Page 86«..1020..85868788..100..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Scientists create artificial bone marrow that helps stem cells thrive

Blood stem cells can only thrive in the bone marrow, from which they turn into different kinds of blood cells that are needed in the body, including red and white blood cells, which transport oxygen and fight disease. For years, researchers around the world have been trying to find a way to replicate the bone marrow so that they are able to harvest blood stem cells in the laboratory because stem cells cease to be what they are once they are removed from the body.

Now researchers at Karlsruhe Institute of Technology, the Max Planck Institute for Intelligent Systems and the University of Tbingen say that they have designed porous material in which blood stem cells can multiply for as long as four days.

A bath sponge with cells inside

Natural bone marrow is a very complex structure, making it difficult to imitate. Its three-dimensional porous architecture resembles a bath sponge and contains bridging proteins that the stem cells can dock on.

Precisely-sized pores host many cell types that interact with each other and produce chemical messages, allowing the blood stem cells to multiply.

Researchers put a porous polymer into a nutrient solution to cultivate stem cells inside

"We assume that stem cells [do] not only notice the chemical composition of their surroundings. They can probably also feel if their environment is soft or hard, rough or smooth," Cornelia Lee-Thedieck, a researcher at the Karlsruhe Institute of Technology tells DW.

She and her colleagues put everything together that researchers already know about bone marrow and their preferred environment. They replicated the sponge-like structure of bone marrow using a simple polymer. They linked proteins to it and added other cell types.

Treating leukemia

The researchers would like to see the artificial bone marrow help cure leukemia one day. Since new, healthy blood stem cells are needed to treat leukemia, stem cells could be harvested in the lab and transplanted into patients. Currently, the stem cells are isolated from the blood or the bone marrow of a suitable donor.

Read more from the original source:
Scientists create artificial bone marrow that helps stem cells thrive

Researchers develop artificial bone marrow; May be used to reproduce hematopoietic stem cells

Jan. 10, 2014 Artificial bone marrow may be used to reproduce hematopoietic stem cells. A prototype has now been developed by scientists of KIT, the Max Planck Institute for Intelligent Systems, Stuttgart, and Tbingen University. The porous structure possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells at the laboratory. This might facilitate the treatment of leukemia in a few years.

The researchers are now presenting their work in the journal Biomaterials.

Blood cells, such as erythrocytes or immune cells, are continuously replaced by new ones supplied by hematopoietic stem cells located in a specialized niche of the bone marrow. Hematopoietic stem cells can be used for the treatment of blood diseases, such as leukemia. The affected cells of the patient are replaced by healthy hematopoietic stem cells of an eligible donor.

However, not every leukemia patient can be treated in this way, as the number of appropriate transplants is not sufficient. This problem might be solved by the reproduction of hematopoietic stem cells. So far, this has been impossible, as these cells retain their stem cell properties in their natural environment only, i.e. in their niche of the bone marrow. Outside of this niche, the properties are modified. Stem cell reproduction therefore requires an environment similar to the stem cell niche in the bone marrow.

The stem cell niche is a complex microscopic environment having specific properties. The relevant areas in the bone are highly porous and similar to a sponge. This three-dimensional environment does not only accommodate bone cells and hematopoietic stem cells but also various other cell types with which signal substances are exchanged. Moreover, the space among the cells has a matrix that ensures a certain stability and provides the cells with points to anchor. In the stem cell niche, the cells are also supplied with nutrients and oxygen.

The Young Investigators Group "Stem Cell-Material Interactions" headed by Dr. Cornelia Lee-Thedieck consists of scientists of the KIT Institute of Functional Interfaces (IFG), the Max Planck Institute for Intelligent Systems, Stuttgart, and Tbingen University. It artificially reproduced major properties of natural bone marrow at the laboratory. With the help of synthetic polymers, the scientists created a porous structure simulating the sponge-like structure of the bone in the area of the blood-forming bone marrow. In addition, they added protein building blocks similar to those existing in the matrix of the bone marrow for the cells to anchor. The scientists also inserted other cell types from the stem cell niche into the structure in order to ensure substance exchange.

Then, the researchers introduced hematopoietic stem cells isolated from cord blood into this artificial bone marrow. Subsequent breeding of the cells took several days. Analyses with various methods revealed that the cells really reproduce in the newly developed artificial bone marrow. Compared to standard cell cultivation methods, more stem cells retain their specific properties in the artificial bone marrow.

The newly developed artificial bone marrow that possesses major properties of natural bone marrow can now be used by the scientists to study the interactions between materials and stem cells in detail at the laboratory. This will help to find out how the behavior of stem cells can be influenced and controlled by synthetic materials. This knowledge might contribute to producing an artificial stem cell niche for the specific reproduction of stem cells and the treatment of leukemia in ten to fifteen years from now.

Read the original here:
Researchers develop artificial bone marrow; May be used to reproduce hematopoietic stem cells

Artificial bone marrow development brings leukemia treatment closer to reality

Washington, Jan. 11 : Researchers have developed a prototype of artificial bone marrow that may be used to reproduce hematopoietic stem cells.

The porous structure developed by the scientists of KIT, the Max Planck Institute for Intelligent Systems, Stuttgart, and Tubingen University, possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells at the laboratory.

This might facilitate the treatment of leukemia in a few years.

Blood cells, such as erythrocytes or immune cells, are continuously replaced by new ones supplied by hematopoietic stem cells located in a specialized niche of the bone marrow.

Hematopoietic stem cells can be used for the treatment of blood diseases, such as leukemia. The affected cells of the patient are replaced by healthy hematopoietic stem cells of an eligible donor.

However, not every leukemia patient can be treated in this way, as the number of appropriate transplants is not sufficient. This problem might be solved by the reproduction of hematopoietic stem cells.

The stem cell niche is a complex microscopic environment having specific properties. The relevant areas in the bone are highly porous and similar to a sponge.

