Page 67«..1020..66676869..8090..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Blood and Bone Marrow Stem Cell Transplantation – The …

Stem cell transplant (also known as bone marrow transplant or BMT) is an established treatment for many cancers and blood diseases once considered incurable. For some types of blood diseases, transplantation is the standard of care. For others, it is only considered if other treatments have not been successful. Ongoing advances in stem cell transplant are expanding its availability and improving outcomes for patients, young and old.

Here at the University of Chicago Medicine, the brightest minds in medicine are ready to meet the needs of all patients considering a stem cell transplant. We offer the latest promising approaches in blood and bone marrow stem cell transplant. Our team is known -- and recognized -- for our experience and expertise in:

We provide outstanding and compassionate care in a patient-centered environment. The Stem Cell Transplant Unit, located on the top floor of the Center for Care and Discovery, offers the newest technology as well as many thoughtful patient and family amenities. The unit integrates both inpatient and outpatient stem cell transplant care services in one convenient location.

As part of the internationally recognized University of Chicago Comprehensive Cancer Center (UCCCC), we participate in national clinical trials testing new and emerging therapies. A primary site for early-phase clinical trials, we offer our patients access to more new treatment protocols than any other hospital in the region.

As a leading center for advanced care, the University of Chicago Medicine attracts patients from throughout the region, the country and around the world. We provide customized services for patients who travel from other countries. For more information, contact the Center for International Patients.

In the late 1940s, University of Chicago researcher Dr. Leon Jacobson discovered that he could save a mouse, whose bone marrow and spleen had been destroyed with radiation, by transplanting healthy spleen tissue from another mouse. The donated tissue repopulated the marrow and restored production of the blood cells. This groundbreaking work influenced many scientists investigating bone marrow transplant for humans, including the winner of the 1990 Nobel Prize in Physiology or Medicine.

For information about stem cell transplant for children and teens, visit the Pediatric Stem Cell Transplant page on the University of Chicago Comer Childrens Hospital website.

UCH_008151 (19)

Follow this link:
Blood and Bone Marrow Stem Cell Transplantation - The ...

Premature aging of stem cell telomeres, not inflammation, linked to emphysema

Lung diseases like emphysema and pulmonary fibrosis are common among people with malfunctioning telomeres, the "caps" or ends of chromosomes. Now, researchers from Johns Hopkins say they have discovered what goes wrong and why.

Mary Armanios, M.D., an associate professor of oncology at the Johns Hopkins University School of Medicine., and her colleagues report that some stem cells vital to lung cell oxygenation undergo premature aging -- and stop dividing and proliferating -- when their telomeres are defective. The stem cells are those in the alveoli, the tiny air exchange sacs where blood takes up oxygen.

In studies of these isolated stem cells and in mice, Armanios' team discovered that dormant or senescent stem cells send out signals that recruit immune molecules to the lungs and cause the severe inflammation that is also a hallmark of emphysema and related lung diseases.

Until now, Armanios says, researchers and clinicians have thought that "inflammation alone is what drives these lung diseases and have based therapy on anti-inflammatory drugs for the last 30 years."

But the new discoveries, reported March 30 in Proceedings of the National Academy of Sciences, suggest instead that "if it's premature aging of the stem cells driving this, nothing will really get better if you don't fix that problem," Armanios says.

Acknowledging that there are no current ways to treat or replace damaged lung stem cells, Armanios says that knowing the source of the problem can redirect research efforts. "It's a new challenge that begins with the questions of whether we take on the effort to fix this defect in the cells, or try to replace the cells," she adds.

Armanios and her team say their study also found that this telomere-driven defect leaves mice extremely vulnerable to anticancer drugs like bleomycin or busulfan that are toxic to the lungs. The drugs and infectious agents like viruses kill off the cells that line the lung's air sacs. In cases of telomere dysfunction, Armanios explains, the lung stem cells can't divide and replenish these destroyed cells.

When the researchers gave these drugs to 11 mice with the lung stem cell defect, all became severely ill and died within a month.

This finding could shed light on why "sometimes people with short telomeres may have no signs of pulmonary disease whatsoever, but when they're exposed to an acute infection or to certain drugs, they develop respiratory failure," says Armanios. "We don't think anyone has ever before linked this phenomenon to stem cell failure or senescence."

In their study, the researchers genetically engineered mice to have a telomere defect that impaired the telomeres in just the lung stem cells in the alveolar epithelium, the layer of cells that lines the air sacs. "In bone marrow or other compartments, when stem cells have short telomeres, or when they age, they just die out," Armanios says. "But we found that instead, these alveolar cells just linger in the senescent stage."

Read this article:
Premature aging of stem cell telomeres, not inflammation, linked to emphysema

The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks …

Costa Mesa and Sherman Oaks, California (PRWEB) March 31, 2015

The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.

The seminars will be held on Wednesday, April 8, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Ayres Hotel & Suites Costa Mesa/Newport Beach, 325 Bristol Street, Costa Mesa, CA 92626; and Wednesday, April 22, 2015, at 11:00 am, 1:00 pm and 3:00 pm at Hampton Inn, 5638 Sepulveda Blvd., Sherman Oaks, CA 91411. Please RSVP at (949) 679-3889.

The Irvine Stem Cell Treatment Center (Irvine and Westlake), along with sister affiliates, the Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages; Sarasota, Florida) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and Degenerative Orthopedic Joint Conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.

Also, you can listen and call into our new radio show, The Stem Cell Show, hosted by Dr. Gionis on TalkRadio 790 AM KABC, Sundays @ 4pm PST, or worldwide on KABC.com ("Listen Live" at 4pm PST) or the KABC app available on the App Store or Google Play.

