com/enquiry/request-customization/376052

Country-Wise Assessment:

The report presents an understanding of the regional, country, and even local developments. Overview of globalGene Therapy market dynamics such as industry outlook, value chain developments, SWOT and PESTEL assessment as well as Porters Five Point analysis. The report also encompasses crucial analytical reviews on key elements, trends, current, and future perspectives. By regional analysis, the report covers:North America, Europe, Asia Pacific, South America, and the Middle East and Africa.

ACCESS FULL REPORT:https://www.fiormarkets.com/report/global-gene-therapy-market-by-type-germline-gene-376052.html

Customization of the Report:This report can be customized to meet the clients requirements. Please connect with our sales team (sales@fiormarkets.com), who will ensure that you get a report that suits your needs.

Contact UsMark StonePhone:+1-201-465-4211Email:sales@fiormarkets.comWeb:www.fiormarkets.com

This content has been distributed via CDN Newswire press release distribution service. For press release enquires please mail us at contact@cdnnewswire.com.

See more here:
Global Gene Therapy Market Worth $38.41 Million by 2025- Exclusive Report by Fior Markets - PharmiWeb.com

Covance boosts Franklin to lead its cell and gene therapy unit – FierceBiotech

LabCorps contract research organization business Covance has promoted Maryland Franklin, Ph.D., to vice president and head of its cell and gene therapy unit.

She moves up from being Covances site lead and executive director of scientific development at the Ann Arbor, Michigan, facility, which focuses on preclinical oncology.

Now, she steps up to run its cell and gene therapy business, a major element in any CRO's portfolio these days as more and more biopharmas look to tap the therapies for potentially curative treatments for a range of diseases.

It remains a tricky proposition to pull off, but cell and gene therapy are very much the current course for R&D across the life sciences as well as a major part of Covances business. Under her new role, Franklin will oversee these offerings.

These solutions aim to help sponsors reduce risk, transition programs within and between phases of development faster and create a more patient-centric experience, Covance said in a statement, as Franklin will also be tapped to further extend Covance by Labcorps industry leading position.

RELATED: Covance to 'transform' into a decentralized CRO

We are thrilled to welcome Dr. Franklin to Covance by Labcorp. Her experience and expertise will bring perspective and insight to cell and gene therapy at Covance, said Bill Hanlon, Ph.D., president of clinical, therapeutic and regulatory sciences for Covance.

Dr. Franklin joins us at a critical juncture in our ability to support sponsors needs throughout the drug development process. She will guide our highly experienced scientists across functional disciplines to seamlessly develop and commercialize a cell or gene therapy. With Dr. Franklins expertise, we hope to further grow and advance our cell and gene therapy programs.

Cell and gene therapy approaches continue to show great promise in treating a variety of diseases that range from extremely debilitating rare diseases to applications in oncology, added Franklin. With several approved advanced therapies to date and many, many more in development, Im excited to join Covance by Labcorp to and help sponsors in their mission to improve the lives of patients.

.

Link:
Covance boosts Franklin to lead its cell and gene therapy unit - FierceBiotech

Explore why Cancer Gene Therapy Market is thriving by 2025 with top key players like Genelux Corporation, Cell Genesys, Advantagene, GenVec,…

Cancer gene therapy is a technique used for the treatment of cancer where therapeutic DNA is being introduced into the gene of the patient with cancer. Due to the high success rate during the preclinical and clinical trial, cancer gene therapy is gaining popularity. There are many techniques used for cancer gene therapy, for example, a procedure where the mutated gene is being replaced with a healthy gene or inactivation of gene whose function is abnormal. Recently, a new technique has been developed, where new genes are introduced into the body to help fight against cancer cells.

The global Cancer Gene Therapy market is expected to expand at a CAGR of +32% over the forecast period 2019-2025.

The report, titled Global Cancer Gene Therapy market defines and briefs readers about its products, applications, and specifications. The research lists key companies operating in the global market and also highlights the key changing trends adopted by the companies to maintain their dominance. By using SWOT analysis and Porters five force analysis tools, the strengths, weaknesses, opportunities, and threats of key companies are all mentioned in the report. All leading players in this global market are profiled with details such as product types, business overview, sales, manufacturing base, competitors, applications, and specifications.

Top Key Vendors in Market:

Genelux Corporation, Cell Genesys, Advantagene, GenVec, BioCancell, Celgene, Epeius Biotechnologies, Introgen Therapeutics, Ziopharm Oncology, Shenzhen SiBiono GeneTech, and Altor Bioscience.

Get Sample Copy of this Report @ https://www.a2zmarketresearch.com/sample?reportId=53964

Cancer Gene Therapy market has been studied in terms of all parameters such as applications, types, products and many other. Each and every data leading to growth or fall of the respective segments have been explained. Entire supply chain with respect to market is studied in depth and is conveyed in the most comprehensive way possible. The reasons there is going to be an increasing trend to this market are studied and are elaborated. Driving forces, restraints and opportunities are given to help give a better picture of this market investment for the forecast period.

Different global regions such as North America, Latin America, Asia-Pacific, Europe, and India have been analyzed on the basis of the manufacturing base, productivity, and profit margin. This Cancer Gene Therapy market research report has been scrutinized on the basis of different practical oriented case studies from various industry experts and policymakers. It uses numerous graphical presentation techniques such as tables, charts, graphs, pictures and flowchart for easy and better understanding to the readers.

The reports conclusion leads into the overall scope of the global market with respect to feasibility of investments in various segments of the market, along with a descriptive passage that outlines the feasibility of new projects that might succeed in the global Cancer Gene Therapy market in the near future.

Get Discount on this Report @ https://www.a2zmarketresearch.com/discount?reportId=53964

Key questions answered in the report include:

Table of Content:

Global Cancer Gene Therapy Market Research Report 2019-2025

Chapter 1: Industry Overview

Chapter 2: Cancer Gene Therapy Market International and China Market Analysis

Chapter 3: Analysis of Revenue by Classifications

Chapter 4: Analysis of Revenue by Regions and Applications

Chapter 5: Analysis of Cancer Gene Therapy Market Revenue Market Status.

Chapter 6: Sales Price and Gross Margin Analysis

Continue for TOC..

For more Information:

https://www.a2zmarketresearch.com/enquiry?reportId=53964

*If you need anything more than these then let us know and we will prepare the report according to your requirement.

About a2zmarketresearch:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.

Contact Us:

1887 WHITNEY MESA DR HENDERSON, NV 89014

+1 775 237 4147

sales@a2zmarketresearch.com

See the original post:
Explore why Cancer Gene Therapy Market is thriving by 2025 with top key players like Genelux Corporation, Cell Genesys, Advantagene, GenVec,...

The global transient protein expression market is expected to reach US$ 983.10 million by 2027 from US$ 660.00 million in 2019 – GlobeNewswire

New York, Jan. 22, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Transient Protein Expression Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Product Type ; Application ; End User, and Geography." - https://www.reportlinker.com/p06010110/?utm_source=GNW However, high cost of products are likely to pose a negative impact on the market growth.Transient protein expression procedure has been widely in use for animal and plant cells for the last three decades.However, in the recent years, significant evolution in proteomics has resulted in the development of recombinant proteins.

The effective results of transient protein expression in animals and plants have increased research and product development for human applications.Various companies, including biopharmaceuticals and contract research and development organizations have channelized their efforts toward the development of products based on transient protein expression.The adoption of transient protein expression allow companies to get various genes to develop recombinant proteins without delaying cell line generation.

Thus, the quick process of cell line development with required gene expression, companies are widely attracted towards uniform proteins that have drug-like properties, which allows production of vaccines and viral vectors. In addition, the transient protein expression process is widely being used in the production of monoclonal antibodies, modified human proteins, growth factors and cytokines, hormones, and blood products.The COVID19 pandemic has resulted in rise in the use of transient protein expression in vaccine development.Various researchers have started studying the novel coronavirus extensively, with the use of transient protein expression.

For instance, in MarchApril 2020, Absolute Antibody (UK) increased the production of multigram quantities of multiple anti-SARS-CoV-2 spike proteins to develop neutralizing antibodies. Similarly, the transient protein expression was widely used to produce a positive control protein in the development of in-vitro diagnostics kits.Product Type InsightsThe transient protein expression market by product type is segmented into instruments, reagents, vectors, and competent cells.In 2019, instruments segment held a largest market share in the transient protein expression market, by product type.

This segment is also expected to dominate the market in 2027 as they are the reducing human input is that it enables continuous cell maintenance and protein production. Moreover, the similar segment is anticipated to also witness the fastest growth rate during the forecast period.

Application InsightsBased on application, the global transient protein expression market is segmented into genomic research, gene therapy, bio production, cancer research, and drug development.In 2019, the genomic research segment held the largest market share in the transient protein expression market.

This segment is also expected to dominate the market by 2027 as it increases DNA sequencing performance. Moreover, transient protein expression has helped in the study of all the genes of a person (the genome), including their interactions with each other as well as the environment.

End User InsightsIn terms of end user, the global transient protein expression market is segmented into pharmaceutical and biotechnology companies, academic and research institutes, and clinical research organizations.In 2019, the pharmaceutical and biotechnology companies segment held the largest market share.

This segment is also expected to dominate the market during the forecast period as pharmaceutical and biotechnology firms are increasing their spending on research and R&D activities. Moreover, transient protein expression has helped the recent improvements in existing technologies and it is moving toward industrial production of plant-based vaccines, antibodies, and biopharmaceuticals.Major primary and secondary sources for transient protein expression included in the report are National Research Council Canada, UK BioIndustry Association, Australian Cluster Observatory and McKell Institute, UAE Federal Customs Authority, and Alpen Capitals report, among others.Read the full report: https://www.reportlinker.com/p06010110/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Visit link:
The global transient protein expression market is expected to reach US$ 983.10 million by 2027 from US$ 660.00 million in 2019 - GlobeNewswire

Regenerative Medicine Market Size Worth $23.57 Bn By 2027; High demand for 3D bioprinting of tissues and organs to better understand their mechanism…

New York, Jan. 18, 2021 (GLOBE NEWSWIRE) -- Increased investment in advanced technologies for treatment of genetic and chronic diseases is driving growth of the regenerative medicine market.Market Size USD 7.34 Billion in 2019, Market Growth - CAGR of 15.6%, Market TrendsApplications in COVID-19 vaccine.

The global regenerative medicine market is forecast to reach a market size of USD 23.57 Billion by 2027, and register a robustly incline revenue growth, according to a new report by Reports and Data. Primary factors driving demand for regenerative medicines are advancements in surgical technology and monitoring devices, and major increase in prevalence of complex and degenerative diseases. Upsurge in incidence of cancers has been resulting in increasing research into stem cell therapy. Growth in research and development activities in emerging countries and rising focus on stem cell research is resulting in significant growth in the global revenue of regenerative medicine market.

Stem cell technology is growing rapidly and continues to play a crucial role in regenerative medicine and the related field. This technology opens up the possibility of treating Parkinsons Disease, arthritis, and spinal cord injury. Increase in demand for stem cell technology is a major factor driving growth of the regenerative medicine market.

Request free sample of this research report at: https://www.reportsanddata.com/sample-enquiry-form/3735

Recent developments in regenerative medicine for 3D bioprinting, stem cell treatment for heart repair, and vision loss has created demand for additional investments in the R&D of the technology to help with other diseases.

The COVID-19 impact:

Demand for regenerative medicine has witnessed increased demand during the COVID-19 pandemic. Regenerative medicine helps in understanding a mechanism of infection and to develop ways to prevent the spread of the virus. It is also being used to create advanced treatments to treat persons infected by the COVID-19 virus. Private companies are also using it to develop an effective vaccine for COVID-19.

Regenerative Medicine Market Size, Share & Industry Demand By Product (Tissue-Engineered Products, Cell Therapies, Gene Therapies, Progenitor & Stem Cell Therapies), By Application (Musculoskeletal Disorders, Oncology, Wound Care, By Material), and Region, Segment Forecast to 2027, To identify the key trends in the industry, click on the link below: https://www.reportsanddata.com/report-detail/regenerative-medicine-market

Further key findings from the report suggest

List of Key Companies Identified in the Regenerative Medicine Market Report:

Order Now: https://www.reportsanddata.com/checkout-form/3735

For the purpose of this report, Reports and Data has segmented into the global regenerative medicine market on the basis of product, application, material, and region:

Browse similar research reports:Cell Therapy Market By Therapy Type (Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy), By Therapeutic Area (Malignancies, Autoimmune Disorders, Musculoskeletal Disorders), By Cell Type, And By End User, Forecasts To 2027

Tissue Engineering Market Size, Growth & Analysis, By Material, By Application (Cancer, Urology, Neurology, Dental, Cell Banking & Cord Blood, Gynecology, Integumentary/Skin, Spine, Musculoskeletal, & Orthopedics, Vascular & Cardiology), And Region, Segment Forecasts To 2027

Gene Expression Market By Product And Services (Equipment, Consumables, And Services), By Capacity (Low- To Mid- Plex Gene Expression Analysis And High-Plex Gene Expression Analysis), By Application (Diagnostic, Drug Discovery, Research), And Segment Forecasts To 2027

About Reports and Data

Reports and Data is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target and analyze consumer behavior shifts across demographics, across industries and help clients make a smarter business decision. We offer market intelligence studies ensuring relevant and fact-based research across a multiple industries including Healthcare, Technology, Chemicals, Power, and Energy. We consistently update our research offerings to ensure our clients are aware about the latest trends existent in the market. Reports and Data has a strong base of experienced analysts from varied areas of expertise.

Contact Us:

John W

Head of Business Development

Reports And Data | Web: http://www.reportsanddata.com

Direct Line: +1-800-819-3052

E-mail: sales@reportsanddata.com

Read full Press Release at:https://www.reportsanddata.com/press-release/global-regenerative-medicine-market

See the original post here:
Regenerative Medicine Market Size Worth $23.57 Bn By 2027; High demand for 3D bioprinting of tissues and organs to better understand their mechanism...

Cancer Gene Therapy Market Segmentation, Parameters, Prospects 2021 And Forecast Research Report To 2027 – The Courier

Databridgemarketresearch.com Present Cancer Gene Therapy Market Industry Trends and Forecast to 2027 new report to its research database. This analysis offers an examination of a range of segments that are relied upon to witness the quickest development amid the estimate forecast frame. The company profiles of all the key players and brands that are dominating the Cancer Gene Therapy Market with moves like product launches, joint ventures, mergers and acquisitions which in turn is affecting the sales, import, export, revenue and CAGR values are mentioned in the report. A complete discussion about numerous market related topics in this research report is sure to aid the client in studying the market on competitive landscape. This report also gives you an idea about consumers demands, preferences, and their altering likings about particular product.

Cancer gene therapy market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account to USD 6407.88 million by 2027 growing with the CAGR of 32.54% in the above-mentioned forecast period. The high success rate of cancer gene therapy along with clinical trial and preclinical trial is gaining popularity among the patient which is leading towards the market.

Download Exclusive Sample Report (350 Pages PDF with All Related Graphs & Charts) @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-cancer-gene-therapy-market&pm

The major players covered in the cancer gene therapy market report are Adaptimmune, GlaxoSmithKline plc, bluebird bio, Inc, Merck & Co., Inc., CELGENE CORPORATION, Anchiano Therapeutics, Achieve Life Sciences, Inc among other domestic and global players.

Competitive Landscape and Cancer Gene Therapy Market Share Analysis

Cancer gene therapy market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies focus related to cancer gene therapy market.

Global Cancer Gene Therapy Market Scope and Market Size

Cancer gene therapy market is segmented on the basis of therapy and end user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users with valuable market overview and market insights to help them in making strategic decisions for identification of core market applications.

Increase in funding of research and development in the activities of cancer gene therapy along with rise in prevalence of cancer is likely to accelerate the growth of the cancer gene therapy market in the forecast period of 2020-2027. On the other hand, the favourable government regulations for therapy is further going to boost various opportunities that will lead to the growth of the cancer gene therapy market in the above mentioned forecast period.

High cost involved in gene therapy along with unwanted immune responses wills likely to hamper the growth of the cancer gene therapy market in the above mentioned forecast period.

This cancer gene therapy market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographical expansions, technological innovations in the market. To gain more info on Cancer gene therapy market contactData Bridge Market Researchfor anAnalyst Brief, our team will help you take an informed market decision to achieve market growth.

For More Insights Get FREE Detailed TOC @ https://www.databridgemarketresearch.com/toc/?dbmr=global-cancer-gene-therapy-market&pm

Cancer Gene Therapy Market Country Level Analysis

Cancer gene therapy market is analysed and market size insights and trends are provided by country, therapy and end user as referenced above.

The countries covered in the cancer gene therapy market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

North America dominates the cancer gene therapy market due to the advanced healthcare infrastructure along with rise in R & D expenditure, while Asia-Pacific is expected to grow with the highest growth rate in the forecast period of 2020 to 2027 due to the improving healthcare infrastructure and government initiatives.

