Page 73«..1020..72737475..8090..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Marion woman meets her life saver

By Alison Sullivan, The Gazette

NORTH LIBERTY What would you say to the person who saved your life? For Angela Kearns it was a tearful thank you.

Kearns, of Marion, received a bone marrow transplant two years ago and on Saturday she and her bone marrow donor, Matthew Sabongi, met for the first time at the Colony Pumpkin Patch in North Liberty.

Kearns, 42, and Sabongi, 26, met in an emotional embrace surrounded by friends, family and other bone marrow donors and recipients. The two were connected by the Be the Match National Bone Marrow Donor Program, which Sabongi joined in 2011 as a medical student.

Kearns was diagnosed with acute lymphoblastic leukemia in 2009 and again in 2012. Although none of her family members were bone marrow matches, she was optimistic there would be a match somewhere.

I thought theyd find a donor, I just thought God would work it out, said Kearns, a mother of two.

Her situation isnt abnormal, according to Be the Match. Seventy percent of bone marrow recipients find matches in unrelated donors. Whether someone is a match is determined by their human leukocyte antigen, a protein found in most cells in the body.

Sabongi, of Minneapolis, said three months after he registered he got a call that he could be a possible match. After he was a confirmed match, he immediately agreed to donate.

Young donors ages 18 to 44 can make the biggest impact, said Julee Darner, donor services coordinator at the University of Iowa Marrow Donor Program. She said tudies show recipients tend to fare better in the long term with bone marrow donated from people in that age group.

The registry keeps donors and recipients anonymous until a year later, when both parties can choose whether they want to find out the others identity. So when Sabongi received a thank-you letter from Kearns a few months later, it was anonymous.

Read the original:
Marion woman meets her life saver

Bone Marrow-Derived Stem Cell Prolotherapy – Video


Bone Marrow-Derived Stem Cell Prolotherapy
Stem Cell Prolotherapy is a procedure in which adult mesenchymal stem cells are transplanted directly into the damaged tissue or injury and promotes healing....

By: Kab S. Hong M.D.

Visit link:
Bone Marrow-Derived Stem Cell Prolotherapy - Video

Aarkstore -Stem Cell Research in Cardiology – Video


Aarkstore -Stem Cell Research in Cardiology
This market insight report on Stem Cell Research in Cardiology emphasizes on the market for stem cells in Cardiology. The study is segmented by Source (Allogenic and Autogenic) and by Type...

By: sangam Jain

Visit link:
Aarkstore -Stem Cell Research in Cardiology - Video

'Mega' cells control growth of blood-producing cells

While megakaryocytes are best known for producing platelets that heal wounds, these "mega" cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research. In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).

The findings from the lab of Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.

"Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants," says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study. Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cells -- adult stem cells that form blood and immune cells and that constantly renew the body's blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.

Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.

Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.

"Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand." Maintaining that delicate balance is important, he adds. "You don't want to have too many or too few hematopoietic stem cells."

These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.

Employing the advanced technology of the Institute's Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.

"Our findings suggest that megakaryocytes are required for the recovery of hematopoietic stem cells post chemotherapy," explains Li. The discovery could provide insight for using megakaryocyte-derived factors, such as TGF-B1 and FGF1, clinically to facilitate regeneration of hematopoietic stem cells, he adds.

Engineering a megakaryocyte niche (a special environment in which stem cells live and renew) that supports the growth of hematopoietic stem cells in culture, is the next step for the researchers. Zhao and his colleagues are also investigating whether a megakaryocyte niche can be used to help expand human hematopoietic stem cells in vitro and stem cell transplantation for patients.

Read more:
'Mega' cells control growth of blood-producing cells

New Insight That "Mega" Cells Control the Growth of Blood-Producing Cells

Contact Information

Available for logged-in reporters only

Newswise Kansas City, Mo. - While megakaryocytes are best known for producing platelets that heal wounds, these mega cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research. In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).

The findings from the lab of Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.

Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants, says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study. Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cellsadult stem cells that form blood and immune cells and that constantly renew the bodys blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.

Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.

Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.

Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand. Maintaining that delicate balance is important, he adds. You dont want to have too many or too few hematopoietic stem cells.

These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.

Employing the advanced technology of the Institutes Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.

Read the original here:
New Insight That "Mega" Cells Control the Growth of Blood-Producing Cells

Bone-marrow transplant teenager: 'I feel angry that my community let me down'

There are myriad complex cultural and religious reasons as to why ethnic minority donor rates are so low. We dont fully understand the reasons but this has to change if more lives are to be saved, says Dr Adnan Sharif, a consultant nephrologist at the Queen Elizabeth Hospital in Birmingham and member of the National Black, Asian and minority ethnic Transplant Association (NBTA). Aneesas case is heartbreaking, but unfortunately it is not isolated. There are simply not enough minority ethnic communities donating.

In August 2012, Aneesa the eldest of three siblings who live in Birmingham with their father Manzoor, 46, a purchasing manager for a car company, and mother Resiat, 46, a primary school teacher started suffering from headaches and feeling lethargic. The following month, her GP took a blood test that revealed Aneesas platelet count platelets help blood to clot was critically low, leaving her at risk of excessive bruising and bleeding.