This three-dimensional environment does not only accommodate bone cells and hematopoietic stem cells but also various other cell types with which signal substances are exchanged. Moreover, the space among the cells has a matrix that ensures certain stability and provides the cells with points to anchor. In the stem cell niche, the cells are also supplied with nutrients and oxygen.

The newly developed artificial bone marrow that possesses major properties of natural bone marrow can now be used by the scientists to study the interactions between materials and stem cells in detail at the laboratory.

The study was published in the Biomaterials journal.

Continued here:
Artificial bone marrow development brings leukemia treatment closer to reality

Bone marrow stem cells could defeat drug-resistant TB

PATIENTS with potentially fatal superbug forms of tuberculosis (TB) could in future be treated using stem cells taken from their own bone marrow, according to the results of an early-stage trial of the technique. The finding, made by British and Swedish scientists, could pave the way for the development of a new treatment for the estimated 450,000 people worldwide who have multi drug-resistant (MDR) or extensively drug-resistant (XDR) TB. In a study in The Lancet Respiratory Medicine journal on Thursday, researchers said more than half of 30 drug-resistant TB patients treated with a transfusion of their own bone marrow stem cells were cured of the disease after six months. The results ... show that the current challenges and difficulties of treating MDR-TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily, said TB expert Alimuddin Zumla at University College London, who co-led the study. TB, which infects the lungs and can spread from one person to another through coughing and sneezing, is often falsely thought of as a disease of the past. In recent years, drug-resistant strains of the disease have spread around the world, batting off standard antibiotic drug treatments. The World Health Organization (WHO) estimates that in Eastern Europe, Asia and South Africa 450,000 people have MDR-TB, and around half of these will fail to respond to existing treatments. TB bacteria trigger an inflammatory response in immune cells and surrounding lung tissue that can cause immune dysfunction and tissue damage. Bone-marrow stem cells are known to migrate to areas of lung injury and inflammation and repair damaged tissue. Since they also modify the bodys immune response and could boost the clearance of TB bacteria, Zumla and his colleague, Markus Maeurer from Stockholms Karolinska University Hospital, wanted to test them in patients with the disease. In a phase 1 trial, 30 patients with either MDR or XDR TB aged between 21 and 65 who were receiving standard TB antibiotic treatment were also given an infusion of around 10 million of their own stem cells. The cells were obtained from the patients own bone marrow, then grown into large numbers in the laboratory before being re-transfused into the same patient, the researchers explained. During six months of follow-up, the researchers found that the infusion treatment was generally safe and well tolerated, with no serious side effects recorded. The most common non-serious side effects were high cholesterol levels, nausea, low white blood cell counts and diarrhea. Although a phase 1 trial is primarily designed only to test a treatments safety, the scientists said further analyzes of the results showed that 16 patients treated with stem cells were deemed cured at 18 months compared with only five of 30 TB patients not treated with stem cells. Maeurer stressed that further trials with more patients and longer follow-up were needed to better establish how safe and effective the stem cell treatment was. But if future tests were successful, he said, it could become a viable extra new treatment for patients with MDR-TB who do not respond to conventional drug treatment or those with severe lung damage.

See the original post here:
Bone marrow stem cells could defeat drug-resistant TB

Artificial Bone Marrow Created By German Scientists, Could Be Used To Treat Leukemia Someday

Bone marrow nurtures both red blood cells and white blood cells, with healthy people producing more than 500 billion red- and-white blood cells every day. But when bone marrow is damaged by a disease like leukemia, or by radiation or chemotherapy drugs, the supply of blood cells drops, leaving a person at risk for fatal infections.

Leukemia and other types of bone-marrow diseases are often treated by transplanting healthy hematopoietic stem cells, which can develop into various kinds of blood cells, from another person. The donor cells can be taken from another persons bone marrow or bloodstream, or from preserved umbilical cords and placentas. But finding a matching donor can be difficult, and the amount of stem cells harvested from the donor may not always be enough to meet the needs of the patient.

One thing that doctors want to be able to do is to find a way to cultivate a bumper crop of stem cells. But blood stem cells thrive in a very specific environment inside bone marrow. And bone marrow has a very complex architecture, like a tiny sponge that contains many sizes of pores, and special docking proteins for stem cells.

"We assume that stem cells [do] not only notice the chemical composition of their surroundings., Karlsruhe Institute of Technology researcher and co-author of the study Cornelia Lee-Thedieck told German broadcaster Deutsche Welle. They can probably also feel if their environment is soft or hard, rough or smooth.

Lee-Thedieck and colleagues used a simple, porous polymer to mimic a sponge-like structure for the base of their artificial bone marrow. They added proteins similar to ones found in bone marrow to act as docking points for the blood stem cells, and added other cells to help ferry necessary molecular messages and materials back and forth.

When hematopoietic stem cells from cord blood were introduced to the artificial environment, they thrived much better than in standard 2-dimensional cell-culture systems. But the authors guess that it will be at least another 15 years before most patients will be able to benefit from this invention.

"Producing artificial bone marrow for culturing and multiplying blood stem cells is a potentially interesting application," Martin Bornhuser, a researcher from the University Hospital Dresden unaffiliated with the current paper, told DW. "It would make it possible to generate a sufficient number of stem cells from a small amount to transplant into an adult patient.

SOURCE: Raic et al. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35: 929-940, January 2014.

Read more from the original source:
Artificial Bone Marrow Created By German Scientists, Could Be Used To Treat Leukemia Someday

Could Stem Cells Cure Drug-Resistant Tuberculosis?

Posted: Thursday, January 9, 2014, 9:00 AM

THURSDAY, Jan. 9, 2014 (HealthDay News) -- A patient's own bone marrow stem cells might someday be used to treat multidrug-resistant tuberculosis, a new study suggests.