The country section of the cancer gene therapy market report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

TO UNDERSTAND HOW COVID-19 IMPACT IS COVERED IN THIS REPORT GET FREE COVID-19 SAMPLE@ https://www.databridgemarketresearch.com/covid-19-impact/global-cancer-gene-therapy-market?pm

Healthcare Infrastructure Growth Installed Base and New Technology Penetration

Cancer gene therapy market also provides you with detailed market analysis for every country growth in healthcare expenditure for capital equipment, installed base of different kind of products for cancer gene therapy market, impact of technology using life line curves and changes in healthcare regulatory scenarios and their impact on the cancer gene therapy market. The data is available for historic period 2010 to 2018.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @Corporatesales@databridgemarketresearch.com

Excerpt from:
Cancer Gene Therapy Market Segmentation, Parameters, Prospects 2021 And Forecast Research Report To 2027 - The Courier

Taysha Gene Therapies Receives Rare Pediatric Disease and Orphan Drug Designations for TSHA-105 for the Treatment of Epilepsy Caused by SLC13A5…

DALLAS--(BUSINESS WIRE)--Taysha Gene Therapies, Inc. (Nasdaq: TSHA), a patient-centric gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the central nervous system in both rare and large patient populations, today announced that it has received both rare pediatric disease and orphan drug designations from the U.S. Food and Drug Administration (FDA) for TSHA-105, an AAV9-based gene therapy in development for SLC13A5-related epilepsy.

There are no approved therapies for epilepsy caused by SLC13A5 that address the underlying cause of this disease, said RA Session II, President, Founder and CEO of Taysha. We are encouraged by the early evidence of TSHA-105s disease-modifying approach and believe these designations will help us potentially accelerate the development of this exciting program. We look forward to working with the FDA to make TSHA-105 available to patients as expeditiously as possible.

SLC13A5 is a form of infantile epilepsy caused by mutations in the SLC13A5 gene. The disorder is an autosomal recessive disorder, so two copies of the mutated gene must be inherited to affect an infant. This rare form of epilepsy manifests as developmental delay, and seizures beginning within the first few days of life.

We are pleased that the FDA recognizes TSHA-105s potential as an innovative therapeutic option for SLC13A5 deficiency, said Rachel Bailey, Ph.D., Assistant Professor in Pediatric Neurology at UT Southwestern. This disease is a debilitating form of genetic epilepsy in children that significantly impacts movement, motor control, cognition and quality of life, and there remains a need to alter the course of this disease early in life.

As a mother of two children with SLC13A5 deficiency, I have witnessed firsthand the devastating impact that numerous seizures and comorbidities accompanying the disease has on those affected by this disease, said Kim Nye, Founder of TESS Research Foundation. Tayshas commitment to developing a potentially life-changing gene therapy for SLC13A5 deficiency is greatly welcomed by our patient community.

The FDA grants rare pediatric disease designation for serious and life-threatening diseases that primarily affect children ages 18 years or younger and fewer than 200,000 people in the United States. The Rare Pediatric Disease Priority Review Voucher Program is intended to address the challenges that drug companies face when developing treatments for these unique patient populations. Under this program, companies are eligible to receive a priority review voucher following approval of a product with rare pediatric disease designation if the marketing application submitted for the product satisfies certain conditions, including approval prior to September 30, 2026 unless changed by legislation. If issued, a sponsor may redeem a priority review voucher for priority review of a subsequent marketing application for a different product candidate, or the priority review voucher could be sold or transferred to another sponsor.

Orphan drug designation is granted by the FDA Office of Orphan Products Development to investigational treatments that are intended for the treatment of rare diseases affecting fewer than 200,000 people in the United States. The program was developed to encourage the development of medicines for rare diseases, and benefits include tax credits and application fee waivers designed to offset some development costs, as well as eligibility for market exclusivity for seven years post approval.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as anticipates, believes, expects, intends, projects, and future or similar expressions are intended to identify forward-looking statements. Forward-looking statements include statements concerning or implying the potential of our product candidates, including TSHA-105, to positively impact quality of life and alter the course of disease in the patients we seek to treat, our research, development and regulatory plans for our product candidates, the potential benefits of rare pediatric disease designation and orphan drug designation to our product candidates, the potential for these product candidates to receive regulatory approval from the FDA or equivalent foreign regulatory agencies, and whether, if approved, these product candidates will be successfully distributed and marketed. Forward-looking statements are based on managements current expectations and are subject to various risks and uncertainties that could cause actual results to differ materially and adversely from those expressed or implied by such forward-looking statements. Accordingly, these forward-looking statements do not constitute guarantees of future performance, and you are cautioned not to place undue reliance on these forward-looking statements. Risks regarding our business are described in detail in our Securities and Exchange Commission (SEC) filings, including in our Quarterly Report on Form 10-Q for the quarter ended September 30, 2020, which is available on the SECs website at http://www.sec.gov. Additional information will be made available in other filings that we make from time to time with the SEC. Such risks may be amplified by the impacts of the COVID-19 pandemic. These forward-looking statements speak only as of the date hereof, and we disclaim any obligation to update these statements except as may be required by law.

Read the original post:
Taysha Gene Therapies Receives Rare Pediatric Disease and Orphan Drug Designations for TSHA-105 for the Treatment of Epilepsy Caused by SLC13A5...

The Global Cancer Gene Therapy Market is expected to grow by $ 2.96 bn during 2021-2025 progressing at a CAGR of 20% during the forecast period -…

New York, Jan. 19, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Cancer Gene Therapy Market 2021-2025" - https://www.reportlinker.com/p05060878/?utm_source=GNW Our report on cancer gene therapy market provides a holistic analysis, market size and forecast, trends, growth drivers, and challenges, as well as vendor analysis covering around 25 vendors. The report offers an up-to-date analysis regarding the current global market scenario, latest trends and drivers, and the overall market environment. The market is driven by the side effects of traditional cancer treatments, benefits associated with gene therapy for cancer treatment and the rising prevalence rate of cancer boosting the demand for cancer therapeutics. In addition, the side effects of traditional cancer treatments is anticipated to boost the growth of the market as well. The cancer gene therapy market analysis includes application segments and geographical landscapes.

The cancer gene therapy market is segmented as below: By Application Oncolytic virotherapy Gene transfer Gene-induced immunotherapy

By Geographical Landscapes North America Europe Asia ROW

This study identifies the rising partnerships and collaborations as one of the prime reasons driving the cancer gene therapy market growth during the next few years. Also, favorable government regulations for gene therapy programs and rapid growth potential in developing economies will lead to sizable demand in the market.

The analyst presents a detailed picture of the market by the way of study, synthesis, and summation of data from multiple sources by an analysis of key parameters. Our report on cancer gene therapy market covers the following areas: Cancer gene therapy market sizing Cancer gene therapy market forecast Cancer gene therapy market industry analysis

Read the full report: https://www.reportlinker.com/p05060878/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Read more:
The Global Cancer Gene Therapy Market is expected to grow by $ 2.96 bn during 2021-2025 progressing at a CAGR of 20% during the forecast period -...

Gene Therapy Technologies Market Estimated to Experience a Hike in Growth by 2021 2026: Bluebird bio, Adaptimmune, GlaxoSmithKline – KSU | The…

Gene Therapy Technologies Market Report recently published by Worldwide Market Reports company focuses mostly on required solutions to the users. The study includes analysis, forecast, and revenue from 2021 to 2026. The advancement rate is evaluated dependent on insightful examination that gives credible information on the worldwide market. Imperatives and advancement points are merged together after a significant comprehension of the improvement of this market.

There is Continuous growth in the Gene Therapy Technologies Market in the last five years and also continued for the forecasted period. Gene Therapy Technologies industry report analyses the outline of the global market with respect to major regions and segmented by types and applications. This report covers top manufacturers, product scope, market overview, market opportunities, market risk, market driving force, technological advancement, distributors, traders, dealers, research findings.

RequestMore Detailed Information About Industry: Get Sample Report Click Here!

The top players covered in Gene Therapy Technologies Market are: Bluebird bio, Adaptimmune, GlaxoSmithKline, Merck, Celgene, Shanghai Sunway Biotech, BioCancell, Shenzhen SiBiono GeneTech, SynerGene Therapeutics, OncoGenex Pharmaceuticals, Genelux Corporation, Cell Genesys, Advantagene, GenVec, BioCancell, Celgene, Epeius Biotechnologies, Introgen Therapeutics, Ziopharm Oncology

The point-to-point elucidation of the markets assembling system, the usage of advancement, conclusions of the world market players, dealers and suppliers order, and the explicit business data and their improvement plans would help our customers for future courses of action and movement planned to make due in the Gene Therapy Technologies market.

The data always remains relevant to the market and consists of market dynamics, prospects, starts, market dynamics, and even the Global market volumes into account. It filled with data and deep analysis on market value, environmental analysis, Gene Therapy Technologies advanced techniques, latest developments, Gene Therapy Technologies business strategies, and current trends. Hence, it becomes a valuable asset to both manufacturers and investors of the industry.

Points Covered of this Gene Therapy Technologies Market report are:

The international Gene Therapy Technologies market has been characterized by several primary factors, with each factor tends to play a crucial role in the boom of the market. The growth in the products has doubled with the smoother availability of the customer base that has been helping the company flourishing globally. On the other hand, the presence of a dynamic supply chain has helped the company to grow exponentially.

The analysis and forecast of the global market of Gene Therapy Technologies have no longer been, specifically, analyzed that are not only on a global foundation but additionally on a neighborhood foundation. When a better look taken at the areas, the market has concentrated, and the file interior the important makes a strong point of Europe, Middle East & Africa, Asia Pacific, Latin America, and North America. These areas have studied regarding the hooked-up traits and the diverse possibilities in addition to the outlook that allows inside the benefitting of the market ultimately.

Request Discount for this Research:(Click Here!)

Research Methodology:

The Gene Therapy Technologies market report has been prepared after thorough market research being conducted. It has been prepared as per Porters Five Force Model. In terms of timeline, the market takes the period between 2021-2026 into account for assessment. Apart from this, a comprehensive SWOT analysis has been provided for swift business decision making.

Enumerating some of the fundamental parameters encompassed in the report:

Global Gene Therapy Technologies Market Report includes Detailed TOC points:

Customization Service of the Report: (Place Query: Click Here!)

Worldwide Market Reports provides customization of reports as per your request. This report can be personalized to meet your requirements. Get in touch with our research team, who will make sure you get a report that suits your necessities.

Contact Us:Mr. ShahWorldwide Market Reports,Tel: U.S. +1-415-871-0703 / U.K. +44-203-289-4040 / Japan +81-50-5539-1737Email: sales@worldwidemarketreports.com

Read the original here:
Gene Therapy Technologies Market Estimated to Experience a Hike in Growth by 2021 2026: Bluebird bio, Adaptimmune, GlaxoSmithKline - KSU | The...

Unleashing the cancer-fighting gene TP53 in leukemia with a novel combination treatment – FierceBiotech

Drugs that target the cancer-promoting proteins MDM2 and BET have been tried in acute myeloid leukemia (AML) and haven't been all that effective on their own. But what if they were combined?

Researchers at the Sanford Burnham Prebys Medical Discovery Institute and the University of Glasgow have early evidence a combination strategy may, in fact, work in AML.

Combining MDM2 and BET inhibitors improved the killing of AML cell lines in lab studies and was more effective than solo treatment in eradicating the cancer in mouse models, the researchers reported in the journal Nature Communications. The combination seems to work by activating the tumor-suppressing protein p53, they reported.

The results were surprising because previous research had shown that each drug on its own had modest benefit against AML, said senior author Peter Adams, Ph.D., a professor at Sanford Burnham Prebys, in a statement. The new research provides scientific rationale to advance clinical studies of the drug combination in patients with AML.

The gene TP53 produces the protein p53, a known tumor suppressor. TP53 is frequently mutated across a range of cancers, which is why targeting the gene is a popular pursuit in oncology research.

Until now, the popular thinking was that MDM2 inhibitors activate p53. BET inhibitors, on the other hand, suppress leukemia-associated genes but dont affect p53, researchers believed.

Adams and his team tested MDM2 and BET inhibitors in AML cell lines and samples from patients. They were surprised to discover that BET inhibitors actually do activate p53by suppressing another protein called BRD4. Combining MDM2 and BET inhibition produces a 'double whammy' effect that fully unleashes the anti-cancer activity of p53, Adams said.

RELATED: How novel combos could overcome resistance to targeted drugs in leukemia, solid tumors and more

The Sanford Burnham Prebys-led team went on to test the combination in two mouse models of AML. In both cases, inhibiting BET and MDM2 together outperformed either mechanism on its own in eradicating the cancer and extending survival, the researchers reported.

The biopharma industry continues to show an interest in both BET and MDM2 inhibitors, though development efforts have run into some obstacles.

In 2019, Roche dropped a phase 1 BET inhibitor from its pipeline. And last April, the Swiss pharma giant stopped testing MDM2 inhibitor idasanutlin in a phase 3 AML trial after a combination of the drug with cytarabine proved disappointing. Early trials of idasanutlin in combination with Roches AML drug Venclexta are underway.

Meanwhile, other early-stage BET and MDM2 inhibitors have driven some deal-making in biopharma. In 2018, Aptose Biosciences teamed up with Ohm Oncology to advance a BET inhibitor in hematologic cancers. And last September, Rain Therapeutics licensed an MDM2-targeted drug from Daiichi Sankyo and raised $63 million to take it into pivotal trials in differentiated or dedifferentiated liposarcoma.

The Sanford Burnham Prebys and University of Glasgow researchers noted in their study that the heterogeneity of AML makes it a particularly difficult disease to address with targeted treatments. While many different genes can be mutated to drive the disease, no single mutation is dominant in a majority of patients.

But 90% of AML tumors have TP53, suggesting that human AML subtypes employ alternative mechanisms to inactivate the p53 pathway.

Go here to read the rest:
Unleashing the cancer-fighting gene TP53 in leukemia with a novel combination treatment - FierceBiotech

Big Boom in Gene Therapy Market Detailed Analysis of Current and Future Industry Figures till 2028 |Novartis AG, Gilead Sciences, Inc., UniQure N.V.,…

Rising Demand for Gene Therapy Market 2021

Gene Therapy Market analysis on global market is a thorough study that offers a select combination of skillful market realities. The study shows changing market trends as well as the size of individual segments in this market. This report mentions various top players involved in this market. Analysis of the Global Gene Therapy Market begins with a market-based outline and underlines the current information on the global market, complemented by data on the current situation.

Global Gene Therapy Market report is a comprehensive study of the global market and has been recently added by Market Research Inc to its extensive database. Augmented demand for the global market has been increased in the last few years. This informative research report has been scrutinized by using primary and secondary research. The Global Gene Therapy Market is a valuable source of reliable data including data of the current market.

Ask for Sample Copy of This Report:

https://www.marketresearchinc.com/request-sample.php?id=23888

Top Key Players Profiled in This Report

Novartis AG, Gilead Sciences, Inc., UniQure N.V., Spark Therapeutics LLC, Bluebird Bio, Juno Therapeutics, GlaxoSmithKline PLC, Celgene Corporation, Shire PLC,

The key questions answered in the report:

Across the globe, different regions such as North America, Latin America, Asia-Pacific, Europe, and Africa have been examined on the basis of productivity and manufacturing base. Researchers of this report throw light on different terminologies of the Global Gene Therapy Market.

This research report represents a 360-degree overview of the competitive landscape of the Global Gene Therapy Market. Furthermore, it offers massive data relating to the recent trends, technological advancements, tools, and methodologies. The research report analyzes the Global Gene Therapy Market in a detailed and concise manner for better insights into the businesses.

The research study has taken the help of graphical presentation techniques such as info graphics, charts, tables, and pictures. It provides guidelines for both established players and new entrants in the Global Gene Therapy Market.

The detailed elaboration of the Global Gene Therapy Market has been provided by applying industry analysis techniques such as SWOT and Porters five-technique. Collectively, this research report offers a reliable evaluation of the global market to present the overall framework of businesses.

Get Discount on This Report:

https://www.marketresearchinc.com/ask-for-discount.php?id=23888

Table of Contents:

This report provides pin-point analysis for changing competitive dynamics

It provides a forward looking perspective on different factors driving or restraining market growth

It provides a six-year forecast assessed on the basis of how the market is predicted to grow

It helps in understanding the key product segments and their future

It provides pin point analysis of changing competition dynamics and keeps you ahead of competitors

It helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments

If You Have Any Query, Ask Our Experts:

https://www.marketresearchinc.com/enquiry-before-buying.php?id=23888

About Us

Market Research Inc is farsighted in its view and covers massive ground in global research. Local or global, we keep a close check on both markets. Trends and concurrent assessments sometimes overlap and influence the other. When we say market intelligence, we mean a deep and well-informed insight into your products, market, marketing, competitors, and customers. Market research companies are leading the way in nurturing global thought leadership. We help your product/service become the best they can with our informed approach.

Contact Us

Market Research Inc

Kevin

51 Yerba Buena Lane, Ground Suite,

Inner Sunset San Francisco, CA 94103, USA

Call Us:+1 (628) 225-1818

Write Us@sales@marketresearchinc.com

See the article here:
Big Boom in Gene Therapy Market Detailed Analysis of Current and Future Industry Figures till 2028 |Novartis AG, Gilead Sciences, Inc., UniQure N.V.,...