Aneesa was rushed to the citys Queen Elizabeth Hospital, where, two days later, she was diagnosed with aplastic anaemia after further blood tests and a bone marrow biopsy. A potentially fatal disease of the bone marrow, it affects around two people per million and is caused by a deficiency of all three blood cell types red and white blood cells, and platelets. Symptoms include fatigue and a reduced immune system, which can lead to infection and bleeding.

Blood transfusions are the best treatment for serious cases such as Aneesas, and a bone marrow transplant in which a donors healthy stem cells are injected into the patient the only cure. I felt shocked and isolated, recalls Aneesa of her diagnosis. There was no history of the condition in my family and no reason given as to why I had developed it.

She immediately had a 14-hour blood transfusion, and remained in hospital for a month to have further platelet transfusions every three days. Meanwhile, Aneesas brother Eghshaam, 18, and sister Iyla-Rose, six, were tested to see if they could be donors. For bone marrow stem cell transplants to succeed, there needs to be a close match in tissue type between donor and patient.

When it transpired that her siblings tissue types were less than a 50 per cent match, Aneesa was forced to abandon her studies because of her failing health and she was put on the organ donor list.

My doctor warned me there was a shortage of ethnic minority donors, she says. I was surprised. I naively assumed everybody who needed a donor would find one.

By the end of 2012, Aneesa had developed liver and kidney failure a side effect of the anti-inflammatory and immunosuppressive pills she had to take to protect her immune system. I had to have two litres of fluid injected through a drip every day to stop me dehydrating, she says. I grew jealous of friends leading normal lives.

Last January, Aneesas doctors widened their search to include the international bone marrow donor registry, which contains 10 million people. But, unfortunately, the lack of BAME donors is a global problem.

Although the majority of religious leaders have issued statements of support for organ donation, many Muslims still believe that to donate would contravene their religion. There are certain aspects of the Islamic faith such as the emphasis put on the respect of the dead and not defacing the body that suggest you shouldnt donate, explains Dr Sharif. He says that even though bone marrow donation a relatively simple procedure compared with other organ transplants doesnt require the death of the donor, it is viewed with similar suspicion.

Read the original post:
Bone-marrow transplant teenager: 'I feel angry that my community let me down'

Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D. – Video


Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D.
Carolyn describes her outcome seven months after bone marrow stem cell therapy for her arthritic knee pain http://www.docereclinics.com.

By: Harry Adelson, N.D.

Go here to see the original:
Knee arthritis 7 months after bone marrow stem cell therapy by Harry Adelson, N.D. - Video

My stem cells could help save the life of man Ive never met

A HEALTHCARE worker at Royal Bournemouth Hospital has donated stem cells in a bid to save the life of an unknown man.

Claire Waugh, pictured, who has always been a regular blood donor, decided to join the Anthony Nolan stem cell register after her father was diagnosed with prostate cancer three years ago.

The healthcare assistant co-ordinator was later identified as a possible match for a man needing life-saving treatment.

Following rigorous testing Claire was visited by nurses from the blood cancer charity, who gave her three injections every day for three days to stimulate her bone marrow to produce stem cells.

On the fourth day she travelled to Kings College Hospital in London to receive a final set of injections and undergo a stem cell collection in a simple five-hour outpatient procedure, which is similar to giving blood.

Claire said: I couldnt move or bend my arm due to the fairly heavy duty needle, but I was looked after really well so in the end the time went very quickly.

After donating, Claires stem cells were rushed to the recipient within the required 72 hours. A volunteer from Anthony Nolan told me that if he doesnt survive, there is nothing else on this earth that would have cured him, so this was this persons last chance, added Claire.

When my dad was poorly it made me think that if he needed this kind of help, I would be praying every night that someone would help him.

By doing this, it meant that I could give that chance to someone else and their family.

Royal Bournemouth Hospital granted special leave to Claire for the donation with the charity covering all of her and her husbands travel expenses.

See more here:
My stem cells could help save the life of man Ive never met

Spinal cord injury victims may benefit from stem cell transplantation studies

PUBLIC RELEASE DATE:

13-Oct-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (Oct. 13, 2014) Two studies recently published in Cell Transplantation reveal that cell transplantation may be an effective treatment for spinal cord injury (SCI), a major cause of disability and paralysis with no current restorative therapies.

Using laboratory rats modeled with SCI, researchers in Spain found in laboratory tests on cells harvested from rats - specifically ependymal progenitor cells (epSPCs), multipotent stem cells found in adult tissues surrounding the ependymal canal of the spinal cord - responded to a variety of compounds through the activation of purinergic receptors P2X4, P2X7, P2Y1 and P2Y4. In addition, the epSPCs responded to adenosine triphosphate (ATP) through this activation. ATP, a chemical produced by a wide variety of enzymes that works to transport energy within cells, is known to accumulate at the sites of spinal cord injury and cooperate with growth factors that induce remodeling and repair.

"The aim of our study was to analyze the expression profile of receptors in ependymal-derived neurospheres and to determine which receptors were functional by analysis of intercellular Ca2+ concentration," said study co-author Dr. Rosa Gomez-Villafuertes of the Department of Biochemistry at the Veterinary School at the University of Complutense in Madrid, Spain. "We demonstrated for the first time that epSPCs express functional ionotropic P2X4 and P2X7 and metabotropic P2Y1 and P2Y4 receptors that are able to respond to ATP, ADP and other nucleotide compounds."