The phase 1 study to assess the safety of the treatment included 30 patients, aged 21 to 65, with multidrug-resistant tuberculosis or the even more dangerous extensively drug-resistant tuberculosis. They received standard tuberculosis antibiotic treatment and an infusion of about 10 million of their own bone marrow stem cells.

A comparison group of 30 patients with either type of tuberculosis received standard treatment only.

After 18 months, 16 patients treated with bone marrow stem cells were cured, compared with five patients in the standard group, the study authors said. The most common side effects in the stem cell group were high cholesterol (14 patients), nausea (11), and lymphopenia (low white blood cell count) or diarrhea (10).

There were no serious side effects, according to the study, which was published Jan. 8 in The Lancet Respiratory Medicine.

Conventional treatment for multidrug-resistant tuberculosis uses a combination of antibiotics that can cause harmful side effects in patients, study leader Markus Maeurer, a professor at Karolinska University Hospital in Sweden, said in a journal news release.

"Our new approach, using the patients' own bone marrow stromal cells, is safe and could help overcome the body's excessive inflammatory response, repair and regenerate inflammation-induced damage to lung tissue, and lead to improved cure rates," Maeurer said in the news release.

Longer follow-up with more patients is needed to confirm the safety and effectiveness of the stem cell therapy, he said.

See the original post:
Could Stem Cells Cure Drug-Resistant Tuberculosis?

Bone marrow transfusion could cure drug resistant tuberculosis

LONDON (Reuters) - Patients with potentially fatal "superbug" forms of tuberculosis (TB) could in future be treated using stem cells taken from their own bone marrow, according to the results of an early-stage trial of the technique.

The finding, made by British and Swedish scientists, could pave the way for the development of a new treatment for the estimated 450,000 people worldwide who have multi drug resistant (MDR) or extensively drug-resistant (XDR) TB.

In a study in The Lancet Respiratory Medicine journal on Thursday, researchers said more than half of 30 drug-resistant TB patients treated with a transfusion of their own bone marrow stem cells were cured of the disease after six months.

"The results ... show that the current challenges and difficulties of treating MDR-TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily," said TB expert Alimuddin Zumla at University College London, who co-led the study.

TB, which infects the lungs and can spread from one person to another through coughing and sneezing, is often falsely thought of as a disease of the past.

In recent years, drug-resistant strains of the disease have spread around the world, batting off standard antibiotic drug treatments.

The World Health Organization (WHO) estimates that in Eastern Europe, Asia and South Africa 450,000 people have MDR-TB, and around half of these will fail to respond to existing treatments.

TB bacteria trigger an inflammatory response in immune cells and surrounding lung tissue that can cause immune dysfunction and tissue damage.

Bone-marrow stem cells are known to migrate to areas of lung injury and inflammation and repair damaged tissue. Since they also modify the body's immune response and could boost the clearance of TB bacteria, Zumla and his colleague, Markus Maeurer from Stockholm's Karolinska University Hospital, wanted to test them in patients with the disease.

In a phase 1 trial, 30 patients with either MDR or XDR TB aged between 21 and 65 who were receiving standard TB antibiotic treatment were also given an infusion of around 10 million of their own stem cells.

Follow this link:
Bone marrow transfusion could cure drug resistant tuberculosis

Bone marrow stem cells could defeat drug-resistant TB, trial study finds

LONDON - Patients with potentially fatal "superbug" forms of tuberculosis (TB) could in future be treated using stem cells taken from their own bone marrow, according to the results of an early-stage trial of the technique.

The finding, made by British and Swedish scientists, could pave the way for the development of a new treatment for the estimated 450,000 people worldwide who have multi drug-resistant (MDR) or extensively drug-resistant (XDR) TB.

In a study in The Lancet Respiratory Medicine journal on Thursday, researchers said more than half of 30 drug-resistant TB patients treated with a transfusion of their own bone marrow stem cells were cured of the disease after six months.

"The results ... show that the current challenges and difficulties of treating MDR-TB are not insurmountable, and they bring a unique opportunity with a fresh solution to treat hundreds of thousands of people who die unnecessarily," said TB expert Alimuddin Zumla at University College London, who co-led the study.

TB, which infects the lungs and can spread from one person to another through coughing and sneezing, is often falsely thought of as a disease of the past.

See more here:
Bone marrow stem cells could defeat drug-resistant TB, trial study finds

Researchers study stem-cell therapy for feline kidney disease

20 hours ago by Jennifer Dimas

Chronic kidney disease in older cats is the focus of a fifth clinical trial under way at Colorado State University's James L. Voss Veterinary Teaching Hospital, where veterinarians are exploring novel stem-cell therapy that could, for the first time, hold promise for treating one of the most perplexing feline diseases.

CSU researchers seek area cats with the disease to participate in the clinical trial; cats with concurrent diseases are not eligible. For information about the trial and to determine eligibility for enrollment, visit col.st/1lB4KHf .

Studies suggest that about 50 percent of cats older than 10 suffer from chronic kidney disease.

Although the disease is very common, risk factors are poorly understood and it is tough to treat: Chronic kidney disease is considered irreversible, and treatment typically centers on slowing progression of the disease through supportive care, such as dietary changes, injected fluids and blood-pressure medication.

Yet in a pilot study last year, CSU veterinarians determined that stem-cell therapy could provide a new treatment option for cats. After preliminary results, the research team is further investigating the ability of stem cells to repair damaged kidneys.

Veterinarians are intrigued by use of stem-cell therapy for chronic kidney failure in cats because earlier studies demonstrated that the approach could decrease inflammation, promote regeneration of damaged cells, slow loss of protein through urine and improve kidney function, said Dr. Jessica Quimby, a veterinarian leading the CSU research.

"In our pilot study last year, in which stem cells were injected intravenously, we found stem-cell therapy to be safe, and we saw evidence of improvement among some of the cats enrolled in the trial," Quimby said. "In this study, we will further explore stem-cell therapy with the new approach of injecting the cells close to the damaged organs. We hope this proximity could yield even better results."