Gene therapy developed to delay ageing – The Financial Express BD

Reuters | Published: January 21, 2021 10:37:09 | Updated: January 21, 2021 14:27:09

Scientists in Beijing have developed a new gene therapy which can reverse some of the effects of ageing in mice and extend their lifespans, findings which may one day contribute to similar treatment for humans.

The method, detailed in a paper in the Science Translational Medicine journal earlier this month, involves inactivating a gene called kat7 which the scientists found to be a key contributor to cellular ageing.

The specific therapy they used and the results were a world first, said co-supervisor of the project Professor Qu Jing, 40, a specialist in ageing and regenerative medicine from the Institute of Zoology at the Chinese Academy of Sciences (CAS).

These mice show after 6-8 months overall improved appearance and grip strength and most importantly they have extended lifespan for about 25%, Qu said.

The team of biologists from different CAS departments used the CRISPR/Cas9 method to screen thousands of genes for those which were particularly strong drivers of cellular senescence, the term used to describe cellular ageing.

They identified 100 genes out of around 10,000, and kat7 was the most efficient at contributing to senescence in cells, Qu said.

Kat7 is one of tens of thousands of genes found in the cells of mammals. The researchers inactivated it in the livers of the mice using a method called a lentiviral vector.

n liver cell and the mouse liver cell and for all of these cells we didnt see any detectable cellular toxicity. And for the mice, we also didnt see any side effect yet.

Despite this, the method is a long way from being ready for human trials, Qu said.

Its still definitely necessary to test the function of kat7 in other cell types of humans and other organs of mice and in the other pre-clinical animals before we use the strategy for human ageing or other health conditions, she said.

Qu said she hopes to be able to test the method on primates next, but it would require a lot of funding and much more research first.

In the end, we hope that we can find a way to delay ageing even by a very minor percentage...in the future.

See the article here:
Gene therapy developed to delay ageing - The Financial Express BD

Biogen and ViGeneron to Collaborate on Ophthalmic Gene Therapy Development – JD Supra

Earlier this week, Biogen and ViGeneron signed a global collaboration and licensing agreement to develop gene therapies for inherited eye diseases. The companies will use Munich-based ViGenerons proprietary adeno-associated virus (AAV) technology platform to efficiently transduce target retinal cells via intravitreal injections.

Under the agreement, ViGeneron will develop in vitro therapeutic candidates for an undisclosed target. Biogen has the right to add an additional target within two years. The companies will jointly conduct a proof-of-concept study, but then Biogen will be responsible for all further development, human trials, and commercialization.

In exchange for use of its AAV gene therapy vector, ViGeneron will receive an undisclosed up-front payment as well as R&D funds from Biogen. ViGeneron is also entitled to development milestone payments and royalties on commercial sales of any products arising from the collaboration.

The joint research effort is part of Biogens overarching plan to diversify its drug pipeline by focusing on ophthalmology, which CEO Michel Vounatsos considers to be an emerging growth area for Biogen. In March 2019, Biogen entered the field of retinal gene therapy through the $800 million acquisition of Nightstar Therapeutics, and in July 2020, the company signed an agreement with Massachusetts Eye and Ear that focused on developing treatment for inherited retinal degeneration due to mutations in the PRPF31 gene.

Here are some reports relating to this deal for your reference: GlobeNewswire; S&P Global; EndPoints News

See the article here:
Biogen and ViGeneron to Collaborate on Ophthalmic Gene Therapy Development - JD Supra

With decades in gene therapy under his belt, Ronald Crystal launches new venture with up to 18 candidates in the pipe – Endpoints News

Ronald Crystal began working in gene therapy in the 1980s, long before the first wave of approvals shook the industry. He took his ideas to Weill Cornell Medicine in 1993, where he helped build a large gene therapy program and spent more than a decade developing potential candidates.

Now, the gene therapy long hauler is launching his own company, Lexeo Therapeutics, with an $85 million Series A to drive three of the companys AAV-administered candidates to market, it said Thursday. Crystal will take the role of chief scientific adviser with Pfizer veteran Nolan Townsend joining as CEO.

These three clinical programs are really the focus of the company and the Series A financing, Townsend told Endpoints News.However, Lexeo has even more candidates waiting in the wings.

Townsend, who hails from Pfizers rare disease program, was introduced to Crystal via a mutual contact. He served in a variety of roles in his 12 years at the pharma giant, including as president of rare disease in North America and other developed markets, country manager in several nations, and director of business operations for Asia-established products. But what attracted him to Lexeo was the opportunity to go after both rare and common diseases.

I saw the potential of this research platform to address a number of rare diseases that do not have adequate therapies today, but also the potential of this platform to address non-rare diseases, he said.

To lead the fledgling team, Crystal and Townsend assembled a seasoned brain trust, including chairman Steven Altschuler, who previously served as chairman of gene therapy pioneer Spark Therapeutics, and PTC Therapeutics vet Jay Barth as executive VP and CMO.

The New York City-based biotech, whose name is a nod to its Lexington Avenue roots, already has two candidates in the clinic: LX1004, which has completed a Phase I/II study and is headed for a pivotal trial in 2022, in CLN2 Batten disease, an autosomal recessive lysosomal storage disease; and LX100, currently in Phase I for APOE4-associated Alzheimers disease. Lexeos third highlighted candidate, an IV-administered treatment for Friedreichs ataxia (FA) dubbed LX2006 is expected to enter Phase I this year. FA is a rare, degenerative multi-system disorder caused by a gene mutation that disrupts the normal production of the protein frataxin, critical to the function of mitochondria in a cell.

The upstart has up to 15 more undisclosed gene therapy programs at different stages of development, according to Townsend and Crystal. Plus, they intend to maintain an ongoing research collaboration with Weill Cornell to bolster their preclinical pipeline.

Lexeos AAV mediated gene therapy programs have the potential for broad applicability across a range of therapeutic indications, and in a single company pipeline present an opportunity for the natural evolution of gene therapy from rare genetic conditions to more common diseases, Crystal said in a statement.

The founder still serves as chairman of Weills Department of Genetic Medicine and will look to continue building Lexeos team in the near future.

We have less than 10 people in the company today. I think were expanding rapidly, so that that number will increase significantly over the next 12 months, Townsend said.

The Series A was led by Longitude Capital and Omega Funds, and joined by Lundbeckfonden Ventures, PBM Capital, Janus Henderson Investors, Invus, Woodline Partners, the Alzheimers Drug Discovery Foundation and Alexandria Venture Investments.

See the original post:
With decades in gene therapy under his belt, Ronald Crystal launches new venture with up to 18 candidates in the pipe - Endpoints News

GeneOne to supply plasmid DNA therapy worth $2 million to US – Korea Biomedical Review

GeneOne Life Science Inc. said Friday it has signed a contract to supply plasmid DNA therapy worth $2 million to a U.S. biopharmaceutical company.

GeneOnes subsidiary VGXI, a leading plasmid DNA manufacturer located in Texas, will supply the drugs to the American market under the contract. The name of the U.S. firm is confidential due to contractual reasons, a GeneOne official told Korea Biomedical Review.

A plasmid is a small, extrachromosomal DNA molecule in a single cell, physically separated from chromosomal DNA, which replicates independently. It may be used for gene transferring as a potential treatment in gene therapy.

Due to the strikingly noticeable growth in gene therapy research and development worldwide, the demand for cGMP of Plasmid DNA, a raw material for producing gene therapy drugs, is increasing at a rapid pace, a GeneOne official said. These DNAs are used to manufacture adeno-specific virus gene therapy, CAR-T gene therapy, and genetic scissors therapy.

GeneOne is constructing new facilities at its production facility sites in Texas, such as quality assessment laboratories, refining and charging, packaging facilities, and working offices and convenient facilities to increase the quality of its products, according to the company.

We expect our partner, VGXI, to supply more of our high-quality plasmids in large quantity, as a leading manufacturer, GeneOne CEO Park Young-keun said.

Continued here:
GeneOne to supply plasmid DNA therapy worth $2 million to US - Korea Biomedical Review

Fujifilm triples down on viral vector manufacturing with new $40M Boston site – FiercePharma

The massive growth of gene therapy research and development over the last few years has boosted demand for viral vectors, the engineered virusesused to deliver therapeutic genes into patients bodies.

Tokyo-based Fujifilm Diosynth Biotechnologies is stepping up to meet that demand.

Fujifilm will invest 4 billion yen ($40 million) to build a new manufacturing facility for viral vectors in Watertown, Massachusetts, the company said Monday. It will be Fujifilms third viral-vector manufacturing site, joining similar facilities the company has opened in Texas and the U.K.

Virtual Clinical Trials Summit: The Premier Educational Event Focused on Decentralized Clinical Trials

In this virtual environment, we will look at current and future trends for ongoing virtual trials, diving into the many ways companies can improve patient engagement and trial behavior to enhance retention with a focus on emerging technology and harmonized data access across the clinical trial system.

We are strategically establishing this facility in the greater-Boston area where there is a high concentration of biopharmaceutical companies and academia innovating in the field of advanced therapies, Martin Meeson, CEO of Fujifilm Diosynth Biotechnologies, said in a statement.

RELATED: The top 10 manufacturers in the fight against COVID-19 Fujifilm Diosynth Biotechnologies

Fujifilm Diosynth Biotechnologies planted a flagin viral vectors back in 2014, when it established its Texas site in College Station. As the market started to grow, the company invested an additional 13 billion yen ($120 million) in the site. It announced in October that it would add viral-vector manufacturing capabilities to its U.K. site, expecting those services to be online this spring.

The growth of gene therapy R&D has boosted demand for advanced manufacturing capabilities to the point that investors from all facets of biopharma are stepping in to provide services. Last January, for example, Nationwide Childrens Hospitals Abigail Wexner Research Institute (AWRI) in Columbus, Ohio, revealed a planto builda commercial-scale gene therapy manufacturing site.

That news came just months after Harvard University said it would invest $50 million in a not-for-profit manufacturing and training facility focused on cell and viral vectors. Fujifilm Diosynth Biotechnologies has a seat on the board of that organization, called Advanced Biological Innovation and Manufacturing.

RELATED: $50M cell and viral vector manufacturing operation backed by Harvard

Fujifilm is far from the only contract manufacturer answering the demand for viral vectors, either. Novartis and Pfizer ramped up their investments in gene therapy manufacturing last year. Contract manufacturers such as Catalent and Thermo Fisher Scientific are also expanding operations aimed at supporting gene therapy R&D.

Fujifilms Watertown site will start process development this fall, the company said. It expects to start offering contract manufacturing for early-stage clinical trials of therapies that use viral vectors in the fall of 2023.

Read more here:
Fujifilm triples down on viral vector manufacturing with new $40M Boston site - FiercePharma

REGENXBIO Announces Update on RGX-314 and Pivotal Program for the Treatment of Wet AMD and New Gene Therapy Program for the Treatment of Duchenne…

ROCKVILLE, Md., Jan. 5, 2021 /PRNewswire/ --REGENXBIO Inc. (Nasdaq: RGNX) today provided an update on the RGX-314 programs, including the announcement that the pivotal program for RGX-314 for the treatment of wet age-related macular degeneration (wet AMD) is now active. In addition, REGENXBIO announced a new program, RGX-202, a novel, potentially best-in-class, one-time gene therapy for the treatment of Duchenne Muscular Dystrophy (DMD).

"2020 was a very productive year at REGENXBIO, and we are excited to move into 2021, which we expect to be another year of clinical execution. The initiation of our first pivotal program for RGX-314 for the treatment of wet AMD is a great step forward for the field as we look to broaden the applicability of gene therapy to larger patient populations. In addition, we are excited to announce RGX-202, a potential one-time gene therapy for the treatment of DMD. RGX-202 is the first gene therapy program in the REGENXBIO pipeline to be developed under the leadership of our Chief Scientific Officer, Olivier Danos. We look forward to filing an IND for this program later this year," said Kenneth T. Mills, President and Chief Executive Officer of REGENXBIO. "We continue to advance our pipeline of innovative therapies in the clinic as well as our manufacturing capabilities. I would also like to express my deep gratitude to our employees and clinical partners as well as patients and their families for their ongoing commitment and support despite the challenges posed by the global COVID-19 pandemic."

Pivotal Program for RGX-314 for the Treatment of wet AMD

REGENXBIO today announced that ATMOSPHERE, the first of two planned pivotal trials to evaluate RGX-314, is active and patient screening is ongoing. RGX-314 is a potential best-in-class, one-time gene therapy for the treatment of wet AMD.

REGENXBIO completed an End of Phase 2 meeting with the FDA to discuss the details of a pivotal program to support a Biologics License Application (BLA). Based on discussions with the FDA, REGENXBIO plans to conduct two randomized, well-controlled clinical trials to evaluate the efficacy and safety of RGX-314 in patients with wet AMD, enrolling approximately 700 patients total. In addition, REGENXBIO and the FDA aligned on a clear path to support manufacturing plans in the pivotal program. REGENXBIO expects to submit a BLA based on these trials in 2024.

"We are pleased to have reached alignment with the FDA on key elements of our pivotal program for the treatment of wet AMD. Our plan allows us to further accelerate the clinical development of RGX-314 towards the goal of a BLA filing in 2024 and we have already begun site activation and patient screening for our first planned pivotal trial," said Steve Pakola, M.D., Chief Medical Officer of REGENXBIO. "We have strengthened the key design elements for the planned trials based on the long-term data from our dose-escalation Phase I/IIa trial of RGX-314 and believe that we are well-positioned to execute on this pivotal program."

Suprachoroidal Delivery of RGX-314 for the Treatment of Wet AMD and Diabetic Retinopathy (DR)

New Program for the Treatment of Duchenne Muscular Dystrophy

REGENXBIO also announced today the development of a potential one-time gene therapy for the treatment of DMD, which is based on a novel microdystrophin construct.

"DMD is a severe, degenerative disease affecting thousands of children worldwide. It is caused by mutations of the gene which encodes dystrophin, a protein necessary for muscle cell strength and function, and innovation and development of potential new treatment options for patients with DMD has been a goal for the gene therapy field for many years," said Olivier Danos, Ph.D., Chief Scientific Officer of REGENXBIO. "Since I joined REGENXBIO, we have been working to develop this gene therapy candidate using our proprietary AAV8 vector, with a focus on including the C-Terminal Domain of dystrophin, which may potentially bolster the key cell signaling pathways and muscle membrane integrity, leading to improved muscle strength and resistance. We look forward to completing the IND-enabling studies and bringing this program into the clinic."

The design of the new RGX-202 microdystrophin transgene is based on innovative vector engineering by REGENXBIO scientists and incorporates learnings from the laboratory of George Dickson, Emeritus Professor of Molecular Cell Biology at Royal Holloway, University of London, a pioneering figure in dystrophin research.

"The data from dystrophic laboratory trials suggest that a gene therapy delivering a microdystrophin gene incorporating an extended coding region from the C-Terminal Domain such as RGX-202 may provide substantial added muscle function for patients with DMD. A blend of the innovative science applied to microdystrophin gene design, and an AAV vector that is well-established, makes this new approach very promising," said Professor George Dickson from Royal Holloway. "I am pleased to see this important science developing from Royal Holloway's research is now being advanced under the leadership and gene therapy expertise of Olivier Danos and the team from REGENXBIO. I look forward to seeing this program enter the clinic."

Financial Guidance

REGENXBIO expects to report that as of December 31, 2020, it had between $515 million and $530 million in cash, cash equivalents and marketable securities, including the $200 million upfront payment from REGENXBIO's royalty monetization agreement with entities managed by Healthcare Royalty Management, LLC. REGENXBIO expects these resources to fund its operations, including the completion of its internal manufacturing capabilities and clinical advancement of its product candidates, until late 2022.

About REGENXBIO Inc.

REGENXBIO is a leading clinical-stage biotechnology company seeking to improve lives through the curative potential of gene therapy. REGENXBIO's NAV Technology Platform, a proprietary adeno-associated virus (AAV) gene delivery platform, consists of exclusive rights to more than 100 novel AAV vectors, including AAV7, AAV8, AAV9 and AAVrh10. REGENXBIO and its third-party NAV Technology Platform Licensees are applying the NAV Technology Platform in the development of a broad pipeline of candidates in multiple therapeutic areas.

About Wet AMD

Wet AMD is characterized by loss of vision due to new, leaky blood vessel formation in the retina. Wet AMD is a significant cause of vision loss in the United States, Europe and Japan, with up to 2 million people living with wet AMD in these geographies alone. Current anti-VEGF therapies have significantly changed the landscape for treatment of wet AMD, becoming the standard of care due to their ability to prevent progression of vision loss in the majority of patients. These therapies, however, require life-long intraocular injections, typically repeated every four to 12 weeks in frequency, to maintain efficacy. Due to the burden of treatment, patients often experience a decline in vision with reduced frequency of treatment over time.

About RGX-314

RGX-314 is being developed as a potential one-time treatment for wet AMD, diabetic retinopathy, and other chronic retinal conditions. RGX-314 consists of the NAV AAV8 vector, which encodes an antibody fragment designed to inhibit vascular endothelial growth factor (VEGF). RGX-314 is believed to inhibit the VEGF pathway by which new, leaky blood vessels grow and contribute to the accumulation of fluid in the retina.