About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Irvine and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.IrvineStemCellsUSA.com, http://www.MiamiStemCellsUSA.com, or http://www.NYStemCellsUSA.com; http://www.TheStemCellShow.com.

Go here to see the original:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Costa Mesa and Sherman Oaks ...

Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

(SACRAMENTO, Calif.) - The state stem cell agency, California Institute for Regenerative Medicine (CIRM),awarded a pair of grants totaling more than $7 million to UC Davis School of Medicine researchers who are working to develop stem cell therapies for spina bifida and chronic diabetic wounds. The funding is part of what the agency considers "the most promising" research leading up to human clinical trials using stem cells to treat disease and injury. Diana Farmer, professor and chair of surgery at UC Davis Medical Center, is developing a placental stem cell therapy for spina bifida, the common and devastating birth defect that causes lifelong paralysis as well as bladder and bowel incontinence. She and her team are working on a unique treatment that can be applied in utero - before a baby is born -- in order to reverse spinal cord damage. Roslyn Rivkah Isseroff, a UC Davis professor of dermatology, and Jan Nolta, professor of internal medicine and director of the university's Stem Cell Program, are developing a wound dressing containing stem cells that could be applied to chronic wounds and be a catalyst for rapid healing. This is Isseroff's second CIRM grant, and it will help move her research closer to having a product approved by the U.S. Food and Drug Administration that specifically targets diabetic foot ulcers, a condition affecting more than 6 million people in the country. The CIRM board, which met in Berkeley today, has high hopes for these types of research that the agency funded in this latest round of stem cell grants. "This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of CIRM's governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level." The CIRM grants are designed to enable the UC Davis research teams to transition from preclinical research to preclinical development over the next 30 months to be able to meet the FDA's rigorous safety and efficacy standards for Investigative New Drugs. As the former surgeon-in-chief at UCSF Benioff Children's Hospital, Farmer helped pioneer fetal surgery techniques for treating spina bifida before birth. The condition, also known as myelomeningocele, is one of the most common and devastating birth defects worldwide, causing lifelong paralysis as well as bowel and bladder incontinence in newborns. Farmer has been investigating different stem cell types and the best way to deliver stem cell-based treatments in the womb for the past six years. She and her research colleagues recently discovered a placental therapy using stem cells that cures spina bifida in animal models. That discovery requires additional testing and FDA approval before the therapy can be used in humans. With the CIRM funding, Farmer and her team plan to optimize their stem cell product, validate its effectiveness, determine the optimal dose and confirm its preliminary safety in preparation for human clinical trials. Isseroff, who also serves as chief of dermatology and director of wound healing services for the VA Northern California Health Care System, has long been frustrated by the challenges of treating the chronic, non-healing wounds of diabetics. In 2010, she and Nolta received a CIRM grant to begin developing a bioengineered product for treating chronic diabetic wounds. Foot ulcers, in particular, affect about 25 percent of all diabetic patients and are responsible for most lower-limb amputations. Isseroff and her research team created a treatment using stem cells derived from bone marrow (mesenchymal stem cells) along with a FDA-approved scaffold to help regenerate dermal tissue and restart the healing process. Their studies found the technique to be highly effective for healing wounds in animal models. With this latest CIRM grant, Isseroff's team will refine their therapeutic technique by determining the safest dosage for regenerating tissue and testing their product in skin-wound models that closely resemble those in diabetic humans. Nolta also plans to create a Master Cell Bank of pure and effective human mesenchymal stem cells, and establish standard operating procedures for use in diabetic wound repair. The results of their efforts will enable UC Davis to move closer to FDA approval for human clinical trials in the next two and a half years. "These amazing research efforts are giant steps forward in turning stem cells into cures," said Nolta, who also directs the UC Davis Institute for Regenerative Cures in Sacramento. "This preclinical research is the most crucial, and often the toughest, stage before we move scientific discoveries from the laboratory bench to the patient's bedside. We are now poised as never before to make a big difference in the lives of people with spina bifida and non-healing diabetic wounds." For more information, visit UC Davis School of Medicine at http://medschool.ucdavis.edu.

Go here to read the rest:
Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

G-CSF: From granulopoietic stimulant to bone marrow stem …

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

Read more:
G-CSF: From granulopoietic stimulant to bone marrow stem ...

My message in a bottle, writes Lisa Ray

My bone marrow began sending me messages long before I Learned to listen..I was exhausted, pale, drained, and tired all of the time. I eventually landed myself in the emergency room, and was handed a full membership to the cancer club. I was diagnosed with multiple myeloma, an incurable blood cancer.

My bone marrow began sending me messages long before I Learned to listen..I was exhausted, pale, drained, and tired all of the time. I eventually landed myself in the emergency room, and was handed a full membership to the cancer club. I was diagnosed with multiple myeloma, an incurable blood cancer.

That was June 23, 2009.

As it turned out I was very fortunate. I beat the statistical odds and circumstances were in my favour. After four months of chemo and steroids, I was able to use my own stem cells in what is called an autologous stell cell transplant.

My stem cell transplant was a journey to my very core. It's like witnessing a rebirth. It's awe-inspiring and essential. Visualizing those 'yellow' cells stream their way back into my bone marrow opened my eyes to the singular power stem cells bring into our world.

But I was also reminded of Michael Pinto the undertaker in Bombay.

'Grave Problems Resurrected here'

That's so not gonna happen. Not on my resurrection.

My passage through illness taught me that the knowledge of the curative properties of stem cells needs to be shared to offer hope of renewed life. If you knew what medical science can do with stem cells, and if you saw what I did in the labs, through microscropes, you too would feel like using both hands to scoop those secrets out into the world.

Occasionally I gloss over my past cancer club membership--my treatment, my illnessbut then I am remember what a profound reboot my body has gone through, and I remember why. It's true that the deepest crises are moments of great opportunity; an event that shocks you into seeing with your heart. It is a place that combines survival with celebration.