For the CSU study, the stem cells used have been cultivated from the fat of young, healthy cats; donor animals are not harmed.

The study will track cats with chronic kidney disease for about two months, with a variety of diagnostic tests conducted before and after stem-cell treatment to analyze kidney function.

View post:
Researchers study stem-cell therapy for feline kidney disease

Dallas Area Sports Community Coming Together for Bone Marrow Patient

The Dallas area sports community is coming together for Briggs Berry, set to have a bone marrow transplant on Jan. 20. A bone marrow transplant is a process in which damaged bone marrow is replaced by healthy bone marrow stem cells.

First to spread the word was Ben Rogers of The Ben and Skin Show on 105.3 The Fan. He told others about his friend Berry via Twitter.

Since Rogers' tweet, the outpour from local sports figures has been great. Dez Bryant followed Berry on Twitter and voiced his support for the 17-year-old.

Former Texas Rangers pitcher C.J. Wilson also saw Rogers' tweet and gave some kind words to Berry via Twitter.

And it started to spread from there. More Dallas Cowboys and current Rangers players found out about Berry and his story through Rogers. Rangers' pitcher Derek Holland has plansto play Xbox or PlayStation with Berry. That doesn't sound bad at all.

Cowboys star DeMarcus Ware shared a picture of a Jeep with Berry on Twitter.

Maybe a future present from Ware? Berry, however, tweeted that he's getting his own car fixed up as a "Make-A-Wish."

Dallas Mavericks superstar Dirk Nowitzki tweeted his support for Briggs to over 1 million followers.

UPDATE: Thursday, Jan. 9, at 4:21 p.m. ET

Mavericks' owner Mark Cuban invited Berry to sit with hime at a Mavs game.

Read the rest here:
Dallas Area Sports Community Coming Together for Bone Marrow Patient

Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery

Sugar Land orthopedic surgeon Dr. Mark Maffet of Houston Methodist Orthopedics & Sports Medicine is the first orthopedic surgeon in Fort Bend County who is using stem cells to help accelerate healing and recovery after surgery.

Stem cells hold a great deal of promise in orthopedics, Dr. Maffet said. Right now, their use is cutting edge but I believe they will ultimately play a huge role in making surgical repair more successful.

Stem cells are found in bone marrow, blood and various types of tissue. Because they can differentiate into specialized cells and continuously divide, stem cells act as a repair system for the body and can replenish damaged tissue.

Dr. Maffet used stem cells to surgically repair Amy Statlers ACL tear. ACL tears are a common sports injury that often requires reconstruction of the knee.Statleris an active woman who enjoys playing softball and exercising and wanted to get back to her active lifestyle quickly.

Dr. Maffet made me feel comfortable by explaining the process and answering all of my questions about the surgery;it was important for me to have a quick recovery,"Statlerexplained."I am currently in physical therapy and am expected to be back on the softball field for our first practice in February. I am so happy with my recovery thus far and I feel better every day.

During ACL reconstruction surgery, orthopedic surgeons take a tendon from the knee or hamstring (either a patient's own or from a donor) and use it to replace the damaged ACL ligament. Dr. Maffet has begun using stem cells to help the body accept the new tendon and to speed the healing process.

The new ACL graft is soaked in a concentrate full of stem cells and other growth factors prior to fixation, he explained. In other cases, we can simply suture the torn ligament and inject the stem cell concentrate into the affected area.

Dr. Maffet is also using stem cells in rotator cuff repairs of the shoulder. By creating vascular channels down into the bone at the repair site, his goal is to trigger the stem cells located there and improve tendon healing. Other physicians throughout Houston Methodist, including Dr. David Lintner in the Medical Center, are also offering this procedure.

In time, I believe we will be able to show that the use of stem cells in orthopedic applications is making a difference in the lives of our patients, he said. The potential to repair and regenerate damaged tissue or bone, using the patients own stem cells, will give us a fantastic new tool in treating sports injuries and other orthopedic issues. The ability to make our patients recoveries easier and more successful is exciting.

For more information about Houston Methodist Orthopedics & Sports Medicine located in Sugar Land, visit methodistorthopedics.com. For an appointment, call 281.690.4678 or emailmostappts@houstonmethodist.org.

Read the original post:
Sugar Land surgeon becomes first in Fort Bend to use stem cells in orthopedic surgery

Klerksdorp boy seeks bone marrow donor

One North West family is desperately seeking a bone marrow donor for their 8-year-old son as he battles a life-threatening blood disorder.

The odds of finding a donor for Rebaone are one in 100,000 (file photo)

In April 2013, 8-year-old Rebaone Nkuyagae from Klerksdorp was diagnosed with aplastic anaemia, a blood disorder in which a patients bone marrow does not produce enough new blood cells.

Unfortunately, there is no hospital that can treat Rebaone in Klerksdorp, so he and his family have to travel 170 km to the Donald Gordon Medical Centre in Johannesburg every second week for treatment.

Rebaone and his mother, Lerato, usually make the trip by bus with support from the non-profit Wings and Wishes, which provides financial support to transport critically-ill children between their homes and care facilities.

For Lerato, dealing with Rebaones illness means trying to keep him safe at home and on the playground. With a condition that makes it difficult for his body to stop the bleeding if he gets cut, Rebaone has had to stay off the sports field.

While it had been difficult, Lerato said she stays positive.

I have to ensure he does not play contact sports as he shouldnt get any cuts or be pinched, Lerato told OurHealth. Its hard for me, but I will always stay positive.

Rebaone is receiving platelets, which help blood clot, and blood transfusions regularly, but his doctors have informed Lerato that he will need a bone marrow transplant in the near future.