REGENXBIO is advancing two separate routes of administration of RGX-314 to the eye, through a standardized subretinal delivery procedure as well as delivery to the suprachoroidal space. REGENXBIO has licensed certain exclusive rights to the SCS Microinjector from Clearside Biomedical, Inc. to deliver gene therapy treatments to the suprachoroidal space of the eye.

About ATMOSPHERE

ATMOSPHERE is a multi-center, randomized, active-controlled trial to evaluate the efficacy and safety of a single-administration of RGX-314 versus standard of care in patients with wet AMD. The trial is designed to enroll 300 patients at a 1:1:1 ratio across two RGX-314 dose arms (6.4x1010 genome copies (GC)/eye and 1.3x1011 GC/eye delivered subretinally) and an active control arm of monthly intravitreal injections of ranibizumab (0.5 mg/eye). The primary endpoint of the trial is non-inferiority to ranibizumab based on change from baseline in Best Corrected Visual Acuity (BCVA) at 54 weeks. Secondary endpoints of the trial include safety and tolerability, change in central retinal thickness (CRT) and need for supplemental anti-VEGF injections. Patient selection criteria will include patients with wet AMD who are responsive to anti-VEGF treatment and will be independent of preexisting neutralizing antibody status. Patients will not receive prophylactic immune suppressive corticosteroid therapy before or after administration of RGX-314. The trial will be conducted at approximately 60 clinical sites based in the United States, with over 100 retinal surgeons.

About AAVIATE

AAVIATE is a multi-center, open-label, randomized, active-controlled, dose-escalation trial that will evaluate the efficacy, safety and tolerability of suprachoroidal delivery of RGX-314 using the SCS Microinjector, a targeted, in-office route of administration. The trial is expected to enroll approximately 40 patients with severe wet AMD across two cohorts. Patients in each cohort will be randomized to receive RGX-314 versus monthly 0.5 mg ranibizumab intravitreal injection at a 3:1 ratio, and two dose levels of RGX-314 will be evaluated: 2.5x1011GC/eye and 5x1011GC/eye. Patients will not receive prophylactic immune suppressive corticosteroid therapy before or after administration of RGX-314. The primary endpoint of the trial is mean change in vision in patients dosed with RGX-314, as measured by best corrected visual acuity (BCVA), at Week 40 from baseline, compared to patients receiving monthly injections of ranibizumab. Other endpoints include mean change in central retinal thickness (CRT) and number of anti-VEGF intravitreal injections received following administration of RGX-314.

About ALTITUDE

ALTITUDE is a multi-center, open label, randomized, controlled dose-escalation trial that will evaluate the efficacy, safety and tolerability of suprachoroidal delivery of RGX-314. The trial is expected to enroll approximately 40 patients with DR across two cohorts. Patients will be randomized to receive RGX-314 versus observational control at a 3:1 ratio, and two dose levels of RGX-314 will be evaluated: 2.5x1011GC/eye and 5.0x1011GC/eye. Patients will not receive prophylactic immune suppressive corticosteroid therapy before or after administration of RGX-314. The primary endpoint of the trial is the proportion of patients that improve in DR severity based on the Early Treatment Diabetic Retinopathy Study-Diabetic Retinopathy Severity Scale (ETDRS-DRSS) at 48 weeks. Other endpoints include safety and development of DR-related ocular complications.

About Duchenne Muscular Dystrophy

DMD is a severe, progressive, degenerative muscle disease, affecting 1 in 3,500 to 5,000 boys born each year worldwide. DMD is caused by mutations in the DMD gene which encodes for dystrophin, a protein involved in muscle cell structure and signaling pathways. Without dystrophin, muscles throughout the body degenerate and become weak, eventually leading to loss of movement and independence, required support for breathing, cardiomyopathy and premature death.

About RGX-202

RGX-202 is designed to deliver a novel microdystrophin transgene which retains key elements of the dystrophin protein, including an extended coding region of the C-Terminal (CT) domain found in naturally-occurring dystrophin, as well as other fundamental improvements to the transgene. Presence of the CT domain has been shown to recruit several key proteins to the muscle cell membrane, leading to improved muscle resistance to contraction-induced muscle damage in dystrophic mice. Additional design features, including codon optimization and reduction of CpG content, may potentially improve gene expression, increase translational efficiency and reduce immunogenicity. RGX-202 is designed to use the NAV AAV8 vector, a vector used in numerous clinical trials, and a well-characterized muscle specific promoter (Spc5-12) to support the delivery and targeted expression of genes throughout skeletal and heart muscle.

Forward-Looking Statements

This press release includes "forward-looking statements," within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These statements express a belief, expectation or intention and are generally accompanied by words that convey projected future events or outcomes such as "believe," "may," "will," "estimate," "continue," "anticipate," "design," "intend," "expect," "could," "plan," "potential," "predict," "seek," "should," "would" or by variations of such words or by similar expressions. The forward-looking statements include statements relating to, among other things, REGENXBIO's future operations and clinical trials. REGENXBIO has based these forward-looking statements on its current expectations and assumptions and analyses made by REGENXBIO in light of its experience and its perception of historical trends, current conditions and expected future developments, as well as other factors REGENXBIO believes are appropriate under the circumstances. However, whether actual results and developments will conform with REGENXBIO's expectations and predictions is subject to a number of risks and uncertainties, including the timing of enrollment, commencement and completion and the success of clinical trials conducted by REGENXBIO, its licensees and its partners, the timing of commencement and completion and the success of preclinical studies conducted by REGENXBIO and its development partners, the timely development and launch of new products, the ability to obtain and maintain regulatory approval of product candidates, the ability to accurately predict how long REGENXBIO's existing cash resources will be sufficient to fund its anticipated operating expenses, the ability to obtain and maintain intellectual property protection for product candidates and technology, trends and challenges in the business and markets in which REGENXBIO operates, the size and growth of potential markets for product candidates and the ability to serve those markets, the rate and degree of acceptance of product candidates, the impact of the COVID-19 pandemic or similar public health crises on REGENXBIO's business, and other factors, many of which are beyond the control of REGENXBIO. Refer to the "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations" sections of REGENXBIO's Annual Report on Form 10-K for the year ended December 31, 2019, and comparable "risk factors" sections of REGENXBIO's Quarterly Reports on Form 10-Q and other filings, which have been filed with the U.S. Securities and Exchange Commission (SEC) and are available on the SEC's website at http://www.sec.gov. All of the forward-looking statements made in this press release are expressly qualified by the cautionary statements contained or referred to herein. The actual results or developments anticipated may not be realized or, even if substantially realized, they may not have the expected consequences to or effects on REGENXBIO or its businesses or operations. Such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. Readers are cautioned not to rely too heavily on the forward-looking statements contained in this press release. These forward-looking statements speak only as of the date of this press release. REGENXBIO does not undertake any obligation, and specifically declines any obligation, to update or revise any forward-looking statements,whether as a result of new information, future events or otherwise.

SCS Microinjector is a trademark of Clearside Biomedical, Inc. All other trademarks referenced herein are registered trademarks of REGENXBIO.

Preliminary Financial Information

REGENXBIO reports its financial results in accordance with U.S. generally accepted accounting principles. All financial data in this press release for the year ended December 31, 2020 is preliminary, as financial close procedures for the year ended December 31, 2020 are not yet complete. These estimates are not a comprehensive statement of the financial position of REGENXBIO for the year ended December 31, 2020. Actual results may differ materially from these estimates as a result of the completion of normal year-end accounting procedures and adjustments, including the execution of REGENXBIO's internal control over financial reporting, the completion of the preparation and management's review of REGENXBIO's financial statements for the year ended December 31, 2020 and the subsequent occurrence or identification of events prior to the filing of the financial results for the year ended December 31, 2020 on Form 10-K with the SEC.

Contacts:

Tricia TruehartInvestor Relations and Corporate Communications347-926-7709[emailprotected]

Investors:Eleanor Barisser, 212-600-1902[emailprotected]

Media:David Rosen, 212-600-1902[emailprotected]

1Koo, Taeyoung et al. "Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of 1-syntrophin and -dystrobrevin in skeletal muscles of mdx mice." Human gene therapy vol. 22,11 (2011): 1379-88. doi:10.1089/hum.2011.020

SOURCE REGENXBIO Inc.

See the article here:
REGENXBIO Announces Update on RGX-314 and Pivotal Program for the Treatment of Wet AMD and New Gene Therapy Program for the Treatment of Duchenne...

Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin – Science Advances

INTRODUCTION

Tuberous sclerosis complex (TSC) is a hereditary disease affecting multiple organs with an incidence of about 1 of 5500 (1, 2), resulting from mutations in either TSC1 encoding hamartin or TSC2 encoding tuberin. Hamartin and tuberin normally act as a complex to inhibit mTORC1 (mammalian/mechanistic target of rapamycin complex 1) through guanosine triphosphatase (GTPase) activating effects on Ras homolog enriched in brain (Rheb) (3). When a mutation in the corresponding normal TSC1 or TSC2 allele occurs somatically in susceptible cells, they enlarge and proliferate causing abnormal development and tissue lesions. These secondary mutations can occur prenatally or after birth in different cell types, and the timing and frequency of these hits affect the severity of the disease in a stochastic manner. Neurodevelopmental manifestations are responsible for the greatest morbidity, including severe, refractory epilepsy and hydrocephalus, as well as autism (40%), cognitive impairment (50%), and mental health issues (70%) (46). In addition, renal angiomyolipomas forming later in life can cause life-threatening hemorrhage and/or renal failure, and pulmonary lymphangioleiomyomatosis can severely compromise respiratory function. Current treatments include surgical resection and/or treatment with rapamycin analogs (rapalogs). Although often well tolerated, rapalogs cause immune suppression (7) and potentially compromise early brain development (8), and lifelong therapy is often required. Therefore, there is a clear need to identify other therapeutic approaches for TSC.

Adeno-associated virus (AAV) vectors have been used widely in clinical trials for many hereditary diseases with little-to-no toxicity, long-term action in nondividing cells, and improvement in symptoms (911). Benefit can be seen after a single injection and some serotypes, e.g., AAV9, AAVrh8, and AAVrh10, can efficiently enter the brain, as well as peripheral organs after intravenous (IV) injection (12, 13). The insert capacity of AAV vectors is about 4.7 kb (including promoter, transgene, polyadenylation (poly A) sequence, and other regulatory elements), and the complementary DNA (cDNA) for tuberin (5.4 kb) cannot be accommodated. We generated a cDNA encoding a shorter form of tuberin, termed cTuberin. We tested its lack of toxicity and ability to bind to hamartin and Rheb1, as well as to suppress phosphoS6 kinase activity in cultured cells. In a stochastic mouse model of TSC2 [based on a TSC1 model; (14)], AAV vector encoding Cre recombinase was introduced by intracerebroventricular (ICV) injection into homozygous Tsc2-floxed mice (15) at postnatal day 0 (P0) typically leading to death at about P58 with enlarged ventricles. Near-normal life span and reduction of brain pathology were achieved in most of these animals by a single IV injection of an AAV9 vector encoding cTuberin under a strong, constitutive promoter. These studies demonstrate the ability of cTuberin to suppress overgrowth of tuberin-null cells, including neural cells and, presumably, other cells in the body, and, hence, support the preclinical efficacy of AAV-cTuberin for TSC2 lesions.

Whereas hamartin is encoded in a cDNA of 3.5 kb, which fits into an AAV vector (16), the cDNA for tuberin (5.4 kb) is too large. To generate a potentially functional form of tuberin encoded in a shorter cDNA, we retained the N-terminal domain that binds to hamartin and the C-terminal domain containing GAP (GTPase-activating protein) activity that inhibits Rheb, with N-terminal region and phosphorylation of the C-terminal region of tuberin also thought to regulate formation of the complex with hamartin Fig. 1A (3, 1720). The potential for cTuberin to retain some functional activity was supported by findings of Momose et al. (21) that genomic overexpression of the C-terminal region of rat tuberin (amino acids 1425 to 1755) can suppress renal tumors in the Tsc2 Eker rat model. We felt it was also important to retain the hamartin-binding domain at the N terminus, as hamartin and tuberin function together as a complex with Tre2-Bub2-Cdc16 (TBC) 1 domain family, member 7 (TBC1D7) to accelerate guanosine triphosphate (GTP) to guanosine diphosphate conversion of Rheb-GTP (3, 22). In addition, this requirement for complex formation for activity might act to limit potential negative effects of high levels of transgenic cTuberin expression. cTuberin was thus designed to retain key elements of function, including 450 amino acids from the N-terminal region and 292 amino acids from the C-terminal region, joined by a flexible serine-glycine linker of 16 amino acids (fig. S1). This cDNA, with a Kozak sequence, and a C-terminal c-Myc tag was inserted into an AAV2 backbone under a chicken -actin (CBA) promoter (23), with a WPRE (woodchuck hepatitis virus posttranscriptional regulatory element) and poly A signals (Fig. 1B).

(A) The functional domains of tuberin are depicted with numbers representing amino acid residues for the full-length human proteins [based on (3)]. T1BD, hamartin-binding domain; GAP, GAP domain homologous with that in Rap1GAP. cTuberin contains the T1BD and GAP domains of TSC2 with a glycine-serine linker and C-terminal c-Myc tag. (B) Schematic of AAV-cTuberin transgene expression cassette. ITR, inverted terminal repeats; CBA, chicken -actin promoter; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; pA, poly A signal sequences [from SV40 and bovine growth hormone (BGH)].

Human embryonic kidney (HEK) 293T cells were transfected with plasmids for empty AAV (AAV1-null that contains all the elements except the cTuberin cDNA), AAV-CBAgreen fluorescent protein (GFP), or AAV-CBA-cTuberin-Myc to assess the expression level of cTuberin. In addition to endogenously expressed tuberin (200 kDa), cTuberin expression at the appropriate molecular weight (MW) of 85 kDa was detected on Western blots using anti-tuberin and anti-Myc antibodies (Fig. 2A; representative blot, n = 3) Immunocytochemistry of 293T cells transfected with different plasmids demonstrated stronger tuberin immunoreactivity in those transfected with AAV-CBA-cTuberin-Myc compared to other groups that expressed only endogenous tuberin (Fig. 2B; representative micrographs, n = 3). We determined transfection efficiency of these cells in two waysmicroscopically and by flow cytometry. As it is challenging to differentiate expression of endogenous tuberin from cTuberin, image analysis was carried out microscopically for each well (approximately 2000 cells per well; n = 3) for 4,6-diamidino-2-phenylindole (DAPI)positive and c-Mycpositive cells, and we determined that 43 2% of cells were transfected with the AAV-CBA-cTuberin-Myc (Fig. 2B). Cytotoxicity assays were also performed following transfection of HEK293T cells with AAV-null, AAV-CBA-GFP, or AAV-CBA-cTuberin-Myc plasmids to evaluate potential toxicity of cTuberin. The lactate dehydrogenase (LDH) assay (Dojindo Molecular Technologies Inc., Rockville, MD, USA) revealed no cytotoxicity in cTuberin-transfected cells, as compared to controls (Fig. 2C; n = 3). As a second way to evaluate the extent of transfection of these 293T cells with AAV-CBA-cTuberin-Myc plasmid DNA (n = 3), we sorted the c-Mycpositive cells using flow cytometry, after staining the cells with unlabeled c-Myc primary antibody followed by Alexa Fluor 647conjugated secondary antibody. Compared to the background in nontransfected cells (4 1%), we detected a marked increase of c-Mycpositive cells (50 1% or 46% minus the background, similar to the 43% determined by cell counting) after transfection with the AAV-CBA-cTuberin-Myc plasmid (P < 0.0001) (Fig. 2D). This suggests that the apparently endogenous levels of cTuberin reflect 43 to 46% transfection efficiency and that levels of cTuberin are about twice as high as endogenous tuberin in these transfected cells, without apparent toxicity.

(A) HEK293T cells were transfected with empty AAV (AAV-null), AAV-CBA-GFP, or AAV-cTuberin-Myc (AAV-CBA-cTub-Myc) plasmids. Representative Western blot (WB) (from n = 3 experiments) shows endogenous tuberin (~200 kDa) using anti-tuberin antibody and cTuberin-Myc (predicted 85 kDa) using anti-tuberin and anti-Myc antibodies. -Actin served as a loading control. (B) HEK293T cells were transfected with AAV-null and AAV-cTub-Myc plasmids and immunostained 72 hours later for tuberin (red) and c-Myc (green) with nuclear DAPI (blue). Scale bar, 100 m. The bar graph (bottom right) summarizes the cell count analysis (43 2% of the AAV-cTuberin-Myctransfected cells expressed c-Myc). (C) Cell death was quantified 72 hours after transfection using the Cytotoxicity LDH Assay Kit. Each bar represents the mean SD. (n = 3). ****P < 0.0001, compared with the positive apoptotic control (Bortezomib, 100 nM). (D) To further quantify transfection efficiency, HEK293T cells were transfected with AAV-CBA-cTub-Myc plasmid for 72 hours (n = 3 experiments) followed by sorting for the c-Mycpositive cells using flow cytometry. There was a significant increase in c-Mycpositive cells (50 1%) in the transfected cells (P < 0.0001) as compared to the nontransfected cells (4 1%). ****P < 0.0001.