When they compared the epSPCs from healthy rats to epSPCs from rats modeled with SCI, they found that a downregulation of P2Y1 and an upregulation of P2Y4 had occurred in the epSPCs in the SCI group.

"This finding opens an important avenue for potential therapeutic alternatives in SCI treatments based on purinergic receptor modulation," the researchers concluded.

###

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT-1257_Gomez_Villafuertes.

Read more here:
Spinal cord injury victims may benefit from stem cell transplantation studies

Global Stem Cells Group Launches New Corporate Website

MIAMI (PRWEB) October 13, 2014

Global Stem Cells Group, Inc. has launched a new corporate website (http://www.stemcellsgroup.com) designed to better highlight its six stem cell-related operating companies and provide up-to-date information on upcoming conferences, corporate news, stem cell research findings and more.

The website offers detailed information on each stem cell division including:

For more information about any of the Global Stem Cells Group operating companies, visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

About Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions.

With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

###

Link:
Global Stem Cells Group Launches New Corporate Website

Saratoga Co. woman meets marrow donor who saved her life

Updated: 10/12/2014 4:19 PM Created: 10/11/2014 11:51 PM WNYT.com By: Steve Flamisch

LOUDONVILLE Four years ago, Doris Calderon was diagnosed with a form of blood cancer called Myelodysplastic Syndrome (MDS). Doctors told her she needed a bone marrow transplant.

"They were looking for a donor because I had no siblings that could match, and my children are not a good match," said Calderon, of Halfmoon. "We didn't have anybody, so we just figured we'd wait."

More than 800 miles away, in Illinois, a total stranger made a fateful decision later that year. Chad LaMont wanted to donate blood to at his employers "Good Deed Day," but his iron was too low.

LaMont went over to the "Be The Match" table and signed up to be a marrow donor, instead. He turned out to be the match for Calderon, later donating the stem cells and T-cells that saved her life.

"Ive encouraged so many people to get on the list because you never know who you can save, and whose life you can change at the end of the day," LaMont said.

On Friday, Calderon and LaMont met for the first time at Albany International Airport. On Saturday, they took part in the Light the Night Walk at Siena College, raising money to fight blood cancer.

"To have the man responsible for saving my mother's life with us on such a momentous occasion is just such a blessing," said Calderons daughter, Lisa Calderon-Haun. "He couldn't be more wonderful."

Calderon has been in remission for more than two years and her prognosis is good. To learn more about how to become a bone marrow donor, visit "Be The Match."

Read more from the original source:
Saratoga Co. woman meets marrow donor who saved her life

Cashton man goes from winning state award to battling cancer

MADISON Winning the State Cow of the Year award at the 2014 World Dairy Expo on Oct. 3 was only the second biggest thing that happened while the Peterson family of Cashton was in Madison that week.

The most important came a few days later, on the west side of the University of Wisconsin-Madison campus, when stem cells from Kurt Petersons bone marrow began flowing into the blood stream of his brother, giving Scot Peterson, 45, a new immune system and a good shot of beating adult acute lymphoblastic leukemia (ALL).

Hes a man of few words, says Scot, of his younger brother, Kurt, 40. But you know he really loves you to do something like this.

Its been a good news/bad news kind of a year for the Peterson brothers, who co-own the Coulee Crest farm in the rolling hills of Monroe County, and the states queen of cows, Coulee Crest Nick Lorilyn. Guernseys are the caramel brown and white cows known for the richness of their milk. And Lorilynn won the crown because she, her mother, and one of her daughters have each produced 40,000 pounds of milk in a year.

The last weekend in June, the National Guernsey Association held its national convention in La Crosse. The Petersons hosted a tour of their farm and a dinner event for 475 convention goers at their farm.

Scot Peterson, a burly guy who competed in Sweden for the world tug-of-war championship when he was younger, felt pains in his legs, odd bruises, and general exhaustion.

I thought I was tired from all the work of getting the farm ready, Scot Peterson says. He got through the convention and the national sale on June 30. That was another high point for the farm, with one of Lorilyns daughters topping the sale at $19,000.

By the next day, there was bad news.

By the middle of the day on July 1, I was in the hospital, finding out my diagnosis of leukemia, he recalls.

His oncologist, Dr. Wayne Bottner of Gundersen Health System in La Crosse, told Scot that he had a type of leukemia, ALL, in which the bone marrow makes too many lymphocytes, a type of white blood cell. ALL is more common and easier to treat in children. Adults fare better if they can find a match that allows them to have a stem cell transplant from a donors bone marrow. So Bottner referred Peterson to the UW Carbone Comprehensive Cancer Center in Madison.

See the article here:
Cashton man goes from winning state award to battling cancer

Scientists Develop Barcoding Tool For Stem Cells

October 8, 2014

Image Caption: New genetic barcoding technology allows scientists to identify differences in origin between individual blood cells. Credit: Camargo Lab

Provided by Joseph Caputo, Harvard University

New technology that tracks the origin of blood cells challenges scientific dogma

A 7-year-project to develop a barcoding and tracking system for tissue stem cells has revealed previously unrecognized features of normal blood production: New data from Harvard Stem Cell Institute scientists at Boston Childrens Hospital suggests, surprisingly, that the billions of blood cells that we produce each day are made not by blood stem cells, but rather their less pluripotent descendants, called progenitor cells. The researchers hypothesize that blood comes from stable populations of different long-lived progenitor cells that are responsible for giving rise to specific blood cell types, while blood stem cells likely act as essential reserves.