Read the original:
My message in a bottle, writes Lisa Ray

Stem cells may improve tendon healing, reduce retear risk in rotator cuff surgery

An injection of a patient's bone marrow stem cells during rotator cuff surgery significantly improved healing and tendon durability, according to a study presented today at the 2015 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS).

Each year in the U.S., more than 2 million people have rotator cuff surgery to re-attach their shoulder tendon to the head of the humerus (upper arm bone). Rotator cuff tears can occur during a fall or when lifting an extremely heavy object; however, most tears are the result of aging and overuse.

The French study, of which a portion appeared in the September 2014 issue of International Orthopaedics, included 90 patients who underwent rotator cuff surgery. Researchers tried to make the two groups as equivalent as possible based on rotator cuff tear size, tendon rupture location, dominate shoulder, gender and age. Forty-five of the patients received injections of bone marrow concentrate (BMC) mesenchymal stem cells (MSCs) at the surgical site, and 45 had their rotator cuff repaired or reattached without MSCs.

Patient ultrasound images were obtained each month following surgery for 24 months. In addition, MRI images were obtained of patient shoulders at three and six months following surgery, and at one year, two years, and 10 years following surgery.

At six months, all 45 of the patients who received MSCs had healed rotator cuff tendons, compared to 30 (67 percent) of the patients who did not receive MSCs. The use of bone marrow concentrate also prevented further ruptures or retears. At 10 years after surgery, intact rotator cuffs were found in 39 (87 percent) of the MSC patients, but just 20 (44 percent) of the non-MSC patients.

In addition, "some retears or new tears occurred after one year," said Philippe Hernigou, MD, an orthopaedic surgeon at the University of Paris and lead study author. "These retears were more frequently associated with the control group patients who were not treated with MSCs.

"While the risk of a retear after arthroscopic repair of the rotator cuff has been well documented, publications with long-term follow-up (more than three years) are relatively limited," said Dr. Hernigou. "Many patients undergoing rotator cuff repair surgery show advanced degeneration of the tendons, which are thinner and atrophic (more likely to degenerate), probably explaining why negative results are so often reported in the literature, with frequent post-operative complications, especially retear. Observations in the MSC treatment group support the potential that MSC treatment has both a short-term and long-term benefit in reducing the rate of tendon retear."

Story Source:

The above story is based on materials provided by American Academy of Orthopaedic Surgeons. Note: Materials may be edited for content and length.

Here is the original post:
Stem cells may improve tendon healing, reduce retear risk in rotator cuff surgery

One year after cancer diagnosis, Bay Area girl continues to highlight need for Asian bone marrow donors

Beneath several blankets and a stuffed giraffe in her UC San Francisco hospital bed, 11-year-old Myla Cunanan is resting after a morning of dialysis to treat a kidney-related complication from her bone marrow transplant last year.Myla is sedated and tired, but not enough to silence her spritely personality.Mom, you put the cover on backwards! she exclaimed, disassembling her iPhone from its case and flipping it around as her mother, Leyna Cunanan, laughed and lovingly stroked the hand of her youngest daughter.She makes us all brave around her, Leyna said of her daughter. She knows that there is a purpose for her for being here. Tuesday marked one year to the day since Myla was diagnosed with myeloid sarcoma, a rare cancer in which a solid collection of leukemic cells occur outside of the bone marrow. The last year also thrust Myla into the spotlight as she and her family sought to find a bone marrow donor, a mission that turned out to be impossible due to a severe lack of Asian donors worldwide.Myla is Filipino-American, and when doctors told her after three rounds of chemotherapy in spring 2014 that she urgently needed a bone marrow transplant, her family learned just how difficult it is to find a match.In fact, Asians comprise just 6 percent of donors with Be The Match Registry, the largest and most diverse marrow registry in the world.The rarer your ethnic subtype is, at least in the U.S., the less likely we are to find you a good donor, said Dr. Christopher Dvorack, who has treated Myla since last year and is an assistant professor of clinical pediatrics in the Division of Allergy, Immunology, and Blood and Marrow Transplant at UC San Francisco.Last summer, her family registered about 300 donors through drives at their church, Mylas school and local shopping centers, and shared Mylas plight on social media with a photo of Myla holding a sign that reads, Will you marrow me?But a match was not found, and by August, doctors told Mylas family they would need to use a half-match donor, which was Mylas father.There are two main ways to donate bone marrow. The first is to have needles inserted into hip bones to extract a small amount of bone marrow. The second requires four days of injections of medicine designed to stimulate bone marrow and cause it to release stem cells from the bone marrow into the blood.The problem with half-match donors is the patients immune system can reject the donated bone marrow, which is what happened to Myla, Dvorack explained.She initially did well, she then later developed a complication that has kept her in the hospital, he said.The complication, thrombotic microangiopathy with renal involvement, means Mylas kidneys function less than 15 percent. She was subsequently diagnosed as chronic kidney disease Stage 5, and has been receiving hemodialysis several times a week.But her family remain advocates for the need for more bone marrow donors, particularly among ethnic minorities.We didnt find a match for Myla ... but we would like to continue to [hold] drives for other patients, her mother said.Ruby Law, a recruitment director for the Asian American Donor Program based in Alameda, worked with Myla and her family last year to seek a donor and said their efforts have extended beyond simply finding a match.Mylas family is very passionate about raising awareness of marrow and blood stem cell donation, Law said.Since Mylas most recent hospitalization, which began a week before Thanksgiving, her mother has lived with her at UCSF. Myla was among the 126 patients transferred from the UCSF Parnassus Campus to the new complex at Mission Bay on Feb. 1.Recently, Myla has been writing a book to help other kids going through similar journeys.When you read this book, I want you to think positive always, the last line of the opening letter states.And that pretty much sums up Mylas attitude, according to her doctor and family. Despite having been hospitalized for the majority of the past year, Myla insists she has plenty to be thankful for. While hospitalized, Myla has held book, bracelet and band-aid drives.There are days, of course, when she doesnt feel good, her mother said. But she always thinks about other people. She likes to give.To sign up as a donor, visit http://www.aadp.org or call (510) 568-3700.