COS-7 cells were cotransfected with plasmids for empty AAV (AAV-null), Myc-tagged full-length tuberin (Myc-FL-tuberin), AAV-CBA-cTuberin-Myc, Myc-tagged glycogen synthase kinase-3 (Myc-GSK-3), FLAG-tagged hamartin, and/or hemagglutinin (HA)tagged glutathione S-transferase (GST)tagged Rheb1 (HA-GST-Rheb1). Coimmunoprecipitation experiments performed with anti-Myc antibody showed that Myc-tagged cTuberin bound to FLAG-tagged hamartin and HA-tagged GST-Rheb1 to the same extent as Myc-FL-tuberin (Fig. 3). Myc-tagged GSK-3, used as a negative control, did not bind to FLAG-tagged hamartin or HA-tagged GST-Rheb1. These results indicated that cTuberin binds to hamartin and Rheb1 in cells, supporting a similarity in these biochemical parameters between cTuberin and full-length tuberin.

Representative blot (n = 3 experiments) after cotransfection of the Myc-tagged cTuberin (AAV-CBA-cTub-Myc) or full-length tuberin (Myc-FL-tuberin) along with FLAG-tagged hamartin and HA-tagged GST-Rheb1. Coimmunoprecipitation (co-IP) using anti-Myc antibody demonstrated that cTuberin-Myc interacts with both Flag-hamartin and HA-Rheb1 similar to Myc-FL-tuberin. Conversely, negative control Myc-GSK-3 showed no interaction with FLAG-hamartin or HA-GST-Rheb1.

For functional assessment tuberin and cTuberin on mTORC1 activity in vitro, we evaluated S6K T389 phosphorylation in cells expressing these proteins, together with hamartin and S6K, as described (24, 25). To determine whether cTuberin overexpression could inhibit mTORC1 activation, the Myc-tagged cTuberin plasmid was cotransfected with Flag-tagged hamartin and HA-tagged p70S6K (HA-S6K) reporter plasmids into HEK293T cells. As a control, a plasmid encoding Flag-tagged full-length tuberin was cotransfected with Flag-hamartin and HA-S6K plasmids. Hamartin and full-length tuberin coexpression inhibited phosphorylation of S6K T389, as expected, and similarly, coexpression of hamartin and cTuberin also decreased pS6K T389 levels (Fig. 4A), supporting the ability of cTuberin to bind to hamartin and efficaciously inhibit TORC1 activity. Level of pS6K T389 inhibition was quantified relative to HA-S6K using Fiji/ImageJ. Flag-hamartin cotransfected with AAV-GFP served as a control (normalized to 1.0), and cotransfection with full-length tuberin and cTub-Myc revealed a significant inhibition of S6K T389 phosphorylation by 69 and 56%, respectively (*P < 0.05; n = 3 separate experiments).

(A) Full-length Flag-tagged tuberin (Flag-tuberin), Myc-tagged cTuberin (AAV-cTub-Myc), or AAV-GFP plasmids were cotransfected into HEK293T cells along with full-length Flag-tagged hamartin (Flag-hamartin) and HA-tagged p70S6K (HA-p70S6K), which is phosphorylated at T389 by mTORC1 (latter used as a reporter for mTORC1 activation). Representative blot (n = 3 experiments) demonstrated similar inhibition levels of phosphorylated p70S6K (pS6K T389) with either full-length tuberin or cTub-Myc cotransfected with full-length hamartin. (B) Quantitation of decrease in S6K T389 phosphorylation was performed relative to HA-S6K using Fiji/ImageJ. Flag-hamartin cotransfected with AAV-GFP served as a control (normalized to 1.0), and cotransfection with full-length tuberin or cTub-Myc revealed inhibition of 69 or 56%, respectively, representing the results from three experiments. *P < 0.05.

To evaluate preclinical efficacy of the AAV9-CBA-cTuberin-Myc vector (hereafter referred to as AAV9-cTuberin), Tsc2 homozygous floxed mice (referred to as Tsc2-floxed or Tsc2flox) were first injected ICV at P0 with an AAV1-CBA-Cre recombinase vector (1 1012 vg/kg) to inactivate Tsc2 in a subset of neurons, astrocytes, and other cells in the brain (16). At P21, these AAV1-Creinjected mice were injected IV (retro-orbitally) with AAV9-cTuberin vector (9 1011 vg/kg) or AAV9-null vector (1 1013 vg/kg) and were compared to control animals that did not receive any IV injection. Tsc2-floxed AAV1-Creinjected (P0) mice had a median survival of 58 days, as did similar mice injected IV at P21 with AA9-null vector (mean survival of 58 days), mice injected IV at P21 with AAV9-cTuberin vector had the median survival of 462 days (P < 0.0001) (Fig. 5A). We also tested the potential toxicity of this dose of AAV9-cTuberin alone by injecting six Tsc2-floxed mice IV at P21 (in the absence of AAV1-Cre induced loss of Tsc2 at P0). All six mice survived over 500 days without apparent toxicity (Fig. 5A).

(A) Tsc2-floxed mouse pups were injected ICV with an AAV1-Cre vector (1 1012 vg/kg) at P0 to induce tuberin loss in multiple cell types in the brain. At 21 days, mice were injected IV with either AAV9-cTuberin (9 1011 vg/kg; n = 12) or AAV9-null (1 1013 vg/kg; n = 6) or noninjected (n = 6). Median survival of the AAV-cTuberin-injected mice (462 days, red line) was significantly longer than the non-cTuberin-injected mice (58 days, black line) (****P < 0.0001). Mice injected secondarily with the AAV9-null vector also died on average by 58 days (gray). Pups injected only with AAV9-cTuberin (no AAV1-Cre) all lived over 500 days. For (B) and (C), AAV1-Cre ICV (1 1010 vg/kg) was injected at P1 only or followed with AAV9-cTuberin (8 1012 vg/kg) IV at P21. (B) Body weights of Tsc2-floxed mice injected with AAV1-Cre vector, with and without AAV9-cTuberin vector, or noninjected were similar from P21 to P50. (C) For the rotarod test, the motor function of the Tsc2-floxed AAV1-Creinjected mice rescued by AAV9-CBA-cTuberin vectors was significantly better than that of the AAV1-Cre group and noninjected group. **P < 0.005. ns, not significant.

Different cohorts of mice were subjected to body weight measurement and motor function assessment starting at P21/22 for nave, noninjected animals, AAV1-Cre ICV injected (1 1010 vg/kg) at P1 only or followed with AAV9-cTuberin injected (8 1012 vg/kg) IV at P21. Body weights of these mice from age 21 to 50 days did not differ according to treatment (Fig. 5B). Movement was assessed using an automated rotarod apparatus with accelerating rotary velocity (4 going to 64 rpm over 2 min) to assess motor skills of the mice as time of latency to fall. A significant increase in latency was observed for the AAV1-Cre + AAV9-cTuberin as compared to the AAV1-Creinjected mice and naive mice (Fig. 5C). During animal handling, two mice of six Tsc2-floxed AAV-Creinjected mice (day 41) and two mice of seven Tsc2-floxed AAV-Creinjected + AAV-cTuberininjected mice (one each on days 47 and 50) manifested straub (vertical tail), humped back, and/or motor seizures, which did not, however, compromise their consequent rotarod performances (fig. S2).

Two other approaches were less effective at extending survival of AAV1-Cre ICVinjected Tsc2-floxed mice. In one, using a similar time scheme (fig. S3), Tsc2-floxed pups were injected with 1 1014 vg/kg AAV1-Cre ICV at P3 and then 3 1012 vg/kg of AAV1-cTuberin (in contrast to AAV9 serotype) IV at P21, with the higher amount of AAV1-Cre (without cTuberin) leading to death with a mean of 36 days and survival only being extended by AAV1-cTuberin to a mean of 54 days. This probably reflects the fact that AAV1 is less efficient at crossing the blood-brain barrier (BBB) than AAV9. In another experiment, the Tsc2-floxed pups were injected ICV with AAV1-Cre (1 1012 vg/kg) at P0, followed by ICV injection (in contrast to systemic injection) of 4.5 1013 vg/kg of AAV9-cTuberin at P3. This approach led to median survival of 50 days in Tsc2-floxed mice without cTuberin injection, while those injected with AAV9-cTuberin had extended median survival only up to 95 days (fig. S4). This experiment raises the possibility that other lesions in the body (in addition to the brain) resulting from ICV injection of AAV1-Cre were associated with death and were not sufficiently alleviated by ICV injection of the cTuberin vector and/or that the high dose AAV-cTuberin injected ICV into P3 pups had some toxicity (26).

In nave (normal) Tsc2-floxed mice, the ventricle is lined by a single layer of ependymal cells (Fig. 6A). Neuropathological examination at P42 revealed that ICV injection of AAV1-Cre in Tsc2-floxed mice at P0 led to multiple layers of ependymal and subependymal cells lining the lateral ventricle (indicating increased proliferation of these cells) (Fig. 6B, asterisk), which sometimes appeared as nodules along the ventricular lining (Fig. 6C). When these AAV1-Creinjected mice were treated with AAV9-cTuberin (IV injected at P21), there was apparent regression of ependymal/subependymal overgrowths (Fig. 6D). We also stained these mouse brain sections (P42) for Ki67 as an indication of cell proliferation. As expected, there was little-to-no proliferation of ependymal/subependymal cells lining the ventricles in the nave brain (Fig. 7A). In contrast, after AAV1-Cre injection at P0, there was marked proliferation of these cells, including apparent migration of dividing cells into the brain parenchyma (Fig. 7B), also seen after subsequent IV injection with AAV9-null vector (Fig. 7C). In contrast, IV injection of the AAV9-cTuberin vector decreased proliferation and inward migration of Ki67+ ependymal/subependymal cells (Fig. 7D).

Tsc2-floxed mouse pups were either not injected (nave) or injected ICV in both ventricles (1 1012 vg/kg) with an AAV1-Cre vector at P0. At 21 days, some mice were injected IV with AAV9-cTuberin (9 1011 vg/kg) or noninjected. At 42 days, all mice were euthanized. (A) Nave, noninjected brain (black arrowhead indicating the choroid plexus). (B and C) Tsc2-floxed mice with AAV1-Cre at P0 and no further injection showed (B) proliferation of ependymal/subependymal cells (asterisk) and (C) subependymal nodules. (D) Little-to-no subependymal overgrowth was detected in mice receiving both the P0 AAV1-Cre ICV injection and P21 IV AAV9-cTuberin injection. Representative images are shown. Magnification bar, 100 m. CC, corpus callosum; LV, lateral ventricle.

Tsc2-floxed mouse pups were either not injected (nave) or injected ICV in both ventricles (1 1012 vg/kg) with an AAV1-Cre vector at P0. At 21 days, some mice were injected IV with AAV9-cTuberin (9 1011 vg/kg), AAV9-null (1 1013 vg/kg) or noninjected. At 42 days, all mice were euthanized. (A) Nave, noninjected brain reveals little-to-no staining in the ependymal/subependymal layers. (B) Tsc2-floxed mice injected with AAV1-Cre vector only showed abnormal mitotic activity and apparent migration of cells (yellow arrows) away from the ventricular zone, as well as multiple ependymal/subependymal layers (green arrowheads) as compared to the nave group. (C) Tsc2-floxed mice injected with AAV1-Cre vector followed by AAV9-null vector showed abnormal mitotic activity of the cells and thickening of the subventricular zone. (D) The Tsc2-floxed mice injected with AAV1-Cre and then rescued with the AAV9-cTuberin vector showed a trend toward normalization of the ependymal/subependymal layer. The corresponding brain sections were counterstained with DAPI. The yellow asterisk denotes autofluorescence in the choroid plexus. Representative images are shown. Magnification bar, 100 m.

The brain sections (P42) were also immunostained for phosphorylated ribosomal protein S6 (pS6). We observed low pS6 expression in the whole brain sections of the noninjected (nave) mouse brain (Fig. 8A, top). In contrast, in AAV1-Cre ICVinjected Tsc2-floxed mice, pS6 expression was intense in many brain cells [Fig. 8, A (middle) and Bi], with the pS6-positive cells being significantly larger in size (Fig. 8Bii) and with a higher pS6 immunofluorescence signal (Fig. 8Biii). When the AAV1-Creinjected mice were subjected to IV injection of the AAV9-cTuberin vector at P21, the pS6 immunoreactive cells were significantly decreased in average size by 23% [P < 0.05; Fig. 8, A (bottom) and Bii] and showed a reduced pS6 signal by 28% (P < 0.05; Fig. 8Biii) consistent with reduced mTOR activity.

Tsc2-floxed mouse pups were either not injected (nave) or injected ICV (1 1012 vg/kg) with an AAV1-Cre vector at P0. At P21, some mice were injected IV with AAV9-cTuberin (9 1011 vg/kg) or noninjected. All were euthanized at P42. (A) Whole mouse brain sections from nave, AAV1-Cre, and AAV1-Cre+ AAV9-cTuberin injected mice stained for pS6 and DAPI. Representative whole brain sections (scale bar, 1 mm; eight-bitthresholded inverted images) indicated absence of pS6 puncta in nave group. In other groups, pS6 puncta appeared as darkened spots within the cerebral cortex and caudate putamen; high magnification inset images (scale bar, 100 m; 12-bitthresholded inverted images). (B) pS6 analysis included puncta density (i), size (ii), and intensity (iii). *P < 0.05; n = 3. a.u., arbitrary units. (C) Compared to nave pups, immunoblotting demonstrated AAV1-Cremediated decrease of tuberin (54%) and increase in pS6 (76%) in Tsc2-floxed mice injected with AAV1-Cre, relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with nave brain as control (normalized to 1.0; *P < 0.05; n = 3). (Di) Ct values for biodistribution of AAV vector genomes in the brain and liver measured by qPCR. (Dii) Ct value of GAPDH and cTuberin cDNAs in brains of nave animals injected with AAV1-Cre only or with AAV1-Cre and AAV9-cTuberin. n.d., not determined.

To assess the Cre-mediated loss of tuberin and activation of mTOR activity in vivo, newborn pups (P0, n = 3) were injected ICV with AAV1-CBA-Cre recombinase vector (AAV1-Cre at dosage of 1 1012 vg/kg), and another three noninjected (nave) pups were included as controls. One week after injection of vector, brain protein lysates were collected for immunoblotting with anti-tuberin and anti-pS6 antibodies. There was significant reduction in expression of tuberin by 54% (P < 0.05) and significant increase of pS6 by 76% (P < 0.05) in animals injected with AAV1-Cre, confirming that the Cre recombinase mediates loss of tuberin and activation of mTOR in the treated mice (Fig. 8C).

To examine the vector biodistribution in the injected animals, Tsc2-floxed animals were injected ICV at P0, with an AAV1-CBA-Cre recombinase vector (AAV1-Cre; 1 1012 vg/kg, n = 4). At P21, these AAV1-Creinjected mice were injected IV with AAV9-cTuberin vector (9 1011 vg/kg). One week after injection, DNA was extracted from the brain and liver of these animals. For comparison, another three Tsc2-floxed animals subjected to no injections were used as controls. For quantitative polymerase chain reaction (qPCR) analysis of AAV genomes (probes and primer specific), 50 ng of DNA was used as a template, and primers and probes were designed to amplify the cTuberin in the infected animal (fig. S5). cTuberin DNA was not detected in the noninjected control group (Fig. 8D). Cycle threshold (Ct) values for the Tsc2-floxed animals injected with AAV1-Cre and AAV9-cTuberin vectors were readily detectable with approximately 30.8 2.6 and 17.2 0.2 cycles for brain and liver tissue, respectively (Fig. 8Di). The large difference between the AAV genomes in brain compared to liver is likely due to both the high tropism of systemically injected AAV for the liver and the relatively low dose of vector injected (9 1011 vg/kg). To detect cTuberin transgene expression, total RNA was extracted from the brains and livers of another set of animals, including noninjected controls; Tsc2-floxed animals injected with AAV1-Cre only, and Tsc2-floxed animals injected with AAV1-Cre and AAV9-cTuberin vectors (n = 3 for all groups), with the dosage of AAV1-Cre ICV injected at P1 (1 1010 vg/kg) or combined with AAV9-cTuberin injected IV at P21 (1.8 1012 vg/kg). Quantitative reverse transcription PCR (RT-qPCR) analysis indicated that cTuberin mRNA was undetectable in the noninjected control group and those injected with AAV1-Cre only. In contrast, in both brains and livers, we detected cTuberin mRNA in mice injected with AAV9-cTuberin at levels of Ct 36.8 3 and 34.8 0.5 cycles, respectively (Fig. 8Dii). We did not detect cTuberin cDNA when reverse transcriptase was omitted from the RT reaction, indicating that we were detecting bona fide cTuberin mRNA and not sample contamination with AAV-cTuberin genomes.