The work, supported by a National Institutes of Health Directors New Innovator Award and published in Nature, suggests that progenitor cells could potentially be just as valuable as blood stem cells for blood regeneration therapies.

This new research challenges what textbooks have long read: That blood stem cells maintain the day-to-day renewal of blood, a conclusion drawn from their importance in re-establishing blood cell populations after bone marrow transplantsa fact that still remains true. But because of a lack of tools to study how blood forms in a normal context, nobody had been able to track the origin of blood cells without doing a transplant.

Boston Childrens Hospital scientist Fernando Camargo, PhD, and his postdoctoral fellow Jianlong Sun, PhD, addressed this problem with a tool that generates a unique barcode in the DNA of all blood stem cells and their progenitor cells in a mouse. When a tagged cell divides, all of its descendant cells possess the same barcode. This biological inventory system makes it possible to determine the number of stem cells/progenitors being used to make blood and how long they live, as well as answer fundamental questions about where individual blood cells come from.

Theres never been such a robust experimental method that could allow people to look at lineage relationships between mature cell types in the body without doing transplantation, Sun said. One of the major directions we can now go is to revisit the entire blood cell hierarchy and see how the current knowledge holds true when we use this internal labeling system.

People have tried using viruses to tag blood cells in the past, but the cells needed to be taken out of the body, infected, and re-transplanted, which raised a number of issues, said Camargo, who is a member of Childrens Stem Cell Program and an associate professor in Harvard Universitys Department of Stem Cell and Regenerative Biology. I wanted to figure out a way to label blood cells inside of the body, and the best idea I had was to use mobile genetic elements called transposons.

Originally posted here:
Scientists Develop Barcoding Tool For Stem Cells

Bone marrow registry drive Saturday in Des Plaines

A combined LifeSource blood drive and Be The Match bone marrow registry event will honor two local women battling different forms of leukemia from 8 a.m. to 2 p.m. Saturday, Oct. 11, at The Society of Danube Swabians, 625 E. Seegers Road, Des Plaines.

The event will co-honor Des Plaines resident Amy Charewicz, 24, and Prospect Heights resident Anni Mayer, who is a Society of Danube Swabians board member. Mayer, a St. Alphonsus Ligouri parishioner and national society youth group leader, has Myelodyplastic Syndrome, a blood cancer that prevents her bone marrow from making enough healthy blood cells. Charewicz has aggressive Acute Myeloblastic Leukemia, a disease that causes her bone marrow to produce abnormal white and red blood cells, as well as platelets.

The Northern Illinois University graduate will receive a stem cell transplant Thursday from a 23-year-old man located by Be the Match at Northwestern Memorial Hospital. "Amy has been fortunate to have what she needs available because others have donated and registered," says Doris Charewicz, her mother. "She wants to 'pay it forward' by increasing awareness of the need for both blood donors and stem cell donors."

Be The Match registrants are limited to ages 18-44 and don't need to preregister. Blood donor walk-ins are welcome, but appointments are preferred at (877) 543-3768 or http://www.lifesource.org using code 650B.

Continue reading here:
Bone marrow registry drive Saturday in Des Plaines

New technique allows scientists to find rare stem cells within bone marrow

PUBLIC RELEASE DATE:

6-Oct-2014

Contact: Sarah McDonnell s_mcd@mit.edu 617-253-8923 Massachusetts Institute of Technology @MITnews

CAMBRIDGE, MA -- Deep within the bone marrow resides a type of cells known as mesenchymal stem cells (MSCs). These immature cells can differentiate into cells that produce bone, cartilage, fat, or muscle a trait that scientists have tried to exploit for tissue repair.

In a new study that should make it easier to develop such stem-cell-based therapies, a team of researchers from MIT and the Singapore-MIT Alliance in Research and Technology (SMART) has identified three physical characteristics of MSCs that can distinguish them from other immature cells found in the bone marrow. Based on this information, they plan to create devices that could rapidly isolate MSCs, making it easier to generate enough stem cells to treat patients.

Until now, there has been no good way to separate MSCs from bone marrow cells that have already begun to differentiate into other cell types, but share the same molecules on the cell surface. This may be one reason why research results vary among labs, and why stem-cell treatments now in clinical trials are not as effective as they could be, says Krystyn Van Vliet, an MIT associate professor of materials science and engineering and biological engineering and a senior author of the paper, which appears in the Proceedings of the National Academy of Sciences this week.

"Some of the cells that you're putting in and calling stem cells are producing a beneficial therapeutic outcome, but many of the cells that you're putting in are not," Van Vliet says. "Our approach provides a way to purify or highly enrich for the stem cells in that population. You can now find the needles in the haystack and use them for human therapy."