Here is the original post:
One year after cancer diagnosis, Bay Area girl continues to highlight need for Asian bone marrow donors

Lung Institute Announces New Treatment with Bone Marrow

Tampa, FL. (PRWEB) March 26, 2015

This month, the Lung Institute has started treating people suffering from chronic lung diseases with stem cells extracted from their bone marrow. This treatment protocol is added to the two other treatment options offered by the Lung Institute: venous (blood-derived) and adipose (fat-derived) stem cell therapy.

The bone marrow and adipose treatments offer the highest concentration of stem cells and allow for the cells to be reintroduced directly into the lungs through a nebulizer. Given this added benefit, most patients in the past opted to receive the adipose treatment over venous. However, many patients have other medical conditions that preclude them from choosing the adipose treatment. Since the number of stem cells harvested from a bone marrow procedure matches that of the adipose procedure, patients that have previously only qualified for the venous procedure are now eligible for a treatment option that produces the highest chance of success.

Patients are often surprised by the simplicity of these minimally invasive procedures, but with cutting-edge technology and the patient-centric clinical team at the Lung Institute, patients can rest assured that they are in good hands. Throughout the entire treatment process, patients have the opportunity to get any questions immediately answered by our knowledgeable medical staff. The Lung Institute clinical team remains in contact with patients after treatment and works together with the patients physician and pulmonologist to create a strong support system for the patient.

About the Lung Institute At the Lung Institute, we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve their quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook, follow us on Twitter or call us today at (855) 313-1149.

Continue reading here:
Lung Institute Announces New Treatment with Bone Marrow

Stem cells may significantly improve tendon healing, reduce retear risk in rotator cuff surgery

LAS VEGAS, March 26, 2015 /PRNewswire-USNewswire/ -- An injection of a patient's bone marrow stem cells during rotator cuff surgery significantly improved healing and tendon durability, according to a study presented today at the 2015 Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS).

Each year in the U.S., more than 2 million people have rotator cuff surgery to re-attach their shoulder tendon to the head of the humerus (upper arm bone). Rotator cuff tears can occur during a fall or when lifting an extremely heavy object; however, most tears are the result of aging and overuse.

The French study, of which a portion appeared in the September 2014 issue of International Orthopaedics, included 90 patients who underwent rotator cuff surgery. Researchers tried to make the two groups as equivalent as possible based on rotator cuff tear size, tendon rupture location, dominate shoulder, gender and age. Forty-five of the patients received injections of bone marrow concentrate (BMC) mesenchymal stem cells (MSCs) at the surgical site, and 45 had their rotator cuff repaired or reattached without MSCs.

Patient ultrasound images were obtained each month following surgery for 24 months. In addition, MRI images were obtained of patient shoulders at three and six months following surgery, and at one year, two years, and 10 years following surgery.

At six months, all 45 of the patients who received MSCs had healed rotator cuff tendons, compared to 30 (67 percent) of the patients who did not receive MSCs. The use of bone marrow concentrate also prevented further ruptures or retears. At 10 years after surgery, intact rotator cuffs were found in 39 (87 percent) of the MSC patients, but just 20 (44 percent) of the non-MSC patients.

In addition, "some retears or new tears occurred after one year," said Philippe Hernigou, MD, an orthopaedic surgeon at the University of Paris and lead study author. "These retears were more frequently associated with the control group patients who were not treated with MSCs.

"While the risk of a retear after arthroscopic repair of the rotator cuff has been well documented, publications with long-term follow-up (more than three years) are relatively limited," said Dr. Hernigou. "Many patients undergoing rotator cuff repair surgery show advanced degeneration of the tendons, which are thinner and atrophic (more likely to degenerate), probably explaining why negative results are so often reported in the literature, with frequent post-operative complications, especially retear. Observations in the MSC treatment group support the potential that MSC treatment has both a short-term and long-term benefit in reducing the rate of tendon retear."

Study abstract

View 2015 AAOS Annual Meeting disclosure statements

About AAOS

Read the rest here:
Stem cells may significantly improve tendon healing, reduce retear risk in rotator cuff surgery

TSRI Team Discovers Enzyme that Keeps Blood Stem Cells Functional to Prevent Anemia

Contact Information

Available for logged-in reporters only

Newswise LA JOLLA, CA March 23, 2015 Stem cells can generate any type of cell in the body, but they are inactive most of the timeand for good reason. When stem cells become too active and divide too often, they risk acquiring cell damage and mutations. In the case of blood stem cells (also called hematopoietic stem cells or HSCs), this can lead to blood cancers, a loss of blood cells and an impaired ability to fight disease.

Now scientists at The Scripps Research Institute (TSRI) have found that a particular enzyme in HSCs is key to maintaining healthy periods of inactivity. Their findings, published recently in the journal Blood, show that animal models without this enzyme experience dangerous HSC activation and ultimately succumb to lethal anemia.

These HSCs remain active too long and then disappear, said TSRI Associate Professor Karsten Sauer, senior author of the new study. "As a consequence, the mice lose their red blood cells and die."

With this new understanding of the enzyme, called Inositol trisphosphate 3-kinase B (ItpkB), scientists are closer to improving therapies for diseases such as bone marrow failure syndrome, anemia, leukemia, lymphoma and immunodeficiencies.