This is the first description of an alternative mode of therapy for TSC type 2 (TSC2) involving gene replacement using an AAV vector encoding a condensed form of tuberin, termed cTuberin. We developed a stochastic mouse model for central nervous system (CNS) lesions in TSC2 in which homozygous Tsc2-floxed mice (15, 27) are injected ICV in the newborn period (P0 to P3) with an AAV1 vector expressing Cre recombinase, as described for our stochastic TSC1 model (14). AAV1-Cre injection in the Tsc2-floxed model resulted in death at about 58 days. Death appeared to be due primarily to hydrocephalus caused by ependymal/subependymal overgrowths blocking cerebrospinal fluid flow, with whole-body pathology revealing no overt lesions except in the CNS. Although signs of seizures were noted in a few mice during motor performance assessment, these animals recovered normal activity. Experiments showed that IV injection of AAV9-cTuberin vector into this stochastic Tsc2-floxed mouse model on day 21 extended life span in most mice (9 of 12) to at least 450 days. Histochemical/immunohistochemical analysis of the brains supported a resulting reduction in size of ependymal/subependymal lesions, decreased proliferation of cells in the subependymal zone, and reduced phosphorylation of S6 kinase driven by mTOR activity. This study offers a potential single treatment paradigm for improving the outcome of patients with TSC2.

Limitations to this stochastic Tsc2 mouse model include the fact that floxed alleles (before Cre exposure) are normal in function during prenatal development and that Cre recombinase usually knocks out both alleles in a cell at once, which is different from the case in TSC2 patients, most of whom are heterozygous for one mutant and one normal allele in most-to-all cells in their body. TSC2 heterozygosity itself may compromise some cell functions and contribute to aspects of the disease phenotype (1, 28, 29). Further, the model used here is CNS oriented, with most pathology in the brain; whereas in TSC patients, a number of organs in addition to the brain are affected. In addition, this Tsc2 mouse model does not show all the brain abnormalities observed in human TSC2, many of which form prenatally, such as cortical tubers, disorganized cortical lamination, dysplastic neurons, and giant cells (30). Strengths of this model are that there is loss of tuberin expression in a number of different cell types in the brain with variation for animal to animal, as occurs in patients with TSC. This is in contrast to commonly used models where Tsc2-floxed mice are mated to mice expressing Cre recombinase under a cell-specific promoter, e.g., the synapsin promoter, in which case most and only neurons lose expression at embryonic day 12.5 (31).

The central portion of tuberin that was removed to fit coding sequences into the AAV vector contains a number of phosphorylation sites that are involved in regulating mTOR activity under some circumstances, with three of these sites bearing missense mutations associated with TSC2, suggesting that they may contribute to the disease phenotype or create truncated, nonfunctional proteins (6). By comparison, there is an ortholog of human tuberin in Schizosaccharomyces pombe that lacks about 500 amino acids in the equivalent central region of human tuberin, suggesting that these sites are dispensable to some functions (32). Further, some of the key Akt phosphorylation sites in mammalian tuberin are not essential in Drosophila (33), and phosphorylation sites for Akt, ribosomal protein S6 kinase, and AMP-activated protein kinase (AMPK) in the central region of human tuberin are not present in Schizosaccharomyces or Dictyostelium (34), suggesting that these sites may not be critical for function. Given the critical role of phosphorylation sites in tuberin in growth factor and cytokine signaling in mammalian cells, one would anticipate that cTuberin in TSC2-null cells would lack some of these regulatory controls. However, in the Eker rat model of TSC2, which is prone to renal carcinomas, the C-terminal region alone (amino acids 1425 to 1755) of rat tuberin suppresses tumor formation in a dose-dependent manner (35). Fortunately, in TSC2 patients, only a very small fraction of cells in the body suffer loss of tuberin, and most damage is done by the enlargement and proliferation of these deficient cells. Thus, if overgrowths can be suppressed by cTuberin, then that would bring therapeutic benefit for many of the symptoms of the disease, although the cells would not be fully normalized. So far, in cultured cells, cTuberin has been shown to bind to hamartin, and overexpression of cTuberin was not found to be toxic. cTuberin inhibited mTORC1 signaling in these cells to the same extent as tuberin, supporting the use of cTuberin as an effective replacement for tuberin for some cell properties.

Subependymal nodules (SENs) occur in 10 to 15% of children with TSC, usually appearing after birth and being more severe in TSC2 than TSC1 (3638). SENs can enlarge into subependymal giant cell astrocytomas (SEGAs) during the first decade of life causing obstruction of cerebrospinal fluid flow, potentially leading to life-threatening hydrocephalus, as well as endocrinopathy and visual impairment (36, 37, 39, 40). Under optimal care, infants and children with TSC are monitored for subependymal lesions by magnetic resonance imaging (MRI) every 6 to 12 months. The two current standards of care are neurosurgical removal of SEGAs through craniotomy, which can be associated with significant morbidity (37), or treatment with rapalogs, which inhibit mTOR activity. Rapalogs have proven effective in reducing lesion size, but they require continuous treatment and have limited access to the brain after peripheral administration. Potential problems with this class of drugs include a compromise of immune function (41), interference with white matter integrity (42), and possible interference with brain development in early childhood (43). In several studies, the mTOR pathway has been found to be critical to neurodevelopment, including neuronal growth, axonal guidance, synapse formation, and myelination (4446). Inhibition of mTOR by rapalogs may contribute to the observed memory dysfunction following prenatal/postnatal drug treatment in Tsc mouse models (47) and the behavioral abnormalities in wild-type mice treated prenatally with rapamycin (48). Some physicians do not recommend the use of these drugs in children or pregnant women as long-term effects on growth and development in pediatric patients are not fully known (43). Although in at least one study, rapalog treatment was reported to have no significant effect on neurocognitive function or behavior in children with TSC (49).

Our premise is that current therapies for children with TSC may have associated morbidity resulting in the potential for decreased mental functions. Another therapeutic approach would be intravascular administration of an AAV vector that can cross the BBB encoding a replacement gene for the mutant TSC1 or TSC2 alleles. Since SENs are slow growing, there would be time to monitor their size by MRI over several months and leave open the opportunity to administer standard-of-care treatment, as needed. It is hoped that gene replacement therapy might reduce use of more problematic standard-of-care procedures in young children and provide long-lasting benefit with a single administration. Certain serotypes of AAV, such as AAV9, are able to penetrate the BBB as well as deliver to peripheral tissues (13). Thus, with IV delivery, extra copies of the replacement gene would be provided to multiple tissues, including brain, kidney, liver, and lungs, which might reduce the likelihood that somatic mutations in TSC genes later in life would lead to disruptive hamartomas.

Advantages of AAV gene therapy are the potential for a single vector injection yielding long-term transgene expression in nondividing cells. It is assumed that once a tuberin analog is delivered to cells in TSC2 lesions, they would shrink and stop dividing and, hence, retain transgene expression. Gene therapy may be a viable option for infants/children with TSC to reduce potential compromise of brain functions caused by congenital lesions and secondary sequelae of these lesions. AAV9 vectors have been used in young mice with spinal muscular atrophy (SMA) for gene replacement of the survival motor neuron (SMN) protein using both IV (50) and intrathecal (51) gene delivery. An AAV9-SMN drug, Zolgensma (Novartis), is now U.S. Food and Drug Administrationapproved for IV treatment of babies/children with SMA. Two critical aspects of successful gene therapy with AAV vectors are as follows: (i) a known target, in the case of TSC2 loss of function of tuberin; and (ii) no toxicity resulting from overexpression of the replacement protein, since levels of expression cannot at present be regulated. There is a predicted reduced chance of toxicity of cTuberin as it should only be active in a 1:1 complex with hamartin, and hamartin levels are normal in TSC2 null cells (52), with cTuberin not bound to hamartin presumably being degraded. So far, no toxic effects of cTuberin expression have been observed in cells in culture or in mice. Clinical trials should be facilitated by the ability to image reduced lesion size within months by MRI due to shrinking of cell volume and inhibition of cell proliferation, as was found in the rapalog trial for renal angiomyolipomas (53). Typically, AAV vectors are just administered once due to previous exposure to the AAV virus in life eliciting an immune response to the capsid and reducing secondary transduction (54). If replacement is insufficient to reduce symptoms or new TSC2 null lesions arise later in life after AAV gene replacement, it would still be possible to treat patients with rapalogs or possibly exoAAV (55). These studies support the potential of AAV gene therapy for TSC2, which might be especially useful in infants and children where drug inhibition of the mTOR pathway may interfere with early brain development.

The AAV vector plasmid, AAV-CBA-Cre-BGHpA, was derived as described in Prabhakar et al. (16). These AAV vectors carry AAV2 inverted terminal repeat elements, and gene expression is controlled by a hybrid promoter (CBA) composed of the cytomegalovirus (CMV) immediate/early gene enhancer fused to the -actin promoter (23). To increase the efficiency of cTuberin translation (for future use in human gene therapy approach), cDNA encoding cTuberin was human codon-optimized before gene synthesis by GenScript Biotech (Piscataway, NJ, USA). AAV vector plasmid, AAV-CBA-cTuberin-c-Myc, was derived from the plasmid pAAV-CBA-W (56). This vector contains the CBA promoter driving cTuberin, followed by a WPRE and both SV40 and bovine growth hormone (BGH) polyadenylation (poly A) signal sequences. Our cTuberin construct contains the following: ACC (Kozak sequence) :: amino acids 1 to 450 of human tuberin::gly/ser linker :: amino acids 1515 to 1807 of human tuberin :: c-Myc tag = 2307 bp encoding an 85-kD protein (fig. S1). The pAAV-CBA-W, which contains the CBA promoter, WPRE, and poly A sequences, but no transgene, served as AAV-null in our studies.

AAV1 and AAV9 serotype vectors were produced by transient cotransfection of HEK293T cells by calcium phosphate precipitation method of vector plasmids (e.g., AAV-CBA-cTuberin-Myc), adenoviral helper plasmid pAdF6, and a plasmid encoding AAV9 (pAR9) or AAV1 (pXR1) rep and capsid genes, as previously described (57). All AAV vectors carried the identity of all PCR-amplified sequences as confirmed by sequencing. Briefly, AAV vectors were purified by iodixanol density gradient centrifugation. The virus-containing fractions were concentrated using Amicon Ultra 100-kDa molecular weight cut-offs (MWCO) centrifugal devices (EMD Millipore, Billerica, MA, USA), and the titer vector genomes (vg) per milliliter was determined by quantitative real-time PCR amplification with primers and TaqMan probe specific for the BGH poly A signal.

HEK293T cells [American Type Culture Collection (ATCC)] and COS-7 cells (ATCC, Manassas, VA, USA) were cultured in Dulbeccos modified Eagles medium (DMEM; Thermo Fisher Scientific, Hampton, NH, USA) supplemented with 10% fetal bovine serum (FBS; Gemini Bio Products, West Sacramento, CA, USA) and 1% penicillin/streptomycin (Thermo Fisher Scientific). The cell cultures were periodically screened to ensure they are free from mycoplasma contamination using the PCR Mycoplasma Detection Kit (ABM, G238, Richmond, BC, Canada).

HEK293T cells were seeded in 96-well plates (10,000 cells per well) and, after 24 hours, transfected with various plasmid DNAs (AAV-null, AAV-GFP, and AAV-cTuberin) at 250 ng/10,000 cells using Lipofectamine 2000, according to the manufacturers instructions (Life Technologies, Carlsbad, CA, USA) in Opti-MEM (Life Technologies). Six hours later, transfection media was removed and replaced with DMEM (10% FBS and 1% Penicillin-Streptomycin solution), and cells were allowed to grow for 72 hours. One group of cells was treated with potent proteasome inhibitor Bortezomib (VELCADE; Millennium Pharmaceuticals Inc., Cambridge, MA, USA) (58) at 250 nM for 72 hours, as a positive control for toxicity. Cellular toxicity caused by plasmid DNA transfection was assessed by quantification of extracellular LDH activity using LDH assay kit-WST (Dojindo Molecular Technologies Inc.), following the manufacturers instructions. Briefly, the supernatant for each transfected or treated sample was collected and incubated with substrate for 30 min at 37C. Following incubation, stop solution was added, and absorbance was measured at 490 nm.

Briefly, cultured cells were harvested in lysis buffer [50 mM Hepes (pH 8.0), 150 mM NaCl, 2 mM EDTA, 2.5% sodium dodecyl sulfate, 2% CHAPS, 2.5 mM sucrose, 10% glycerol, 10 mM sodium fluoride, 2 mM sodium vanadate, 1 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, USA), 10 mM sodium pyrophosphate, and protease inhibitor cocktail (P8340, Sigma-Aldrich)]. After sonication and incubation at 8C for 10 min, the samples were centrifuged at 14,000g for 30 min at 8C. Equal amounts of protein, determined by a detergent-compatible protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA), were boiled for 5 min in Laemmli sample buffer (Bio-Rad), separated by SDSpolyacrylamide gel electrophoresis (PAGE), and transferred onto nitrocellulose membranes (Bio-Rad). Equal protein loading was confirmed by Ponceau S staining. The membranes were blocked in 2% blocking reagent (GE Healthcare, Pittsburgh, PA, USA) for 1 hour at room temperature (RT) and incubated with primary antibodies overnight at 4C. Anti-tuberin/TSC2 (#3612), antiphospho-S6 (#2211), anti-S6 (#2212), anti-Myc (clone 9B11, #2276) (Cell Signaling Technology, Danvers, MA, USA), anti-actin (#A5441), anti-FLAG (clone M2, #F1804) (Sigma-Aldrich), anti-HA (clone F-7, sc-7392, Santa Cruz Biotechnology, Dallas, TX, USA), and antiglyceraldehyde-3-phosphate dehydrogenase (GAPDH) (#CB1001, EMD Millipore) were used as primary antibodies. Anti-rabbit or anti-mouse immunoglobulin G antibody conjugated with horseradish peroxidase was used as a secondary antibody (Thermo Fisher Scientific). Enhanced chemiluminescence reagent, Lumigen ECL Ultra (TMA-6) (Lumigen, Southfield, MI, USA), was used to detect the antigen-antibody complexes.

For immunoprecipitations, COS-7 cells were transfected with plasmid vectorsAAV empty, AAV-CBA-cTuberin-Myc, pcDNA-hamartin-FLAG (V. Ramesh laboratory), pReceiver-M09/tuberin-Myc (catalog no. EX-Z5884-M09, GeneCopoeia, Rockville, MD, USA), pCMV-Tag3A-Myc-GSK-3 (GSK-3 sequence was cloned into pCMV-Tag3A vector; catalog no. 211173-51, Agilent Technologies, Santa Clara, CA, USA), and pRK5-HA-GST-Rheb1 [catalog no. 19310, Addgene, Watertown, MA, USA; provided by Sancak et al. (59)] using Lipofectamine 2000 (Life Technologies). Cells were lysed with ice-cold phosphate-buffered saline (PBS) (pH 7.4) containing 1% Triton X-100, 2 mM EDTA, 10 mM sodium pyrophosphate, 1 mM phenylmethylsulfonyl fluoride, 2 mM sodium vanadate, 10 mM sodium fluoride, and proteinase inhibitors cocktail (Sigma-Aldrich). Lysates were centrifuged at 15,000 rpm for 10 min at 4C, and protein concentration was measured using the Bradford protein assay (Bio-Rad). One milligram of lysates was incubated with 2 g of anti-Myc-tag antibody (catalog no. 16286-1-AP, Proteintech, Rosemont, IL, USA) in the presence of Protein A/G Agarose (Santa Cruz Biotechnology) at 4C overnight. After washing twice with ice-cold modified PBS buffer (pH 7.4) (287 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.05% Triton X-100, and 1 mM EDTA), resins were incubated in 30 l of 0.2 M glycine-HCl buffer (pH 2.5) (Polysciences Inc. Warrington, PA, USA) at RT for 15 min, and then the supernatants were collected and neutralized by adding an equal amount of 1 M tris-HCl (pH 8.0) (Sigma-Aldrich). To increase stringency during the washing, NaCl concentration was increased from 137 to 287 mM in the modified PBS buffer to reduce ionic protein interaction. Eluted immunoprecipitates or whole-cell lysates were separated by SDS-PAGE and analyzed by immunoblotting with antibodies specific for Myc-tag (dilution 1:5000) (catalog no. 2276, Cell Signaling Technology), FLAG-tag (1:25,000) (catalog no. F1804, Sigma-Aldrich), and HA-tag (1:3000) (catalog no. sc-7392, Santa Cruz Biotechnology). Anti-mouse antibody conjugated with horseradish peroxidase (Thermo Fisher Scientific) was used as a secondary antibody (dilution 1:25,000). Enhanced chemiluminescence reagent, Lumigen ECL Ultra (TMA-6) (Lumigen, Southfield, MI, USA), was used to detect the antigen-antibody complexes.

To assess the functional activity of AAV-cTuberin-Myc, we cotransfected HEK293T cells, as previously described with minor modifications (60). Plasmids included HA-tagged p70S6 kinase (HA-p70S6K) (60), which is phosphorylated (pS6K T389) by mTORC1 and was used as a reporter for mTORC1 activation, and Flag-tagged hamartin (Flag-hamartin) (60), along with AAV-cTuberin-Myc. Full-length Flag-tagged tuberin (Flag-tuberin) (60) was used as a positive control, and AAV-GFP was used as a negative control. Transfections were carried out for 48 hours using Lipofectamine 2000. Cell lysates were prepared using radioimmunoprecipitation assay lysis buffer, and immunoblotting was performed, as described (60). Briefly, proteins were separated on a Novex 4 to 12% tris-glycine gradient gel (Life Technologies) followed by transfer to 0.45 M nitrocellulose membrane (Bio-Rad). Antibodies included M2 anti-Flag mouse monoclonal (Sigma-Aldrich), anti-hamartin and anti-pS6K (T389) (Cell Signaling Technology), anti-Myc mouse monoclonal (9E10, University of Iowa Hybridoma Bank), and anti-HA mouse monoclonal (HA.11, BioLegend/Covance, San Diego, CA, USA).