Lead authors of the paper are W.C. Lee, a former graduate student at the National University of Singapore and SMART, and Hui Shi, a former SMART postdoc. Other authors are Jongyoon Han, an MIT professor of electrical engineering and biological engineering, SMART researchers Zhiyong Poon, L.M. Nyan, and Tanwi Kaushik, and National University of Singapore faculty members G.V. Shivashankar, J.K.Y. Chan, and C.T. Lim.

Physical markers

MSCs make up only a small percentage of cells in the bone marrow. Other immature cells found there include osteogenic cells, which have already begun the developmental path toward becoming cartilage- or bone-producing cells. Currently, researchers try to isolate MSCs based on protein markers found on the cell surfaces. However, these markers are not specific to MSCs and can also yield other types of immature cells that are more differentiated.

See the rest here:
New technique allows scientists to find rare stem cells within bone marrow

Family of Margot Martini launch new stem cell and bone marrow appeal

VIEW GALLERY

The family of brave toddler Margot Martini launched a new bone marrow donor appeal this morning exactly a year after she was diagnosed with leukaemia.

Her relatives said the first Team Margot Stem Cell and Bone Marrow Awareness Day would be held in another 12 months, on Wednesday October 7, 2015.

The two-year-old underwent a bone marrow transplant in February after her dad, Yaser, from Essington, and mum Vicki launched a desperate appeal for help.

Margot Martini with mum Vicky

But she relapsed and her parents decided to end her treatment after being told her chances of survival were less than one per cent.

The awareness day is designed to promote awareness around the need for more potential stem cell donors to join the UK and worldwide registries.

Her family said they hoped mixed race people would sign up to plug a gaping hole on the lists.

Just sixty per cent of the 37,000 patients needing a stem cell donor worldwide receives a perfect match.

But that figure plunges to barely 20 per cent for those from black, Asian or ethnic minority communities.

Here is the original post:
Family of Margot Martini launch new stem cell and bone marrow appeal

New technique to identify rare stem cells

Stem-cell-based therapies could soon become a lot easier to develop as researchers have found a way to identify a type of immature stem cells within the bone marrow that can help in tissue repair.

These cells known as mesenchymal stem cells (MSCs) can differentiate into cells that produce bone, cartilage, fat, or muscle.

The team of researchers has identified three physical characteristics of MSCs that can distinguish them from other immature cells found in the bone marrow.

"You can now find the needles in the haystack and use them for human therapy," senior study author Krystyn Van Vliet, an associate professor at Massachusetts Institute of Technology in the US.

Based on this information, they plan to create devices that could rapidly isolate MSCs, making it easier to generate enough stem cells to treat patients.

Until now, there has been no good way to separate MSCs from bone marrow cells.

After measuring several other physical traits, the researchers found two that could be combined with size to completely distinguish MSCs from other stem cells: stiffness of the cell, and the degree of fluctuation in the cell's nuclear membrane.

"You do not need more than these three, but you also cannot use fewer than these three," Van Vliet added.

"We now have a triplet of characteristics that identifies populations of cells that are going to be multipotent versus populations of cells that are only going to be able to become bone or cartilage cells."

The researchers tested the regenerative abilities of the isolated MSCs in mice. They found that these cells could help repair both muscle and bone injuries, while cells identified as osteogenic stromal cells were able to repair bone but not muscle.

Read the rest here:
New technique to identify rare stem cells

How did the Berlin patient become cured of HIV?

By Jon Cohen October 6 at 5:00 PM

Researchers are closer to unraveling the mystery of how Timothy Ray Brown, the only human cured of HIV, defeated the virus, according to a new study. Although the work doesnt provide a definitive answer, it rules out one possible explanation.

Brown remains one of the most studied cases in the HIV epidemics history. In 2006, after living with the virus for 11 years and controlling his infection with antiretroviral drugs, he learned that he had developed acute myeloid leukemia. (The leukemia has no known relationship to HIV infection or treatment.) Chemotherapy failed, and the next year Brown received the first of two bone marrow transplants a common treatment for this cancer and ditched his antiretrovirals. (An American then living in Berlin, Brown has been known to researchers for years as the Berlin patient.

When HIV-infected people stop taking these drugs, levels of HIV typically skyrocket within weeks. Yet researchers scouring Browns blood over the past seven years have found only traces of the viral genetic material, none of which can replicate.

Today, researchers point to three factors that might independently or in combination have ridden Browns body of HIV. The first is the process of conditioning, in which doctors destroyed Browns immune system with chemotherapy and whole-body irradiation to prepare him for his bone marrow transplant.

Second, his oncologist, Gero Htter, took an extra step that he thought might not only cure the leukemia but also help rid Browns body of HIV. He found a bone marrow donor who had a rare mutation in a gene that cripples a key receptor on white blood cells that the virus uses to establish an infection.

The third possible explanation is that Browns new immune system attacked remnants of his old one that held HIV-infected cells, a process known as graft vs. host disease.

In the new study, a team led by immunologist Guido Silvestri of Emory University in Atlanta designed an unusual monkey experiment to test these possibilities.

Bone marrow transplants work because of stem cells. Modern techniques avoid actually aspirating bone marrow and instead can sift through blood and pluck out the stem cells needed for a transplant to engraft. So the researchers first drew blood from three rhesus macaque monkeys, removed stem cells and put the cells in storage. They then infected these animals and three control monkeys with a hybrid virus, known as SHIV, that contains parts of the simian and human AIDS viruses. All six animals soon began receiving antiretroviral drugs, and SHIV levels in the blood quickly dropped below the level of detection on standard tests, as expected.