Stem Cells Need Rest

HSCs are a type of adult stem cell that live in little niches in the bone marrow. They are normally inactive, or quiescent, and only divide to self-renew about every two months.

However, when mature blood cells are lost, for example through severe bleeding or during infections, HSCs become activated to generate new progenitor cellsthe cells that replenish the blood supply and produce immune cells to fight disease. Once the blood cells have been replenished, the HSCs become quiescent again.

The balance between inactivity and activity is important because HSC activation generates side products that harm HSCs. In addition, every division introduces a risk of mutation, sometimes leading to cancer. Its like a car wearing down its own engine while it is doing its work, said Sauer. "Like people, HSCs need long periods of rest to remain healthy and work well."

Link:
TSRI Team Discovers Enzyme that Keeps Blood Stem Cells Functional to Prevent Anemia

Asymmetrex Opens Up 5th World Congress on Cell and Stem Cell Research in Chicago with a Focus on Its New Technologies …

Boston, MA (PRWEB) March 24, 2015

The opening keynote address presented by Asymmetrex, LLC to an assembled audience of about 100 international experts in stem cell science, medicine, and engineering challenged attendees to consider whether the past 10 years of rapid growth of heterologous stem cell transplantation trials was the best path to achieving effective regenerative medicines. Among the participants there were a number of clinical and industry experts who pursued heterologous stem cell treatments. To a large extent, heterologous stem cell transplantation treatments involve evaluating bone marrow-derived or fat-derived cells as possible therapies for illnesses and disorders in other organs and tissues. Sherley suggested that such clinical trials were motivated primarily by the easier access and greater availability of these types of cell preparations instead of good biological rationale. This intentional provocation got the conference off to energetic discussion that continued throughout the day.

As the co-chair of the conferences first-days focus on stem cell medical engineering, Sherley shared with attendees Asymmetrexs essential technological basis, which is the asymmetric self-renewal of adult tissue stem cells. Sherley related how all Asymmetrexs innovative technologies for advancing stem cell medicine were derivative of the companys superior research position on asymmetric self-renewal, which is the unique property of adult tissue stem cells that defines their function in the body. Adult tissue stem cells multiply to continuously replenish expired mature tissue cells without losing their own stem cell identity. Because embryonic stem cells and induced pluripotent stem cells do not have asymmetric self-renewal, they are incapable of providing lasting cellular therapies.

Sherley described how each of Asymmetrexs patented technologies for stem cell medicine was based on asymmetric self-renewal. Asymmetrex holds patents for the only method described for routine production of natural human tissue stem cells that retain their normal function. The company also holds patents for biomarkers that can be used to count tissue stem cells for the first time. The companys most recently developed technology was invented with computer-simulation leader, AlphaSTAR Corporation. In partnership, the two companies created a first-of-its-kind method for monitoring adult tissue stem cell number and function for any human tissue that can be cultured. This advance is the basis for the two companies AlphaSTEM technology for detecting adult tissue stem cell-toxic drug candidates before conventional preclinical testing in animals or clinical trials. Asymmetrex and AlphaSTAR plan to market the new technology to pharmaceutical companies. The implementation of AlphaSTEM technology would accelerate drug development and reduce adverse drug events for volunteers and patients. At full capacity use, AlphaSTEM could reduce U.S. drug development costs by $4-5 billion each year.

About Asymmetrex (http://asymmetrex.com/)

Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. Asymmetrexs founder and director, James L. Sherley, M.D., Ph.D. is an internationally recognized expert on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells for disease research purposes. Currently, Asymmetrexs focus is employing its technological advantages to develop facile methods for monitoring adult stem cell number and function in clinically important human tissues.

Read more from the original source:
Asymmetrex Opens Up 5th World Congress on Cell and Stem Cell Research in Chicago with a Focus on Its New Technologies ...

Altering mechanical properties of cell environments to produce desired chemical outputs

3 hours ago by Denis Paiste MIT biological engineering graduate student Frances Liu works with a spiral-shaped inertial microfluidic separation device for separating stem cell populations in the Laboratory for Material Chemomechanics at MIT. This device was adapted from previous designs to separate cells as a function of diameter. Liu also grows bone marrow-derived stem cells and studies how those stem cells release certain chemicals in response to mechanical interactions with materials in the surrounding environment. Credit: Denis Paiste/Materials Processing Center

Researchers in MIT Associate Professor Krystyn J. Van Vliet's group last year showed that three biomechanical and biophysical markers could accurately identify the most desirable stem cells from a mixed group of bone marrow-derived cells. Now, MIT biological engineering graduate student Frances Liu is trying to advance that work by understanding how to alter the stem cells' physical environment to get them to produce the most desirable chemical output.

The bone marrow cells secrete special chemicals called cytokines that are needed in the body to repair bone tissue, fat tissue, and connective tissue like cartilage. "These so-called factors that the cells produce are associated with those tissue growth functions and tissue repair functions," Van Vliet says.

Liu grows bone marrow-derived stem cells and studies how those stem cells release certain chemicals in response to mechanical interactions with materials in their surrounding environment. "I would like to manipulate the cells, using cell-material interactions, or synthetic materials, to produce certain chemicals beneficial to tissue repair," Liu explains in the Laboratory for Material Chemomechanics at MIT. "Right now we are in the characterization phase, quantifying which and how much of different cytokines the cells secrete in response to different chemical and mechanical cues that we provide. Down the line, we aim to engineer those cytokine profiles using cell-material interactions." Liu, 24, is a third-year PhD student and expects to complete her doctorate in 2017. She received her bachelor of science degree in biomedical engineering from Brown University.