His family is desperately hoping to find a suitable donor but the odds of finding a match are one in 100,000. A donor is most likely to be found within a patients ethnic group, as the markers that are tested when searching for a match are genetically inherited

See original here:
Klerksdorp boy seeks bone marrow donor

Biomaterials Get Stem Cells to Commit to a Bony Future

Contact Information

Available for logged-in reporters only

Newswise With the help of biomimetic matrices, a research team led by bioengineers at the University of California, San Diego has discovered exactly how calcium phosphate can coax stem cells to become bone-building cells. This work is published in the Proceedings of the National Academy of Sciences the week of Jan. 6, 2014.

UC San Diego Jacobs School of Engineering professor Shyni Varghese and colleagues have traced a surprising pathway from these biomaterials to bone formation. Their findings will help them refine the design of biomaterials that encourage stem cells to give rise to new bone. The researchers say their study may also point out new targets for treating bone defects and bone metabolic disorders such as major fractures and osteoporosis.

The materials are built to mimic the bodys own cellular niches, in which undifferentiated or blank-slate stem cells from bone marrow transform into specific bone-forming cells. We knew for years that calcium phosphate-based materials promote osteogenic differentiation of stem cells, but none of us knew why, Varghese said.

As engineers, we want to build something that is reproducible and consistent, she explained, so we need to know how building factors contribute to this end.

The researchers found that when phosphate ions gradually dissolve from these materials, they are taken up by the stem cells and used for the production of ATP, a key metabolic molecule. An ATP metabolic product called adenosine then signals the stem cells to commit to becoming bone-forming cells.

Varghese said it was a surprise to her team that the biomaterials were connected to metabolic pathways. And we didnt know how these metabolic pathways could influence stem cells commitment to bone formation.

While the PNAS findings only apply to bone building, Varghese and her students at UC San Diego are working on a variety of projects to understand how stem cells thrive and differentiate into a variety of cell types. With this information, they hope to design biomaterials that can be used to help transform stem cells into tissues that may someday replace diseased or degenerated bone, muscle, or blood vessels.

Stem cell research may seem like an unusual endeavor for engineers, but tissue construction and the development of biomaterials have become one more type of building in the engineering repertoire, Varghese said.

Original post:
Biomaterials Get Stem Cells to Commit to a Bony Future

West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

Orange County, CA (PRWEB) January 06, 2014

Top West Coast Stem Cell Clinic, TeleHealth, is now offering stem cell injections for ligament sprains. This includes injuries of the ankle, knee, wrist and other extremity joints. Board Certified doctors administer the outpatient injections which can help patients heal quicker than conventional treatments. For more information and scheduling, call (888) 828-4575.

In adults, ligament sprains can take months to heal due to limited blood supply and healing potential. This can keep athletes off the field and inhibit the ability of even recreational athletes to walk and run without pain.

Conventional pain relief treatments are able to provide pain relief. This may include steroid injections or anti-inflammatories by mouth. However, these treatments do not alter the course of the healing.

With the advent of regenerative medicine treatments, the potential exists for quicker healing. These treatments include fat or bone marrow derived stem cell injections along with platelet rich plasma therapy.

Platelet rich plasma therapy, known as PRP therapy, involves a simple blood draw from the patient. The blood is spun in a centrifuge, which concentrates the platelets and growth factors. These are then injected into the area of ligament injury.

With the fat or bone marrow derived stem cells, the material is harvested in an outpatient procedure from the patient. It is processed immediately to concentrate the patient's stem cells and then injected right away into the injured region.

Small published studies have shown the treatment to be very effective for healing the injuries faster than with conventional treatments. There is low risk involved, the treatments are outpatient and performed by highly experienced Board Certified doctors who have over twenty years combined experience in regenerative medicine treatments.

Along with the injections for ligament injury, stem cell injections are also offered for degenerative arthritis, rotator cuff injury, back and neck pain, achilles tendonitis, plantar fasciitis and more.

TeleHealth has two offices for treatment, one in Orange and a second in Upland, CA. Call (888) 828-4575 for more information and scheduling.

Original post:
West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

German scientists develop artificial bone marrow

Berlin, Jan 3 : German scientists have developed a prototype of artificial bone marrow, which can simplify the treatment of leukemia in a few years, Karlsruhe Institute of Technology (KIT) announced Friday.

Scientists from KIT, Max Planck Institute for Intelligent Systems in Stuttgart and the University of Tubingen have artificially recreated basic properties of the natural bone marrow in a laboratory, Xinhua reported.

The haematopoietic stem cells provide replenishment of red blood cells or immune cells, so they can be used for the treatment of leukemia, in a way that the diseased cells of the patient are replaced with healthy haematopoietic stem cells from a matched donor.

However, at present not every leukemia patient can find a matchable donor, so a simple solution to this problem would be to increase hematopoietic stem cells.

As the hematopoietic stem cells retain their stem cell properties only in their natural environment, the scientists need to create an environment that resembles the stem cell niche in the bone marrow.

To accomplish this goal, the German scientists created with synthetic polymer a porous structure that mimics the structure of the spongy bone in the area of the hematopoietic bone marrow.

In the artificial bone marrow, the researchers directed isolated hematopoietic stem cells freshly from umbilical cord blood and incubated them for several days.

Analyses with different methods showed that the cells actually proliferate in the newly developed artificial bone marrow.

Now the scientists can study the interactions between materials and stem cells in detail in the laboratory to find out how the behaviour of stem cell is influenced and controlled by synthetic materials.

This knowledge could help to realise an artificial stem cell niche for the targeted increase of stem cells to treat leukemia patients in 10 to 15 years.

Continue reading here:
German scientists develop artificial bone marrow

Eco-Warrior from Ridgewood seeks support for new fight

Ed Schwartz has been an ecological crusader for most of his life, striving for years to preach the benefits of Mother Nature and preserve a clean and natural environment for everyone. His fight, indeed, has been everyone's fight.

PHOTO COURTESY OF ED SCHWARTZ

Ed Schwartz gets a helping hand and a haircut from his son, Kyle. A registry drive is being held Sunday to find a donor for Ed Schwartz, who is battling a rare form of acute myeloid leukemia.