A few months later, the three monkeys with stored stem cells underwent whole-body irradiation to condition their bodies and then had their own stem cells reinfused. After the cells engrafted, a process that took a few more months, the researchers stopped antiretrovirals in the three animals and in the three controls. SHIV quickly came screaming back in the three controls and two of the transplanted animals. (One of the transplanted monkeys did not have the virus rebound, but its kidneys failed and the researchers euthanized it.)

The rest is here:
How did the Berlin patient become cured of HIV?

Remembering Denniston

Garry Anderson was swept up in the tremendous community response in 1987 when Bruce Denniston was diagnosed with leukemia and needed a bone marrow transplant. Everyone got involved.

I went to school with Bruce Dennistons daughters, and lived in the same neighbourhood, Garry says. I remember the fundraisers.

Today, Garry is president of the Bruce Denniston Bone Marrow Society. Now the memory is getting scattered, and I worry that the name will be lost or wont mean as much. Many of the people who influenced and created the Society are retired or moving away.

Twenty-five years ago Bruce Denniston was described as the type of personality that everyone wishes he could have a share in. He was a loyal friend to many, a sportsman, and had more hobbies than most. He and his wife Joanne had three children and were active and popular in the community.

Bruce was diagnosed with myelocytic leukemia, a cancer of the blood-forming organs which seriously reduces the bodys ability to fight infection. He was 36 and had only missed one day of work in his 14-year career with the Royal Canadian Mounted Police (RCMP). He was told his best chance for recovery was a bone marrow transplant, but his siblings did not have the correct type of bone marrow.

Bruce needed help and Powell River people wanted to help him. They soon recognized a need for more unrelated bone marrow donors, and set about to improve the system for everyone.

Powell Rivers enthusiasm boosted the Canadian registry of unrelated bone marrow donors to a level where it could combine with the lists of other countries and thereby an international match was found for Bruce. The complete story, from hockey games to haircuts is available on the societys website.

When Bruce received the transplant the town rejoiced, but the roller-coaster of emotions continued with news that the chemotherapy that Bruce had undergone to prepare for the transplant had seriously weakened him. And, on February 12, 1989, Bruce died of liver and kidney failure.

RCMP Staff Sergeant Ron Mangan said at the time that the shock and sorrow were tempered with a degree of hope and pridehope that others being diagnosed with leukemia will now have access to an enlarged bone marrow bank. I think Powell River is a proud town, proud of Bruce and proud of their participation in the endeavour.

The work of the Bruce Denniston society continues in that legacy. Its mission is to improve the quality of life for those affected by blood-related illnesses and ensure a legacy so those who have gone before are not forgotten. In the past decades the society has led numerous fundraising events, donated to hospital upgrades, and supported Powell River residents when they received bone marrow transplants.

View original post here:
Remembering Denniston

Embryonic stem cells to tackle major killer diseases

Stem cells are getting serious. Two decades after they were discovered, human embryonic stem cells (hESCs) are being tested as a treatment for two major diseases: heart failure and type 1 diabetes.

Treatments based on hESCs have been slow coming because of controversy over their source and fears that they could turn into tumours once implanted. They have enormous potential because hESCs can be grown into any of the body's 200 tissue types, unlike the stems cells isolated from adult tissues that have mostly been used in treatments until now.

In the most rigorous test of embryonic stems cells' potential yet, six people with heart failure will be treated in France with a patch of immature heart cells made from hESCs, and 40 people with diabetes in the US will receive pouches containing immature pancreatic cells made from hESCs.

The hope is that the heart patch will help to regenerate heart muscle destroyed by heart attacks. Trials in monkeys showed that the patch could regenerate up to 20 per cent of the lost muscle within two months.

The pancreatic cells are supposed to mature into beta cells, which produce the hormone insulin. These would act as a substitute for the cells that are destroyed by the immune systems of people with type 1 diabetes.

Although treatments based on hESCs have already been given to people with a type of age-related blindness and with spinal paralysis, the latest trials are the therapy's first foray into major fatal diseases. Heart disease is the biggest killer in the world, and cases of type 1 diabetes are growing.

"Both are landmark studies, and are different from what we've had up to now," says Chris Mason, head of regenerative medicine at University College London. "The blindness already being treated is serious, but diabetes and heart failure are killers, and things we don't have solutions for, so this brings hESCs into the mainstream."

Some people with heart disease and diabetes have received experimental treatments based on stem cells isolated from adult tissue, often from bone marrow, with varying degrees of success. These mesenchymal stem cells, or MSCs, can mature into several tissues including muscle, bone, cartilage and fat but there is no guarantee that they will grow into cardiac muscle.

A recent review of 23 trials involving 1255 people with heart disease found that there is some evidence that recipients of stem cell therapy are less likely to die or be readmitted to hospital a year or more after treatment than people who received standard treatment.

The hope is that using hESCs in place of MSCs will improve these outcomes further because they can be grown from scratch into cells exactly suited to their medical purpose. "We think our cells are more committed to the heart lineage," says Philippe Menasch, head of the French trial at the Georges Pompidou European Hospital in Paris.