HEK293T cells were seeded in a six-well plate (500,000 cells per well) for 24 hours. The cells were then transfected with plasmid DNAs (AAV-null, AAV-GFP, and AAV-cTuberin) at 2.5 g/500,000 cells using Lipofectamine 2000 in Opti-MEM. Six hours later, transfection media was removed and replaced with DMEM (10% FBS and 1% PS), and cells were grown for 72 hours. Cells were washed twice in PBS, and proteins were extracted with protein extraction solution (PRO-PREP, iNtRON Biotechnology, Korea) for 20 min at 20C. The cell lysates were centrifuged at 14,000g at 4C. Protein concentrations of cell lysates were determined using a Bio-Rad protein assay kit. Equal amounts of protein (20 g) were separated using 4 to 12% precast NuPAGE bis-tris SDS-PAGE gels (Invitrogen) and transferred onto nitrocellulose membranes (Thermo Fisher Scientific Inc., Rockford, IL, USA). Membranes were blocked for 1 hour in tris-buffered saline (TBS) with 0.1% Tween 20 and 5% nonfat dry milk, followed by an overnight incubation with primary antibody to tuberin (#3990, 1:1000 dilution, Cell Signaling Technology diluted in the same buffer at 4C). On the next day, the membranes were washed with TBS with 0.1% Tween 20 (three times, 5 min each) followed by incubation with the appropriate horseradish peroxidaseconjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) for 1 hour at RT. An enhanced chemiluminescence kit (Pierce ECL Western Blotting Substrate, Thermo Fisher Scientific, Waltham, MA, USA) was used to detect protein expression. The optical density of each band was determined on Western blots scanned with a G:Box (Syngene, Cambridge, UK).

Brains and livers were flash-frozen to determine AAV genome biodistribution and expression of transgene mRNA. Genomic and AAV vector DNA was isolated using the Qiagen DNeasy Blood and Tissue Kit (catalog no. 69504) according to the manufacturers instruction. Total RNA was extracted using the Qiagen RNeasy Lipid Tissue Mini Kit (catalog no.74804) and Qiagen RNeasy Mini Kit (catalog no. 74104), with additional on-column deoxyribonuclease (DNase) digestion with the Qiagen RNase-free DNase set (catalog no. 79254) to ensure digestion of AAV-cTuberin genomes. Then, extracted RNA was converted to cDNA using the SuperScript VILO cDNA Synthesis Master Mix (Thermo Fisher Scientific, catalog no. 11754-050), according to the manufacturers protocol. A no-RT set of samples for the AAV-cTuberin group was included to confirm detection of cDNA derived from cTuberin mRNA and not contaminating AAV-cTuberin genomes. Using 50-ng genomic DNA as template, TaqMan qPCR was performed using custom TaqMan probe and primers to 3 end of cTuberin and c-Myc tag of the transgene expression cassette (forward primer, 5-AGCCAACACCAGGATACGAA-3; reverse primer, 5-GCTAATCAGCTTCTGCTCCAC-3; probe, 5-FAM- AGCGGCTGATCTCCTCCGTGG-MGB-3) (fig. S5). For each sample, a separate qPCR was performed using TaqMan probe and primer sets (Thermo Fisher Scientific, assay ID Mm01180221_g1, gene symbol Gm12070) that detects GAPDH genomic DNA, to ensure equal genomic DNA input for each sample. For each organ/tissue, the AAV vector genome copies for each sample were adjusted by taking into account any differences in GAPDH Ct values using the following formula: (AAV vector genome copies)/(2Ct). The Ct value was calculated as GAPDH Ct value (sample of interest) average GAPDH Ct value (sample with highest Ct value). Data were expressed as AAV vector genomes per 50 ng of genomic DNA.

Experimental research protocols were approved by the Institutional Animal Care and Use Committee for the Massachusetts General Hospital (MGH) following the guidelines of the National Institutes of Health for the Care and Use of Laboratory Animals. Experiments were performed on Tsc2c/c-floxed mice [Tsc2-floxed; (61)]. These mice have a normal, healthy life span. In response to Cre recombinase, the Tsc2c/c alleles are converted to null alleles. For vector injections, in the neonatal period (P0 to P3), pups were cryo-anesthetized and injected with 1 to 2 l of viral vector AAV1-CBA-Cre into each cerebral lateral ventricle with a glass micropipette (70 to 100 mm in diameter at the tip) using a Narishige IM300 microinjector at a rate of 2.4 psi/s (Narshige International, East Meadow, NY, USA). Mice were then placed on a warming pad and returned to their mothers after regaining normal color and full activity typical of newborn mice. At 3 weeks of age (P21), mice were anesthetized with isoflurane (Baxter Healthcare, Deerfield, IL, USA) inhalation [3.5% isoflurane in an induction chamber and then maintained anesthetized with 2 to 3% isoflurane and oxygen (1 to 2 liters/min) for the duration of the injection]. AAV vectors were injected retro-orbitally into the vasculature in a volume of 60 l (AAV1 or AAV9) of AAV-cTuberin-Myc using a 0.3-ml insulin syringe over less than 2 min (62) or noninjected.

Eighteen measurements of the body weight of the animals were recorded from P23 to P50. To assess motor coordination, animals were placed on an automated rotarod apparatus (Harvard Apparatus, Holliston, MA, USA) using accelerated velocities (4 to 64 rpm over 120 s). Each animal was assessed three times with 5-min rest intervals in each session for nine sessions 3 to 4 days apart. For each assessment, the time ended when the mouse fell off the treadmill or when the time interval elapsed. All functional assessment tests were performed blinded with respect to the mouse genotype.

HEK293T cells were seeded on coverslip coated with poly-d-lysine (25,000 cells per coverslip) for 24 hours. The cells were then transfected with plasmid DNAs (AAV-null, AAV-GFP, and AAV-cTuberin) at 250 ng/25,000 cells using Lipofectamine 2000 in Opti-MEM. Six hours later, transfection media was removed and replaced with DMEM (10% FBS and 1% PS), and cells were grown for 72 hours. The cells were fixed with 4% paraformaldehyde (PFA) (Boston BioProducts, Ashland, MA, USA) for 10 min at RT followed by permeabilization using 0.01% Triton X-100 (Sigma-Aldrich) in PBS (PBST) for 10 min at RT. The cells were then blocked with 3% bovine serum albumin (BSA) in PBST for 1 hour at RT, followed by overnight incubation with primary antibodies at 4C [primary antibodies: c-Myc (1:400 dilution; 9E10, Life Technologies)] and GFP (1:400 dilution; A11122, Life Technologies). The cells were then washed three times for 5 min in PBST and incubated with secondary antibody (goat anti-mouse 488, Jackson ImmunoResearch Laboratories) (1:400 dilution), for 1 hour at RT. The cells were washed three times for 5 min using PBST, mounted with Vectashield containing DAPI (Vector Laboratories, Burlingame, CA, USA). Note that, unfortunately, we were not able to detect cMyc in brain sections using several sources of c-Myc antibodies.

The mouse brains were harvested and subjected for standard histological processing as described (14). Five-micrometer sections were stained with hematoxylin and eosin. For frozen sections, adult mice were euthanized using ketamine/xylazine (100:10) (Akorn Inc., Lake Forest, IL, USA) followed by transcardiac perfusion with 1 PBS and 4% PFA in PBS overnight at 4C, cryo-protected with 25% sucrose in PBS, and embedded in optimal cutting temperature medium (catalog no. 4583, Tissue Teck). Brain sections were prepared in 10-mm coronal sections and were blocked in 10% BSA in 1 PBS + 0.3% Triton X-100 for 1 hour at RT and subsequently incubated with rabbit anti-Ki67 (1:1000; #ab15580, Abcam) or rabbit anti-phospho-S6 ribosomal protein (Ser235/236) (1:400; #2211, Cell Signaling Technology) overnight at 4C. Following three washes in 0.1 PBS, the sections were incubated with secondary antibody Alexa 555 (1:400; Jackson ImmunoResearch Laboratories) for 1 hour at RT. The sections were then washed three times with 1 PBS and mounted with DAPI mounting medium (Vectashield, #H-1200).

Whole mouse brain sections immunostained for pS6 (biological triplicates for each group, three coronal sections per mouse) were imaged using a Nikon Ti2 inverted microscope equipped with W1 Yokogawa Spinning disk scanhead with 50-m pinholes, a Toptica 4 laser launch, and an Andor Zyla 4.2 Plus sCMOS monochrome camera. The slides were mounted on a Nikon linear encoded motorized stage, and the mouse whole brain sections were scanned using Plan Apo 20/0.8 differential interference contrast (DIC) I objective lens objective lens at 405 nm for DAPI (100-ms exposure) and 561 nm for pS6 staining (100-ms exposure). Signals were collected using a Semrock di01-t405/488/568/647 dichroic mirror and Chroma 455/50 or 605/52 nm emission filters. Images were captured using NIS AR 5.02 acquisition software and 12-bit gain four-camera setting. A series of images were captured and stitched together using blending algorithm with 15% overlap among images.

Stitched images were analyzed in Fiji, an open source image processing package based on ImageJ (63). All images were thresholded within the 80 to 800 tonal range for both DAPI and pS6 staining. An outline was manually drawn to delineate choroid plexuses, ventricles, large empty spots, and meninges from the whole mouse brain section image. These regions are known to contain significant amounts of autofluorescence and therefore were excluded from downstream analysis. Within the confined region of interests (ROIs), we measured the area for the whole brain section. To identify pS6 puncta size and intensity within them, the thresholded pS6 channel image was converted into eight-bit image and further thresholded within the 70 to 255 tonal range. Subsequently, particle analysis was performed to identify any puncta within 5 to 200 m2 and 0.1 to 1.0 circularity parameters. The area for each punctum was measured. These puncta ROIs were then used to identify raw integrated density on original unthresholded 12-bit brain section images. Normalized pS6 puncta number of a brain section was calculated by dividing the total number of pS6 puncta by the brain section area.

All analyses of survival curves (Mantel-Cox test and log-rank test) were performed using GraphPad Prism software (GraphPad Software Inc., La Jolla, CA, USA). Flow cytometry analysis on c-Mycpositive cells was analyzed using unpaired t test. Western blot analysis on pS6 and tuberin expression levels in the mouse brain and PS6 puncta parameters were analyzed using unpaired t test. LDH cytotoxicity assay and Western blot analysis on relative levels of S6K T389 phosphorylation were analyzed using one-way analysis of variance (ANOVA) test. P values of <0.05 were considered statistically significant.

Acknowledgments: We thank S. McDavitt for editorial assistance, M. F. Lee (Medical Photographer in Pathology Media Laboratory, MGH) for imaging training, M. Zinter (Vector Core, MGH, Charlestown, MA, USA) for AAV vector packaging, and M. Whalen for the use of the rotarod. Funding: This work was supported by DOD Army Grant W81XWH-13-1-0076 (to X.O.B.), NIH R01GM115552 (to M.K.), NIH NIDCD R01DC017117-01A1 (to C.A.M.), NIH NINDS 1R61NS108232 (to X.O.B., C.A.M., and V.R.), and NIH NS109540 (to V.R.). We would like to acknowledge the MGH Vector Core for the production of viral vectors (supported by NIH/NINDS P30NS045776; B.A.T.) and P. M. Llopis, Microscopy Resources on the North Quad (MicRoN), Harvard Medical School, NRB-Longwood, MA, USA. Author contributions: X.O.B., S.P., D.Y., C.A.M., and M.K. conceived and designed the experiments. S.P., P.-S.C., R.L.B., X.Z., and S.K. performed the experiments. S.P., P.-S.C., K.-H.L., and S.K. analyzed the data. S.P., P.-S.C., D.Y., B.A.T., E.A.T., X.Z., R.L.B., R.T.B., D.J.K., A.S.-R., B.G., K.-H.L., V.R., M.K., C.A.M., and X.O.B. wrote and edited the paper. Competing interests: X.O.B., S.P., D.Y., and C.A.M. have filed a provisional patent application for the cTuberin construct. C.A.M. has a financial interest in Chameleon Biosciences Inc., a company developing an enveloped AAV vector platform technology for repeated dosing of systemic gene therapy. X.O.B., V.R., and C.A.M.s interests are reviewed and managed by MGH and Partners HealthCare in accordance with their competing interest policies. All other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Plasmid requests can be provided by MGH pending scientific review and a completed material transfer agreement. Requests for the plasmid should be submitted to C.A.M. at cmaguire{at}mgh.harvard.edu.

See the article here:
Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin - Science Advances

Chinese researchers discover new anti-aging gene therapy – The Star Online

BEIJING, Jan. 8 (Xinhua) -- For the first time, a genome-wide CRISPR-based screening technology has identified a new driver of cellular senescence. It can form part of new strategies to delay aging and prevent aging-associated diseases, Chinese researchers said.

By screening and identifying more than 100 genes responsible for the aging of human cells, the research team demonstrated that knocking out, or disabling, some genes by CRISPR can discourage the aging of human mesenchymal precursor cells (hMPCs). Among the genes that lead to senility, and KAT7 (a histone acetyltransferase), is one of the catalysts for aging.

Knocking out KAT7 has been proven effective in alleviating cellular senescence in the team's experiments, said Zhang Weiqi, a researcher at the Beijing Institute of Genomics under the Chinese Academy of Sciences. The scientists managed to reduce the proportion of the senescent cells in the livers of aged mice and prolonged the lifespan of physiologically aged mice and those with progeria.

The novel gene therapy, based on disabling a single gene or using KAT7 inhibitors, could extend mammal life. It could also slow down the aging of human liver cells. It suggests a massive potential for its application in translational medicine against human aging.

The study was published on Thursday in Science Translational Medicine online.

Originally posted here:
Chinese researchers discover new anti-aging gene therapy - The Star Online

Engineered stem cells that evade immune detection could boost cell therapy and I-O – FierceBiotech

Sana Biotechnology was founded in 2018 with a mission of solving some of the most difficult challenges in gene and cell therapy. Toward that end, the company is engineering hypoimmune stem cells that can evade detection and destruction by the immune system.

Now, some of Sanas founders, who are scientists at the University of California, San Francisco (UCSF), are describing how these engineered stem cells are able to shut down the immune systems natural killer (NK) cells. They believe their findings could enhance the development of implantable cell therapies, as well as cancer immunotherapies, they reported in the Journal of Experimental Medicine.

The ability to evade NK cells could enhance a range of experimental treatments, including implants of insulin-producing cells for patients with diabetes and cardiac cells to repair heart damage. These cells are typically rejected by the immune systema problem hypoimmune stem cells were designed to circumvent.

Virtual Clinical Trials Summit: The Premier Educational Event Focused on Decentralized Clinical Trials

In this virtual environment, we will look at current and future trends for ongoing virtual trials, diving into the many ways companies can improve patient engagement and trial behavior to enhance retention with a focus on emerging technology and harmonized data access across the clinical trial system.

The UCSF team used gene modification technology to design the cells so they avoid the immune responses that are either built into the bodys defense system or learned. The researchers achieved that feat by engineering the cells to express the protein CD47, which shuts down innate immune cells by activating signal regulatory protein alpha, or SIRP-alpha.

The researchers were surprised to discover that the hypoimmune stem cells were able to escape NK cells, even though NK cells were not previously known to express SIRP-alpha. Rather than studying lab-grown cell lines, they took cells directly from patients. Thats where they found SIRP-alpha.

Whats more, the UCSF team discovered that NK cells begin to express SIRP-alpha after they are activated by cytokines that are typically abundant in inflammatory states.

RELATED: Fierce Biotech's 2020 Fierce 15 | Sana Biotechnology

To further prove out the utility of engineered stem cells, the UCSF researchers implanted cells with rhesus macaque CD47 into monkeys. They documented the activation of SIRP-alpha in NK cells. Those NK cells did not kill the transplanted cells.

A similar technique could be used, but in reverse, to implant pig cardiac cells into people, the UCSF team argued. If human CD47 were engineered into pig heart cells, they could be implanted into people without risking rejection by NK cells, they suggested.

Sana made waves in 2018 when it raised a whopping $700 million in a single venture round from the likes of Arch Venture Partners, Flagship Pioneering and Bezos Expeditions. We believe that one of, if not the most, important thing happening in medicine over the next several decades is the ability to modulate genes, use cells as medicines, and engineer cells, said Steve Harr, president and CEO of Sana, at the time.

Sana did not provide materials or funding for the new study, but it is now developing the hypoimmune stem cell technology for clinical testing.

The UCSF team believes their findings could also boost cancer immunotherapy. The engineered cells could help combat checkpoints that allow tumors to evade immune detection, they said.