Liu is examining how various groups of stem cells differ in response to lab-controlled changes in their environment in ways that might be important for tissue repair in the body. "Frances is determining the correlations between the mechanical properties of the materials the cells interact with and the chemical factors that they produce in response to that chemomechanical coupling," Van Vliet says.

Heterogeneous cellular factories

"You can think of the cells as factories; they're factories of chemicals," Van Vliet explains. "One of the main ways you change the way that factory operates is you change the material properties of its environment. How stiff that environment is, how acidic that environment is, how rough that environment is, all of those characteristics of the cell's outside world can directly correlate with the chemicals that that cell produces. We don't really understand all of why that happens yet, but part of Frances' thesis is to understand these particular stem cells and the subpopulations within them."

While other researchers previously studied mechanical factors such as stiffness on the function of these mesenchymal (bone marrow-derived) stem cells, it wasn't widely recognized that they were examining a mixed population of cells, not a single well-defined cell population. "Some of them were stem cells, but some were not," Van Vliet says.

One way that Liu sorts her stem cells into groups is using an inertial microfluidic separation device that separates cells of large diameter cells from those of small diameter. This device was adapted from previous designs of their collaborator, MIT Professor Jongyoon Han, as part of the interdisciplinary team that Van Vliet leads within the Singapore-MIT Alliance for Research and Technology (SMART). The group showed in a 2014 paper that three markerssize, mechanical stiffness, and how much the nucleus inside the cell moves aroundare sufficient to identify stem cells in a heterogeneous population of chemically similar but non-stem cells. "We measured those three properties as well as several other properties, but only those three properties together, that triplet of properties, distinguished a stem cell from a non-stem cell," Van Vliet says.

By using the microfluidic device, we can better understand the differences between the subpopulations of these heterogeneous bone marrow cells and which cytokines each subpopulation may be secreting, both in the body and in the lab.

Here is the original post:
Altering mechanical properties of cell environments to produce desired chemical outputs

Stem cell treatment for knee arthritis shows promising results

FREDERICK, Md., March 23, 2015 /PRNewswire-USNewswire/ --Recent studies employing adult stem cells obtained from bone marrow and fat have been used in patients suffering from osteoarthritis of the knee. Results have indicated not only symptomatic improvement but also suggest that cartilage healing and regeneration may be taking place.

According to Director, Dr. Nathan Wei of the Arthritis Treatment Center, "Osteoarthritis options in the past have been limited to symptom relief. We are now entering an era where we have therapies that may also rebuild lost cartilage."

Osteoarthritis (OA) of the knee affects more than 20 million Americans. It is a disease due to loss of cartilage, the gristle that caps the ends of long bones and provides cushioning and shock absorption.

He goes on to say, "by administering adult stem cells, in a certain fashion, we may be able to restore lost cartilage. While this action has been demonstrated in multiple animal models, it has only been described in anecdotal reports in humans. Fortunately, we are now conducting clinical studies that are much better controlled and more scientifically valid."

Dr. Wei adds, "The positive effect on arthritis is not only due to multiplication, division, and transformation of the stem cell into cartilage, but it is also due to the fact the stem cell releases proteins that attract other reparative cells to the area. This is called the 'paracrine' effect."

"We are excited about the early results of our investigation and hope the results will continue to be positive. If so, I hope that knee replacement surgery might become a thing of the past," he concludes.

Dr. Wei is a board-certified rheumatologist and regenerative medicine expert. He is director of the Arthritis Treatment Center located in Frederick, Maryland.

http://www.arthritistreatmentcenter.com

SOURCE Arthritis Treatment Center

Continue reading here:
Stem cell treatment for knee arthritis shows promising results

How stem cells can fix a broken heart with just one jab

The pioneering treatment involves cells taken from a patients own body Theseare then reinjected into their heart to repair damaged muscle Could improve quality of life for patients suffering from heart failure This is caused by heart failing to pump enough blood around the body at the right pressure

By Roger Dobson and Katherine Keogh For The Mail On Sunday

Published: 17:16 EST, 21 March 2015 | Updated: 18:15 EST, 21 March 2015

144 shares

18

View comments

A pioneering treatment that uses stem cells to repair a broken heart could transform the lives of people with a potentially fatal cardiac condition.

The 15-minute procedure involves cells taken from a patients own body, which are then reinjected into their heart to repair damaged muscle.

It is hoped that the procedure could improve the quality of life for patients suffering from heart failure, which affects 900,000 people in the UK.

The condition is caused by the heart failing to pump enough blood around the body at the right pressure, because the muscle has become too weak or stiff to work properly. It causes breathlessness and extreme tiredness, and can even lead to sudden death.

Here is the original post:
How stem cells can fix a broken heart with just one jab

Newcastle student helps save a life through becoming a donor

A student who gave the gift of life today urged more people to become bone marrow donors.

Matthew Bowker thought nothing about donating his bone marrow when it turned out he was a match to a patient desperately in need of help.

Matthew, a second year medical student at Newcastle University, agreed to undergo the donation procedure, and has never looked back since.

He said: It was all incredibly simple and I cant speak highly enough about the staff at Anthony Nolan who supported me throughout.

Anthony Nolan is the blood cancer charity behind the worlds first bone marrow donor register.

The organisation has now signed-up to support this summers British Transplant Games, which will take place at venues across the North East between July 30 and August 2.

Matthew, 23, said: For four days in a row, I had a nurse come round and give me a simple injection and then I went to London where I was attached to a machine which then took some stem cells. And that was it.

Matthew believes more people should sign the register in order to help.

Anthony Nolan has launched the Marrow year this academic year, announcing that one in five donors are recruited at universities.

This is because the students are perfect recruitment age and in general are young, fit, healthy people.