The rest is here:
Embryonic stem cells to tackle major killer diseases

Disease decoded: Gene mutation may lead to development of new cancer drugs

PUBLIC RELEASE DATE:

30-Sep-2014

Contact: Laura Bailey baileylm@umich.edu 734-647-1848 University of Michigan @umich

ANN ARBORThe discovery of a gene mutation that causes a rare premature aging disease could lead to the development of drugs that block the rapid, unstoppable cell division that makes cancer so deadly.

Scientists at the University of Michigan and the U-M Health System recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can't regenerate and make new blood. People with DC age prematurely and are prone to cancer and bone marrow failure.

But the study findings reach far beyond the roughly one in 1 million known DC patients, and could ultimately lead to developing new drugs that prevent cancer from spreading, said Jayakrishnan Nandakumar, assistant professor in the U-M Department of Molecular, Cellular, and Developmental Biology.

The DC-causing mutation occurs in a protein called TPP1. The mutation inhibits TPP1's ability to bind the enzyme telomerase to the ends of chromosomes, which ultimately results in reduced hematopoietic stem cell division. While telomerase is underproduced in DC patients, the opposite is true for cells in cancer patients.

"Telomerase overproduction in cancer cells helps them divide uncontrollably, which is a hallmark of all cancers," Nandakumar said. "Inhibiting telomerase will be an effective way to kill cancer cells."

The findings could lead to the development of gene therapies to repair the mutation and start cell division in DC patients, or drugs to inhibit telomerase and cell division in cancer patients. Both would amount to huge treatment breakthroughs for DC and cancer patients, Nandakumar said.

Nandakumar said that a major step moving forward is to culture DC patient-derived cells and try to repair the TPP1 mutation to see if telomerase function can be restored. Ultimately, the U-M scientist hopes that fixing the TPP1 mutation repairs telomerase function and fuels cell division in the stem cells of DC patients.

Read more:
Disease decoded: Gene mutation may lead to development of new cancer drugs

Cells from placentas safe for patients with multiple sclerosis

PUBLIC RELEASE DATE:

29-Sep-2014

Contact: Sasha Walek newsmedia@mssm.edu 212-241-6738 The Mount Sinai Hospital / Mount Sinai School of Medicine @mountsinainyc

Patients with Multiple Sclerosis (MS) were able to safely tolerate treatment with cells cultured from human placental tissue, according to a study published today in the journal Multiple Sclerosis and Related Disorders. The study, which is the first of its kind, was conducted by researchers at Mount Sinai, Celgene Cellular Therapeutics subsidiary of Celgene Corporation and collaborators at several other institutions.

While designed to determine safety of the treatment, early signals in the data also suggested that a preparation of cultured cells called PDA-001 may repair damaged nerve tissues in patients with MS. PDA-001 cells resemble mesenchymal, stromal stem cells found in many tissues of the body. Since the cells are expanded in cell cultures, one donor is able to supply enough cells for many patients.

"This is the first time placenta-derived cells have been tested as a possible therapy for multiple sclerosis," said Fred Lublin, MD, Director of the Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Professor of Neurology at Icahn School of Medicine at Mount Sinai and the lead investigator of the study. "The next step will be to study larger numbers of MS patients to assess efficacy of the cells, but we could be looking at a new frontier in treatment for the disease."

MS is a chronic autoimmune disease in which the body's immune system mounts recurring assaults on the myelin--the fatty, protective coating around nerve fibers in the central nervous system. This causes nerves to malfunction and can lead to paralysis and blindness. The disease usually begins as an episodic disorder called relapsing-remitting MS (RRMS), and for many sufferers, evolves into a chronic condition with worsening disability called secondary progressive MS (SPMS).

The new safety study was conducted on 16 MS patients (10 with RRMS and six with SPMS) between the ages of 18 and 65. Six patients were given a high dose of PDA-001, another six were given a lower dose, and four patients were given placebo. Any time the immune system is altered, say by an experimental treatment, there is always a risk for MS to worsen, noted Dr. Lublin. All subjects were given monthly brain scans over a six-month period to ensure they did not acquire any new or enlarging brain lesions, which would indicate a worsening of MS activity. No subjects showed any paradoxical worsening on MRI and after one year, the majority had stable or improved levels of disability.

"We're hoping to learn more about how placental stromal cells contribute to myelin repair," said Dr. Lublin. "We suspect they either convert to a myelin making cell, or they enhance the environment of the area where the damage is to allow for natural repair. Our long-term goal is to develop strategies to facilitate repair of the damaged nervous system."

###

Original post:
Cells from placentas safe for patients with multiple sclerosis

Cells from placentas safe for patients with multiple sclerosis, study shows

Patients with Multiple Sclerosis (MS) were able to safely tolerate treatment with cells cultured from human placental tissue, according to a study published today in the journal Multiple Sclerosis and Related Disorders. The study, which is the first of its kind, was conducted by researchers at Mount Sinai, Celgene Cellular Therapeutics subsidiary of Celgene Corporation and collaborators at several other institutions.