"Many tumors have low levels of self-identifying MHC-I protein and some compensate by overexpressing CD47 to keep immune cells at bay," said Lewis Lanier, Ph.D., director of the Parker Institute for Cancer Immunotherapy at the UCSF Helen Diller Family Comprehensive Cancer Center, in a statement. "This might be the sweet spot for antibody therapies that target CD47."

Original post:
Engineered stem cells that evade immune detection could boost cell therapy and I-O - FierceBiotech

article image Advances in gene therapy to help paralysis – Digital Journal

At the end of the study, it was found that the rats had regained their ability to use their paws and were able to pick up sugar cubes to feed themselves, according to The Independent. The gene therapy trial was conducted at Kings College London, U.K. The focus of the work was to repair damage to the spinal cords of the rodents. The spinal cords of the rats had been purposefully damaged to mimic the damaged sometimes suffered to humans after car crashes. Quoted by Sky News, Professor Elizabeth Bradbury, one of the principal researchers, stated: "In some of the tests we looked at such as gripping the rungs of a ladder the treatment worked within one to two weeks."Gene therapyGene therapy is an important aspects of medicine. The process is designed to introduce genetic material into cells. This is to compensate for abnormal genes or, alternatively, to produce a beneficial protein. In cases where a mutated gene causes a necessary protein to be faulty or to become missing, then gene therapy could work to introduce a normal copy of the gene and hence to restore the function of the protein.There are different variants of gene therapy, including plasmid DNA, where circular DNA molecules are genetically engineered so they carry therapeutic genes into human cells; viral vectors, where viruses are used to deliver genetic material into cells; bacterial vectors, where bacteria are modified and then deployed as vehicles to carry therapeutic genes into human tissues; and human gene editing technology, where genes are edited to disrupt harmful genes or to repair mutated genes. There is also patient-derived cellular gene therapy products. With this more recent process, cells are taken from the patient, modified and then returned to the patient.For some scientists, the next phase is germinal gene therapy. This has been achieved experimentally in animals but not in humans.Novel researchWith the new study, the process involved injecting a gene that produces an enzyme called chondroitinase, into the spinal cords of the rats. This enzyme functions to breaks down scar tissue, a tissue that is formed following damage to the spinal cord. he tissue prevents new connections from being formed between nerves. The enzyme is also being used in trials for vitreous attachment and for treating cancer.

See the rest here:
article image Advances in gene therapy to help paralysis - Digital Journal

Oncternal Therapeutics and Karolinska Institutet Establish Collaboration for Research and Development of ROR1-targeting CAR-T and CAR-NK Cell…

SAN DIEGO and STOCKHOLM, Sweden, Jan. 07, 2021 (GLOBE NEWSWIRE) -- Oncternal Therapeutics, Inc. (Nasdaq: ONCT), a clinical-stage biopharmaceutical company focused on the development of novel oncology therapies, today announced that it established a research and development collaboration with world-renowned Karolinska Institutet in Stockholm, Sweden, to advance novel ROR1-targeting cell therapies focused on CAR-T cells and CAR-NK (Natural Killer) cells from the laboratory into the clinic.

As part of the collaboration, IND-supporting preclinical studies will be performed in the Cell and Gene Therapy Group led by Evren Alici, M.D. Ph.D., within the NextGenNK Center, which is a Competence Center for the development of next-generation NK cell-based cancer immunotherapies. The Center is coordinated by Karolinska Institutet and collaborates with the Karolinska University Hospital as well as prominent national and international industrial partners. The Center was launched in 2020, and is jointly funded by Swedens innovation agency Vinnova, Karolinska Institutet, and the industrial partners.

Given that NK cells were discovered at Karolinska Institutet, we are excited to work together with industry partners to translate scientific advances into next-generation cell therapies that will benefit cancer patients, said Hans-Gustaf Ljunggren, M.D. Ph.D., Director of the NextGenNK competence center. We look forward to collaborating with the outstanding team at Oncternal to develop cutting-edge T and NK cell therapies targeting ROR1, which is a promising target in many oncology indications. It could be ideally suited for cell therapy.

We are honored to work together with the world-leading academic team at Karolinska Institutet to accelerate the development of our ROR1-targeting CAR-T cell immunotherapy program, said James Breitmeyer, M.D., Ph.D., Oncternals President and CEO. ROR1 has emerged as an important and underexplored target for cancer therapy, and we believe that ROR1-targeting CAR-T and CAR-NK therapies hold significant promise for patients with both hematologic cancers and solid tumors. We believe that utilizing the ROR1 binding domain of our clinical-stage antibody cirmtuzumab as a component of the CAR has the potential to give us a safety and efficacy advantage.

About Oncternal TherapeuticsOncternal Therapeutics is a clinical-stage biopharmaceutical company focused on the development of novel oncology therapies for the treatment of cancers with critical unmet medical need. Oncternal focuses drug development on promising yet untapped biological pathways implicated in cancer generation or progression. The clinical pipeline includes cirmtuzumab, an investigational monoclonal antibody designed to inhibit the ROR1 (Receptor-tyrosine kinase-like Orphan Receptor 1) pathway, a type I tyrosine kinase-like orphan receptor, that is being evaluated in a Phase 1/2 clinical trial in combination with ibrutinib for the treatment of patients with mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) and in an investigator-sponsored, Phase 1b clinical trial in combination with paclitaxel for the treatment of women with HER2-negative metastatic or locally advanced, unresectable breast cancer. The clinical pipeline also includes TK216,an investigational targeted small-molecule inhibitor of the ETS family of oncoproteins, that is being evaluated in a Phase 1 clinical trial for patients with Ewing sarcoma alone and in combination with vincristine chemotherapy. In addition, Oncternal has a program utilizing the cirmtuzumab antibody backbone to develop a CAR-T therapy that targets ROR1, which is currently in preclinical development as a potential treatment for hematologic cancers and solid tumors. More information is available at http://www.oncternal.com.

About KarolinskaInstitutetKarolinska Institutetis one of the worlds leading medical universities. Its vision is to advance knowledge about life and strive towards better health for all. Karolinska Institutet accounts for the single largest share of all academic medical research conducted in Sweden and offers the countrys broadest range of education in medicine and health sciences. The Nobel Assembly at Karolinska Institutet selects the Nobel laureates in Physiology or Medicine.

Forward-Looking InformationOncternal cautions you that statements included in this press release that are not a description of historical facts are forward-looking statements. In some cases, you can identify forward-looking statements by terms such as may, will, should, expect, plan, anticipate, could, intend, target, project, contemplates, believes, estimates, predicts, potential or continue or the negatives of these terms or other similar expressions. These statements are based on the companys current beliefs and expectations. Forward looking statements include statements regarding Oncternals beliefs, goals, intentions and expectations including, without limitation, Oncternals belief that ROR1-targeting CAR-T and CAR-NK therapies hold significant promise for patients with hematologic cancers and solid tumors; whether using ROR1 binding domain as a component of the CAR therapeutic candidate will provide a safety or activity advantage over other drugs or drug candidates; the potential that ROR1 could be an ideal target for cell therapy; and other statements regarding Oncternals development plans. Forward looking statements are subject to risks and uncertainties inherent in Oncternals business, which include, but are not limited to: the risk that the collaboration with Karolinska Institutet will not generate any intellectual property or otherwise identify drug candidates for development or provide Oncternal any benefits; the COVID-19 pandemic may disrupt Oncternals business operations or the business operations of Karolinska Institutet, increasing their respective costs; uncertainties associated with the clinical development and process for obtaining regulatory approval of product candidates, including potential delays in the commencement, enrollment and completion of clinical trials; Oncternals dependence on the success of cirmtuzumab, TK216 and its other product development programs; the risk that competitors may develop technologies or product candidates more rapidly than Oncternal, or that are more effective than Oncternals product candidates, which could significantly jeopardize Oncternals ability to develop and successfully commercialize its product candidates; Oncternals limited operating history and the fact that it has incurred significant losses, and expects to continue to incur significant losses for the foreseeable future; the risk that the company will have insufficient funds to finance its planned operations and may not be able to obtain sufficient additional financing when needed or at all as required to achieve its goals, which could force the company to delay, limit, reduce or terminate its product development programs or other operations; and other risks described in the companys prior press releases as well as in public periodic filings with the U.S. Securities & Exchange Commission. All forward-looking statements in this press release are current only as of the date hereof and, except as required by applicable law, Oncternal undertakes no obligation to revise or update any forward-looking statement, or to make any other forward-looking statements, whether as a result of new information, future events or otherwise. All forward-looking statements are qualified in their entirety by this cautionary statement. This caution is made under the safe harbor provisions of the Private Securities Litigation Reform Act of 1995.

Oncternal Contacts:

Company ContactRichard Vincent 858-434-1113rvincent@oncternal.com

Investor ContactCorey Davis, Ph.D. LifeSci Advisors 212-915-2577 cdavis@lifesciadvisors.com

Source: Oncternal Therapeutics, Inc.

Read more from the original source:
Oncternal Therapeutics and Karolinska Institutet Establish Collaboration for Research and Development of ROR1-targeting CAR-T and CAR-NK Cell...

AllStripes Announces Collaboration with Taysha Gene Therapies for SURF1-Associated Leigh Syndrome Program – Business Wire

SAN FRANCISCO--(BUSINESS WIRE)--AllStripes (formerly RDMD), a healthcare technology company dedicated to accelerating research for patients with rare diseases, today announced a multiyear collaboration with Taysha Gene Therapies, Inc. (NASDAQ: TSHA), a patient-centric gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the central nervous system in both rare and large patient populations.

The collaboration will focus on advancing the development of TSHA-104, an AAV9-based gene therapy in development for SURF1-associated Leigh syndrome, a deadly rare disease that primarily affects infants. AllStripes will use its platform, which gives patients control over their health histories, to unify otherwise scattered and fragmented SURF1-associated clinical data, allowing researchers to uncover new insights into the natural history and burden of disease and better inform the development of clinical studies.

This collaboration will allow us to leverage the AllStripes technology platform to optimize our therapeutic strategy and to potentially accelerate the development of TSHA-104 in SURF1-associated Leigh syndrome, said RA Session, II, president, founder and chief executive officer of Taysha. We remain committed to developing a safe and effective gene therapy for patients suffering with this devastating disease, and data generated from this unique collaboration could bring us one step closer to our goal.

Mutations in the SURF1 gene prevent mitochondria from producing enough energy for cells in the body to function normally, leading to Leigh syndrome, a severe and rare neurological disorder characterized by progressive loss of mental and movement abilities. SURF1-associated Leigh syndrome typically presents during infancy or early childhood, and often results in death within a few years. Approximately 10-15% of people with Leigh syndrome have a SURF1 mutation. There is currently no targeted treatment or cure for SURF1-associated Leigh syndrome.

Taysha has brought together accomplished and knowledgeable gene therapy and CNS disease experts to develop potentially transformative therapies, said Nancy Yu, co-founder and chief executive officer of AllStripes. With no available treatment for SURF1-associated Leigh syndrome, we are very pleased to empower patients and their families with an avenue to participate in research that will support the development path of TSHA-104. We are hopeful that this novel gene therapy will bring meaningful benefit to children and their families, and give them more time together.

TSHA-104 has been granted rare pediatric disease and orphan drug designations from the U.S. Food and Drug Administration (FDA) for the treatment of SURF1-associated Leigh syndrome. An Investigational New Drug (IND) application for TSHA-104 in SURF1-associated Leigh syndrome is expected to be submitted to the FDA in 2021.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

About AllStripes

AllStripes is a healthcare technology company dedicated to unlocking new treatments for people with rare diseases. AllStripes has developed a technology platform that generates FDA-ready evidence to accelerate rare disease research and drug development, as well as a patient application that empowers patients and families to securely participate in treatment research online and benefit from their own medical data. AllStripes was founded by CEO Nancy Yu and technology developer Onno Faber, following his diagnosis and journey with the rare disease neurofibromatosis type 2. The company is backed by Lux Capital, Spark Capital, Maveron Capital, Village Global, Garuda Ventures and a number of angel investors. For more information, visit http://www.allstripes.com.

Read the original post:
AllStripes Announces Collaboration with Taysha Gene Therapies for SURF1-Associated Leigh Syndrome Program - Business Wire

Regenerative Medicine Market to Reach Valuation US$ 23.7 Bn by 2027 – GlobeNewswire

OTTAWA, Jan. 08, 2021 (GLOBE NEWSWIRE) -- The global regenerative medicine market is representing impressive CAGR of 16.1% during the forecast period 2020 to 2027.

Regenerative medicine is the division of medicine that promotes methods to repair, regrow or replace injured or diseased tissues, organs or cells. Regenerative medicine comprises of the formation and use of remedial stem cells, manufacturing of artificial organs, and tissue engineering. The combinations of tissue engineering, cell and gene therapies can strengthen the natural healing procedure in the places it is desired most, or occupy the role of a permanently injured organ. Regenerative medicine is a rather new field that connects experts in chemistry, biology, engineering, computer science, robotics, medicine, genetics and other domains to find explanations to some of the most interesting medical problems confronted by humankind.

Get the Sample Pages of Report for More Understanding@ https://www.precedenceresearch.com/sample/1176

Growth Factors:

Factors such as increasing prevalence of chronic disorders and genetic disorders, increasing popularity of stem cells, increasing number of trauma emergencies is driving the growth of regenerative medicine market. An illness or disorder that usually persists for 3 months or longer and might get worse over a period is termed as chronic disorder. Chronic diseases mostly occur in the elderly people and can typically be controlled but not repaired. The most prevalent types of chronic ailments are heart disease, arthritis, cancer, diabetes, and stroke. Cardiovascular disorders are the biggest cause of deaths worldwide. As per the WHO data, deaths due to cardiovascular disorders represent almost 31% of the deaths globally. Almost 85% of these demises are due to stroke and heart attack. Diabetes is another most prevalent chronic ailment that affects millions of people globally. According to International Diabetes Federation (IDF), around 463 million adults (age group: 20-79 years) are battling with diabetes and by the year 2045 the number will rise to a staggering 700 million. Furthermore, approximately 75% of all health care expenses are owed to chronic ailments. Four out of the five most costly health conditions are chronic disorders such as cancer, heart disease, pulmonary conditions, and mental disorders. Regenerative medicine approaches such as stem cell therapy can cure the chronic ailments such as diabetes and arthritis, which otherwise require lifetime of medications.

The role of regenerative medicine in post trauma recovery is constantly evolving as more and more research is showing positive results. The use of regenerative medicine can be a landmark moment in the history of healthcare that will transform the treatment of chronic ailments and trauma related conditions. Thus, the high incidence of chronic ailments is driving the growth of regenerative medicine market.

View Full Report with Complete ToC@ https://www.precedenceresearch.com/regenerative-medicine-market

Regional Analysis:

The report covers data for North America, Europe, Asia Pacific, Latin America, and Middle East and Africa. In 2019, North America dominated the global market with a market share of more than 45%. U.S. represented the highest share in the North American region primarily due to constant activity in the field of drug discovery and tissue engineering. Moreover, early adoption of latest healthcare technologies also contributed to the high market share of the United States.

Europe was the second important market chiefly due to favorable reimbursement scenario and presence of latest healthcare infrastructure. The presence of skilled researchers in the European region is also expected to boost the demand for regenerative medicine market in the near future. Asia Pacific is anticipated to grow at the maximum CAGR of around18% in the forecast period due to high incidence of trauma cases and chronic disorders. Latin America and the African and Middle Eastern region will display noticeable growth.

Report Highlights:

Get Customization on this Research Report@ https://www.precedenceresearch.com/customization/1176

Key Market Players and Strategies:

The major companies operating in the worldwide regenerative medicine are Integra Life Sciences Corporation, Aspect Biosystems, Amgen, Inc., Medtronic plc, AstraZeneca, Novartis AG, Smith & Nephew plc, MiMedx Group, Shenzhen SibionoGeneTech Co., Ltd., and Baxteramong others.

High investment in the research and development along with acquisition, mergers, and collaborations are the key strategies undertaken by companies operating in the global regenerative medicine market. Recently Fuse Medical, Inc., an evolving manufacturer and supplier of innovative medical devices for the spine and orthopedic marketplace, declared the launch of FuseChoice Plus and FuseChoice Umbilical and Amniotic Membranes, and FuseChoice Plus Amniotic Joint Cushioning Fluid, the newest additions to a wide-ranging line of biologics product offerings.

Market Segmentation

By Product

By Application

By Geography

Buy this Premium Research Report@ https://www.precedenceresearch.com/checkout/1176

You can place an order or ask any questions, please feel free to contact at sales@precedenceresearch.com | +1 774 402 6168

About Us

Precedence Research is a worldwide market research and consulting organization. We give unmatched nature of offering to our customers present all around the globe across industry verticals. Precedence Research has expertise in giving deep-dive market insight along with market intelligence to our customers spread crosswise over various undertakings. We are obliged to serve our different client base present over the enterprises of medicinal services, healthcare, innovation, next-gen technologies, semi-conductors, chemicals, automotive, and aerospace & defense, among different ventures present globally.

For Latest Update Follow Us:

https://www.linkedin.com/company/precedence-research/

https://www.facebook.com/precedenceresearch/

See the original post:
Regenerative Medicine Market to Reach Valuation US$ 23.7 Bn by 2027 - GlobeNewswire

Archives