But Schwartz is now facing a new, personal battle, one that he and those close to him hope will rally community support. Known fondly to many throughout the metropolitan area as Eco Ed and the Eco-Warrior, Schwartz was diagnosed in November with a rare form of acute myeloid leukemia (AML), a fast-multiplying cancer that invades the blood and bone marrow.

A village resident and frequent guest columnist for The Ridgewood News, Schwartz needs a stem cell transplant from a donor unrelated to his family. On Sunday, Jan. 5, residents are encouraged to attend a donor drive to help find Schwartz's match - someone who can donate the needed white blood cells - though thousands of other patients in need of a transplant can also benefit from the program's donors.

This Sunday's drive is similar to one held last month for 19-year-old Anthony Daniels, a Ridgewood High School graduate who was diagnosed in 2011 with Hodgkin's lymphoma.

Acute myeloid leukemia begins in bone marrow, specifically in cells that should develop into specialized white blood cells. In AML cases, cell DNA becomes mutated, and that damaged genetic material is passed on during cell reproduction. In addition, those cells fail to fully mature.

Over time, according to Memorial Sloan-Kettering Cancer Center, the immature cells "take over the bone marrow and displace" regular red and white blood cells and platelets. In many AML cases, the cancer will progress rapidly into the blood and may spread to other body parts, including lymph nodes, liver and brain.

The effects of cancer came on "out of left field," said Schwartz, noting that he never showed any symptoms until they hit all at once in early November. He noted that a trip to the emergency room was followed the next day with the diagnosis and immediate chemotherapy treatments. He hopes to undergo stem cell transplant surgery as soon as a donor is found.

Since then, Schwartz has stopped working at his full-time job and put other projects, such as volunteering on the Ridgewood Environmental Advisory Committee, on hold as well. His wife also is taking time off from work to care for him.

Read more:
Eco-Warrior from Ridgewood seeks support for new fight

Chemist Direct reports continued benefits of stem cell research for potential tissue regeneration

London (PRWEB UK) 3 January 2014

Research on how to harness the potential use of stem cells for common conditions is a worldwide subject of scientific discovery spanning over 3 decades. Incredible results in laboratory experiments have been recorded in 2013 for areas such as tissue regeneration for coronary disease, diabetes, cancer, Parkinsons and Alzheimers disease. All stem cells, whether gathered from an early embryo, a foetus or an adult, have two key properties.

Stem cells have the ability to replicate themselves as needed and can generate any specialised cells that make up the tissues and organs of the body with proper direction. This opens up an exciting potential for the generation of therapies for repair and replacement of damaged and diseased tissues and organs, as models for the testing of new drugs and helping us to understand at a cellular level what goes wrong in many conditions. 1

Stem cells derived from bone marrow or fat has been found to improve recovery from stroke in experiments using rats. This study was published in BioMed Central's open access journal Stem Cell Research & Therapy early last year. Treatment with stem cells improved the amount of brain and nerve repair and the ability of the animals to complete behavioural tasks. Using stem cell therapy holds promise for patients but there are still many questions which need to be answered, regarding treatment protocols and which cell types to use. 2

Other areas in which stem cell transplants are already being successfully used in the clinic trials are for treatment for spinal lesions and the regeneration of epidermal surfaces and in leukaemia, where stem cells are replaced during stem cell-containing bone marrow transplants. 3 These treatments demonstrate the potential of stem cells and intensive research is being performed all over the world to improve our understanding of stem cells and how these can be used therapeutically for PD.

Recently published research by a team of scientists in Wales has shown early signs of being able to regenerate damaged heart tissue. By experimenting at Cardiff and Swansea university laboratories, a team of scientists working in the private sector hopes to develop new treatments for heart failure over the next five years.

In a statement for the research team Ajan Reginald said, "We've identified what we think is a very potent type of stem cell which is heart specific. The interim analysis looks very positive and very fortunately the study does show some signs of early regeneration. What the therapy does is reproduce more cells in large numbers to regenerate the part of the heart that is damaged. The first stage of clinical trial is now completed which was focused on safety. 4

Further research during the next five years will produce more alternative solutions to diseases which currently have treatment but no permanent cures for. 5

References

1.http://www.hta.gov.uk/_db/_documents/stem_cell_pack_200806170144.pdf 2.http://www.parkinsonsnsw.org.au/assets/attachments/research/Stem-Cells.pdf 3.http://stemcellres.com/content/4/1/11 4.http://www.bbc.co.uk/news/uk-wales-25560547 5.http://www.cell.com/stem-cell-reports/abstract/S2213-6711(13)00126-4#Summary

Excerpt from:
Chemist Direct reports continued benefits of stem cell research for potential tissue regeneration

A miracle and a clarion call for more

A Vietnamese girl adopted by a Swiss family underwent a stem cell transplant last Friday, months after she was diagnosed with acute lymphoblastic leukemia.

Joon Gremillet, 18, is under special care at the Geneva General Hospital with visits restricted to protect her from infections, given that her immune system drops close to zero, according to a post on the blog site Help Joon, which was opened to look for a matching donor by her adoptive father Patrick Gremillet, a senior program coordinator at the United Nations Development Program.

Patrick received Joon from a maternity hospital in Hai Phong in northern Vietnam and she has grown up with the family, traveling through Laos, Thailand, US, Austria and France.

Joon, who started her university studies last year in Geneva, was diagnosed with leukemia last May.

She was hospitalized immediately and received chemotherapy before the search began for a bone marrow donor that considerably increases chances of survival.

The father said a donor was a stressful issue as Joon was adopted and there was little chance of finding a matching donor in her current community.

He said there are also few Asians, and Vietnamese in particular, who are enrolled in the international stem cell donor registry.

Fortunately, a compatible donor was found in November, although details are being kept confidential.

Patrick said the donors stem cells were infused into his daughter in a process that lasted nearly two hours.