While designed to determine safety of the treatment, early signals in the data also suggested that a preparation of cultured cells called PDA-001 may repair damaged nerve tissues in patients with MS. PDA-001 cells resemble "mesenchymal," stromal stem cells found in connective tissue in bone marrow, but unlike their bone-marrow derived counterparts, stromal cells from the placenta are more numerous, with one donor able to supply enough cells for many patients.

"This is the first time placenta-derived cells have been tested as a possible therapy for multiple sclerosis," said Fred Lublin, MD, Director of the Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Professor of Neurology at Icahn School of Medicine at Mount Sinai and the lead investigator of the study. "The next step will be to study larger numbers of MS patients to assess efficacy of the cells, but we could be looking at a new frontier in treatment for the disease."

MS is a chronic autoimmune disease in which the body's immune system mounts recurring assaults on the myelin--the fatty, protective coating around nerve fibers in the central nervous system. This causes nerves to malfunction and can lead to paralysis and blindness. The disease usually begins as an episodic disorder called relapsing-remitting MS (RRMS), and for many sufferers, evolves into a chronic condition with worsening disability called secondary progressive MS (SPMS).

The new safety study was conducted on 16 MS patients (10 with RRMS and six with SPMS) between the ages of 18 and 65. Six patients were given a high dose of PDA-001, another six were given a lower dose, and four patients were given placebo. Any time the immune system is altered, say by an experimental treatment, there is always a risk for MS to worsen, noted Dr. Lublin. All subjects were given monthly brain scans over a six-month period to ensure they did not acquire any new or enlarging brain lesions, which would indicate a worsening of MS activity. No subjects showed any paradoxical worsening on MRI and after one year, the majority had stable or improved levels of disability.

"We're hoping to learn more about how placental stromal cells contribute to myelin repair," said Dr. Lublin. "We suspect they either convert to a myelin making cell, or they enhance the environment of the area where the damage is to allow for natural repair. Our long-term goal is to develop strategies to facilitate repair of the damaged nervous system."

Story Source:

The above story is based on materials provided by Mount Sinai Medical Center. Note: Materials may be edited for content and length.

See the rest here:
Cells from placentas safe for patients with multiple sclerosis, study shows

Michigan bone marrow recipient meets her donor

MONROE, Mich. (AP) - Jessie Kelly wanted to honor the woman who gave her life. On Sept. 20, she hosted a celebration for Nariana Petty, a 26-year-old woman originally from Phoenix whose stem cells saved her. Family and friends gathered to thank Petty and her husband, Chris, for saving Kellys life. The celebration took place at Oakridge Estates Community Center. The Pettys were given baskets filled with items from Michigan, including wine, maple syrup and more.

But the day was about more than just food and fun. It was the first time the women met face to face.

In 2008, Kelly was diagnosed with non-Hodgkin lymphoma. When chemotherapy did not work, she was given a bone marrow transplant - using her own bone marrow - at Karmanos Cancer Institute in Detroit.

But after 90 days, she received demoralizing news.

It failed. The transplant didnt take, the 57-year-old Monroe resident said. It was emotionally devastating.

Kellys five siblings were tested, and no one was a match, the Monroe News (http://bit.ly/1sl9S8C ) reported.

I was devastated, she said. I thought for sure one of them would be a match, but that wasnt the case.

Her transplant nurse told her about the National Bone Marrow Registry. Within two weeks, Kelly received a call saying they had found a match.

Kelly and Petty didnt meet when the stem cells were harvested two years ago. For confidentiality reasons, they had to wait a year before they learned about each other.

When she got the call, Petty, 26, was living out West and flew to Detroit for the stem cell harvest. For a few days, she was given shots, and, on Sept. 14, 2012, the bone marrow was extracted from her neck.

See the original post here:
Michigan bone marrow recipient meets her donor

Stem cell therapies making slow but promising progress

Edgar Irastorza was just 31 when his heart stopped beating in October 2008.

A Miami property manager, break-dancer and former high school wrestler, Irastorza had recently gained weight as his wifes third pregnancy progressed. I kind of got pregnant, too, he said.

During a workout one day, he felt short of breath and insisted that friends rush him to the hospital. Minutes later, his pulse flat-lined.

He survived the heart attack, but the scar tissue that resulted cut his hearts pumping ability by a third. He couldnt pick up his children. He couldnt dance. He fell asleep every night wondering if he would wake up in the morning.

Desperation motivated Irastorza to volunteer for a highly unusual medical research trial: getting stem cells injected directly into his heart.

I just trusted my doctors and the science behind it, and said, This is my only chance, he said recently.

Over the last five years, by studying stem cells in lab dishes, test animals and intrepid patients like Irastorza, researchers have brought the vague, grandiose promises of stem cell therapies closer to reality.

Stem cells broke into the public consciousness in the early 1990s, alluring for their potential to help the body beat back diseases of degeneration like Alzheimers, and to grow new parts to treat conditions like spinal cord injuries.

Progress has been slow. The Michael J. Fox Foundation for Parkinsons Research, an early supporter of stem cell research, pulled its financial backing two years ago, saying that it preferred to invest in research that was closer to providing immediate help for Parkinsons disease patients.

But researchers have been slowly learning how to best use stem cells, what types to use and how to deliver them to the body findings that arent singularly transformational, but progressive and pragmatic.

See the article here:
Stem cell therapies making slow but promising progress

Archives