View original post here:
Newcastle student helps save a life through becoming a donor

Watching over birth rates

The birth and engraftment of a blood stem cell | Boston Children's Hospital

When a patient receives a bone marrow transplant, the transplanted blood stem cells find their home, begin dividing and establish themselves in the body much like natural blood stem cells do. This zebrafish animation illustrates findings from the Stem Cell Research Program at Boston Children's Hospital that reveal this natural process for the first time, providing clues that will help scientists improve bone marrow transplants. Leonard Zon, MD, and colleagues published their full findings in the January 15, 2015 issue of Cell. Learn more: January 15, 2015 issue of Cell:

Happy Birthday Song Oh my genius brings u the most exciting and enjoyable birthday song for children.

Palmistry is also used to provide some important information about children. If you don't have your Janma Kundali, palmistry can help you to know whether you...

Subscribe to the KidsAnimations Youtube Channel - https://www.youtube.com/user/kidsanimations Click here to Watch our other God's & Goddess Of India Stories - https://www.youtube.com/watch?v=aXBZmFggZew&list=PLfv3tA5AoEjAWJlpkbjSfB2zt_nc9-1jn Become a KidsAnimations Fan on Facebook: https://www.facebook.com/superaudiomadras?ref=hl Playlists Hitopadesha Tales - https://www.youtube.com/watch?v=10dFGfFMXTg&list=PLfv3tA5AoEjBcrtyQ6iD3nSWPdUE1-UEz Prithviraj Chauhan Stories - https://www.youtube.com/watch?v=HgoFdV7l2mM&list=PLfv3tA5AoEjAjRUeOB_QH7Fq0-v56_MXm Akbar and Birbal Stories - https://www.youtube.com/watch?v=8RRgThKVvqY&list=PLfv3tA5AoEjDWDxKMXVCAdZY1P0irtNTf GIVE YOUR KIDS A BEST START IN LIFE.. THANKS FOR WATCHING FOR ONLINE PURCHASE VISIT US AT http://www.musicandchants.com/ Connect with us: google+: https://plus.google.com/111059833508006709219/posts facebook: https://www.facebook.com/superaudiomadras?ref=hl twitter: https://twitter.com/musicandchants Find us on http://www.pinterest.com/navindaswani5/ Hanuman (IPA: /hnmn/) is a Hindu god, who was an ardent devotee of Rama according to the Hindu legends. He is a central character in the Indian epic Ramayana and its various versions. He also finds mentions in several other texts, including Mahabharata, the various Puranas and some Jain texts. A vanara (monkey-like humanoid), Hanuman participated in Rama's war against the demon king Ravana. Several texts also present him as an incarnation of Lord Shiva. He is the son of Vayu, who according to several stories, played a role in his birth.

This is a reading and brief explanation of the poem by Anne Bradstreet and is intended for educational use only.

Old skool hip hop.

Share on Facebook - http://goo.gl/xvlMfo Tweet about this - http://goo.gl/VyFzby Share on g+ - http://goo.gl/BSCS5g The Bible is one continuous story made up of smaller, pivotal stories. Our collection of Bible stories highlight the simple yet intense truths found in the Bible. Each story is animated in a simple style to help the children understand the Bible better. These inspiring stories are narrated in a beautiful manner which will provide good moral values and lessons to children. Subscribe to this channel and stay tuned: http://www.youtube.com/subscription_center?add_user=rajshrikids Like our Facebook Page: http://www.facebook.com/rajshrikids Follow us on g+: https://plus.google.com/+rajshrikids

This talk was given at a local TEDx event, produced independently of the TED Conferences. Anita Collins shares how learning music influences our brain development, and what this means for musical education. Anita Collins was handed a clarinet at the age of 9, and it changed her life. This single event dictated her future career as a musician, music educator and academic. About TEDx, x = independently organized event In the spirit of ideas worth spreading, TEDx is a program of local, self-organized events that bring people together to share a TED-like experience. At a TEDx event, TEDTalks video and live speakers combine to spark deep discussion and connection in a small group. These local, self-organized events are branded TEDx, where x = independently organized TED event. The TED Conference provides general guidance for the TEDx program, but individual TEDx events are self-organized.* (*Subject to certain rules and regulations)

Join us as Grand Old Holy teaches lessons and stories from The Bible. Learn more about us at: http://fawesome.ifood.tv/. A carpenter named Joseph was soon to...

Continue reading here:
Watching over birth rates

With a little help from my friends fundraising concert | Frankston TV – Video


With a little help from my friends fundraising concert | Frankston TV
We would like to thank all the artists who performed at the fundraising concert for Wayne Higgins on Sunday the 15th of March. EVERYONE, including Glenn Shorrock, Mike Rudd, Andrew Wishart,...

By: Frankston TV

Read the rest here:
With a little help from my friends fundraising concert | Frankston TV - Video

Measuring treatment response proves to be a powerful tool for guiding leukemia treatment

Measuring the concentration of leukemia cells in patient bone marrow during the first 46 days of chemotherapy should help boost survival of young leukemia patients by better matching patients with the right intensity of chemotherapy. St. Jude Children's Research Hospital investigators led the research, which appears in the March 20 edition of the journal Lancet Oncology.

The findings stem from a study of 498 children and adolescents with acute lymphoblastic leukemia (ALL) enrolled in a St. Jude-led protocol between 2000 and 2007. The clinical trial was the first to use measurement of residual leukemia cells -- or minimal residual disease (MRD) -- in bone marrow to help guide therapy. St. Jude pioneered MRD measurement as a tool to guide leukemia treatment.

"This analysis shows that MRD-directed therapy clearly contributed to the unprecedented high rates of long-term survival that patients in this study achieved," said first and corresponding author Ching-Hon Pui, M.D., chair of the St.Jude Department of Oncology. Overall, 93.5 percent of patients were alive five years after their cancer was diagnosed. "MRD proved to be a powerful way to identify high-risk patients who needed more intensive therapy and helped us avoid over-treatment of low-risk patients by reducing their exposure to chemotherapy," Pui said.