He said Joon will have to wait for between ten to 30 days before the transplanted cells begin to circulate in her bones and gradually resume production of bone marrow and blood cells. If things go well, she can regain immunity after three months.

The rest is here:
A miracle and a clarion call for more

Stem Cells for Bone Marrow Transplant

Clinical Policy Bulletin: Stem Cells for Bone Marrow Transplant

Aetna considers compatibility testing of prospective donors who are members of the immediate family (first-degree relatives, i.e., parents, siblings and children) and harvesting and short-term storage of peripheral stem cells or bone marrow from the identified donor medically necessary when an allogeneic bone marrow or peripheral stem cell transplant is authorized by Aetna.

Aetna considers umbilical cord blood stem cells an acceptable alternative to conventional bone marrow or peripheral stem cells for allogeneic transplant.

Aetna considers medically necessary the short-term storage of umbilical cord blood for a member with a malignancy undergoing treatment when there is a match. Note: The harvesting, freezing and/or storing umbilical cord blood of non-diseased persons for possible future use is not considered treatment of disease or injury. Such use is not related to the persons current medical care.

Notes:

When a covered family member of a newborn infant has a medically necessary indication for an allogeneic bone marrow transplant and wishes to use umbilical cord blood stem cells as an alternative, Aetna covers the testing of umbilical cord blood for compatibility for transplant under the potential recipients plan.

Performance of HLA typing and identification of a suitable donor does not, in and of itself, guarantee coverage of allogeneic bone marrow or peripheral stem cell transplantation. Medical necessity criteria and plan limitations and exclusions may apply.

See also the following CPBs related to bone marrow and peripheral stem cell transplantation:

According to the American Academy of Pediatrics (2007), cord blood transplantation has been shown to be curative in patients with a variety of serious diseases. Physicians should be familiar with the rationale for cord blood banking and with the types of cord blood banking programs available. Physicians consulted by prospective parents about cord blood banking can provide the following information:

Cord blood donation should be discouraged when cord blood stored in a bank is to be directed for later personal or family use, because most conditions that might be helped by cord blood stem cells already exist in the infant's cord blood (i.e., pre-malignant changes in stem cells). Physicians should be aware of the unsubstantiated claims of private cord blood banks made to future parents that promise to insure infants or family members against serious illnesses in the future by use of the stem cells contained in cord blood. Although not standard of care, directed cord blood banking should be encouraged when there is knowledge of a full sibling in the family with a medical condition (malignant or genetic) that could potentially benefit from cord blood transplantation.

Read the rest here:
Stem Cells for Bone Marrow Transplant

How to Pronounce Pluripotent – Video


How to Pronounce Pluripotent
Learn how to say Pluripotent correctly with EmmaSaying #39;s "how do you pronounce" free tutorials. Definition of pluripotent (oxford dictionary): adjective Biol...

By: Emma Saying

See original here:
How to Pronounce Pluripotent - Video

Stem-cell transplant needed for 4-year-old Hannah Day: How to help

Four year old Hannah Day has spent most of her young life in and out of hospital.

She has Leukemia and its the second time in as many years that she is battling cancer.

She underwent 15 months of chemotherapy for a tumour in her stomach, but weeks later was diagnosed with Leukemia. Hannahs family says her only hope for survival is a stem-cell transplant, but neither her sister nor her parents are a perfect match, so theyre hoping a donor will be found. They set up a web page called Angels for Hannah to try and find a donor.

A stem-cell transplant is her last chance.

To become a stem-cell donor you can fill out a questionnaire online if youre between the ages of 17 and 35, and youll be sent a kit in the mail. A swab of your cheeks will reveal if youre a suitable donor. Once identified as a match, donors will undergo one of two procedures. Stem cells can be harvested from bone marrow under general anesthetic, or throughperipheral blood stem cell donation.

The donor does not experience pain during either procedure.

Our age criteria is 17 to 35 to register, saysMary Lynn Pride from Canadian Blood Services. So were really looking to those young people to step forward to provide an opportunity to help patients like Hannah who are in need. Were also asking young men to step forward because we do have a particular need for young men to register as they have been deemed as the optimal donor patients in need of transplant.

Pride says generally men produce a higher volume of stem cells for donation but also post-transplant there is better recovery for patients with a male donor over a female donor.

We do know that younger donors provide better post-transplant recovery for patients as well as the longevity of ensuring that they are on the registry longer to support patients in need, she says.

Canada currently has 326,000 people who are already registered as potential stem-cell donors. Hannah is one of 750 Canadians who are currently awaiting a stem-cell transplant.

More:
Stem-cell transplant needed for 4-year-old Hannah Day: How to help

Girl Saves Three Brothers With Bone Marrow Transplants

Thirteen-year-old Julia Jenkins saved all three of her brothers by donating bone marrow twicewithout which her siblings could not have survived a rare blood disorder.

In 2008, Julias two-year-old brother was diagnosed with Burkitts lymphoma, a rare cancer.

"I had asked the Lord, Please don't let it be cancer.' But then when it turned to be cancerous, I had to change my perspective and say, Thank you that's it's curable. If you get it in time, it's curable, you can fight it,'" said their mother, Christy Jenkins.

Then, Julias six-year-old brother John began suffering from severe stomach problems. Exactly two years later after Will's diagnosis, while he was undergoing chemotherapy, John was diagnosed with the same cancer.

While Berkitts lymphoma is not usually genetic, a specialist had the boys tested for XLP, a genetic immune disorder that caused similar symptoms. Both bothers tested positive for it as did their two-year-old brother Matthew.

"Here I was approached with the plate of, 'All three boys need a bone marrow transplant to possibly survive,'" said Christy Jenkins.

Julia, who did not have the disease, was tested for a bone marrow match.

"I remember getting my blood tested, like sticking a needle in my arm," Julia said.

Despite the odds, Julia's bone marrow matched perfectly with all three of her brothers. At eight years old, though, Julia didnt know what a transplant would entail.

"But, I said yes, because they're my brothers," said Julia.

Read the original:
Girl Saves Three Brothers With Bone Marrow Transplants

Healing a healer

Lockport Union-Sun & Journal Dr. Andrew Cappuccino was finishing a round of golf on Labor Day weekend this year when he got a call from his friend and personal doctor.

The call was to tell to come in for a bone marrow biopsy.

I thought it was a joke at first, Cappuccino said. Within 48 hours I was admitted into the hospital to begin chemotherapy.

Cappuccino was diagnosed with acute myeloid leukemia. The orthopedic spine surgeon, known for treating Buffalo Bills tight end Kevin Everett for his cervical spine injury, was thrown for a loop.

Id never been sick a day in my life, Cappuccino said.

Cappuccino and his wife, Helen, had just dropped their youngest of six children off at NYU to begin college. With all of the kids out of the house, Helen told him it was time to get himself a long overdue physical.

Tests showed that two genetic mutations in Cappuccinos red blood cells caused the cancer to proliferate, putting him in a lower percentile to be cured. Luckily, one of the Lockport surgeons brothers was a perfect match for bone marrow stem cells.

After 5 and a half months of treatments at Roswell Park, theres an 80 percent chance that Cappuccinos leukemia has been cured.

Cappuccinos wife Helen, a surgical oncologist at Roswell Park, was able to be with him both emotionally and physically throughout his ordeal. Since family members are permitted to stay with Roswell patients, Helens commute to work became much shorter during her husbands hospital stay.

I only had to take the elevator downstairs, Helen said.

Visit link:
Healing a healer

Young Girl Donates Bone Marrow To Save 3 Brothers

ATLANTA, Ga. -

One family is exemplifying the spirit of the holidays. A 13-year-old girl has twice donated bone marrow to her little brothers who suffer from a rare blood disorder.

At 13, Julia Jenkins doesn't always see eye-to-eye with her three little brothers. They can be rowdy and more than a little competitive. But the Jenkins kids share a connection that runs deep.

Julia Jenkins watched one brother get sick and then another and then another. Then she learned that she was the one person who might be able to help save them.

It started in 2008 when Will, then 2, developed a swollen lymph node in his neck. The diagnosis: Burkitt's lymphoma, a rare cancer of the lymphatic system.

"I had asked the Lord, Please don't let it be cancer.' But then when it turned to be cancerous, I had to change my perspective and say, Thank you that's it's curable. If you get it in time, it's curable, you can fight it,'" said Christy Jenkins.

Will started chemotherapy, but then John, who was 6, began having severe stomach problems.

"They diagnosed John with Burkitt's lymphoma two years to the exact day later," said Christy Jenkins.

Doctors at the Aflac Cancer Center at Children's Healthcare of Atlanta started looking for answers. Burkitt's doesn't usually run in families, but a specialist remembered hearing about a rare, genetic immune disorder called XLP carried by boys that could cause very similar symptoms. Blood tests showed both Will and John had XLP, as did 2-year-old Matthew.

"Here I was approached with the plate of, 'All three boys need a bone marrow transplant to possibly survive,'" said Christy Jenkins.

More here:
Young Girl Donates Bone Marrow To Save 3 Brothers

Bone marrow or peripheral blood stem cell transplant for non …

Stem cell transplants are sometimes used to treat lymphoma patients who are in remission (that is, they seem to be disease-free after treatment) or who have had the cancer come back (relapse) during or after treatment.

In a stem cell transplant, doctors give higher doses of chemotherapy (chemo) than would normally be safe. Giving high-dose chemo destroys the bone marrow, which prevents new blood cells from being made. This could normally lead to life-threatening infections, bleeding, and other problems due to low blood cell counts. To get around this problem, after chemo (and sometimes radiation treatment) is finished, the patient gets an infusion of blood-forming stem cells to restore the bone marrow. Blood-forming stem cells are very early cells that can make new blood cells. They are different from embryonic stem cells.

There are 2 main types of stem cell transplants. The difference is the source of the blood-forming stem cells.

Autologous stem cell transplant: For this type of transplant, blood-forming stem cells from the patient's own blood or, less often, from the bone marrow, are removed, frozen, and stored until after treatment. Then the stored stem cells are thawed and given back to the patient through a vein. The cells enter the bloodstream and return to the bone, replacing the marrow and making new blood cells.

This is the most common type of transplant used to treat lymphoma, but it generally isn't an option if the lymphoma has spread to the bone marrow or blood. If that happens, it may be hard to get a stem cell sample with no lymphoma cells in it.

Donor (allogeneic) stem cell transplant: In this approach, the stem cells come from someone else usually a matched donor whose tissue type is very close to the patient's. The donor may be a brother or sister or someone not related to the patient. Sometimes umbilical cord stem cells are used.

This type of transplant is not used a lot in treating non-Hodgkin lymphoma (NHL) because it can have severe side effects that are especially hard for patients who are older or who have other medical problems. And it is often hard to find a matched donor.

"Mini transplant": Many older patients can't have a regular allogeneic transplant that uses high doses of chemo. But some may be able to have what is called a "mini transplant" (or a non-myeloablative transplant or reduced-intensity transplant). For this type of allogeneic transplant, lower doses of chemo and radiation are used so they do not destroy all the stem cells in the bone marrow. The patient is then given the donor stem cells. These cells enter the body and form a new immune system, which sees the cancer cells as foreign and attacks them (called a "graft-versus-lymphoma" effect).

Patients can often do a mini transplant as an outpatient. But this is not yet a standard part of the treatment for most types of lymphoma.

Stem cell transplant is a complex treatment, so it is important to have it done at a hospital where the staff has experience with the procedure. Some transplant programs may not have experience in certain transplants, especially those from unrelated donors.

Link:
Bone marrow or peripheral blood stem cell transplant for non ...

Archives