Researchers hope the findings will expand use of MRD measurements to guide leukemia treatment in children and adults.

The technique might also help identify patients who could be cured with less intensive chemotherapy, Pui said. Overall long-term survival was 97.9 percent or better for 244 patients in this study classified as low risk based on a variety of factors including their age at diagnosis and MRD of less than 1 percent on day 19 of treatment. "Given the excellent outcome, it will be important to determine if treatment can be further reduced in this subgroup of patients," Pui said.

In countries with limited resources, Pui said the findings suggest that results of MRD on day 19 can be used to reduce treatment-related deaths by identifying patients who will likely be cured with low-intensity chemotherapy. "This study demonstrates these patients have an extremely low risk of relapse," he said.

The study showed that measuring MRD just twice during remission induction therapy -- at day 19 and day 46 -- rather than multiple times during the more than two years of treatment was sufficient to guide treatment of most pediatric ALL patients. That will help save money and protect patients from the discomfort and risks associated with bone marrow aspiration for MRD testing. MRD measurements should continue, however, to guide treatment of patients with detectable MRD on day 46 of treatment. That is a level of 0.01 percent or more, which translates into one leukemia cell in 10,000 normal cells.

MRD was not a perfect predictor of relapse risk. Cancer returned in 26 of the 430 patients with undetectable MRD when treatment ended after 120 weeks. Researchers are working to develop even more sensitive methods for tracking treatment response in order to identify those at risk for having their cancer return.

Overall, researchers showed that regardless of other risk factors, including age at diagnosis or the initial white blood cell count, patients with an MRD level of 1 percent or more on day 19 of therapy were far less likely than other young leukemia patients to be alive and cancer-free 10 years later. Having detectable leukemia cells on day 46 of treatment was also associated with lower survival.

MRD levels on days 19 and 46 led to the reclassification of 50 patients from low risk to a higher risk leukemia that warranted more intensive therapy. Researchers credited the change with boosting survival.

Continue reading here:
Measuring treatment response proves to be a powerful tool for guiding leukemia treatment

Chicago Physician Helps Launch Bone Marrow Unit in Bangalore

Contact Information

Available for logged-in reporters only

Newswise A bone marrow transplant can mean the difference between life and death for people with blood cancers and related disorders. But many patients in India cant afford the high treatment costs, and for them a transplant is not an option. This is changing thanks to a newly launched bone marrow transplant unit at M.S. Ramaiah Medical College in Bangalore.

The five-bed unit, which opened last month, was established by local physicians and hospital administrators working with Dr. Damiano Rondelli, director of the blood and marrow transplant program at the University of Illinois Hospital & Health Sciences System.

Bone marrow transplants in India are done mainly at nonacademic institutions and can be prohibitively expensive. Clinical standards, including infection control, can vary at these unaccredited transplant programs.

Ramaiah aims to become the first internationally accredited bone marrow transplant program in India. It will provide transplantation under high standards of care and at a significantly lower cost. The service will be subsidized by revenues from the for-profit hospital associated with the medical college.

Its a very nice model -- sustainable, and every patient gets the same treatment, regardless of what they can pay, said Rondelli.

Rondelli first visited Ramaiah in October at the invitation of his colleague Bellur S. Prabhakar, professor and head of microbiology and immunology and associate dean for technological innovation and training at the University of Illinois at Chicago College of Medicine. Prabhakar had been meeting with leaders at Ramaiah to discuss working together through UICs Center for Global Health.

One of the things they wanted to do was to establish a world-class bone marrow transplantation unit, said Prabhakar.

The need for bone marrow transplantation is high in India, a country of more than a billion people. Southeast Asians have a higher genetic risk for thalassemia, a disorder of hemoglobin, the molecule in red blood cells that carries oxygen and carbon dioxide to and from the tissues. Bone marrow transplantation is the only cure.

Read the original here:
Chicago Physician Helps Launch Bone Marrow Unit in Bangalore

UM stem cell research on heart may go national

Written by Lidia Dinkova on March 18, 2015

University of Miami stem cell research on generating healthy heart tissue in heart attack survivors is on track to be tested across the US.

The National Heart, Lung and Blood Institute, part of federal medical research arm the National Institutes of Health, is to fund the $8 million cost if the trial wins necessary approvals.

The trial, the first of this research in humans, is a step toward restoring full heart function in heart attack survivors.

The research developed at the UM Miller School of Medicines Interdisciplinary Stem Cell Institute is on combining two types of stem cells to generate healthy heart tissue in heart attack survivors. Scientists have in the past studied using one type of stem cell at a time, a method thats worked OK, said Dr. Joshua Hare, founding director of the UM stem cell institute.

But UM research shows that combining two types of stem cells expedites healing and regeneration of healthy heart muscle.

We could remove twice the scar tissue than with either cell alone, Dr. Hare said. We had some scientific information that they actually interacted and worked together, so we tested that. It worked.

Researchers combined mesenchymal stem cells, usually generated from human bone marrow, and cardiac stem cells, isolated from a mammals heart.

Stem cells are cells that havent matured to specialize to work in a particular part of the body, such as the heart. Because these cells are in a way nascent, they have the potential to become specialized for a particular body function.

Doctors have been using stem cells to regenerate lost tissue from bones to heart muscle. The mesenchymal and cardiac stem cells each work well in generating healthy heart tissue in heart attack survivors, Dr. Hare said. Combining them expedites the process, according to the UM research.

See the original post here:
UM stem cell research on heart may go national

Teenager's quest to beat leukaemia inspires school friends to donate stem cells to help people in need

A TEENAGER'S quest to find a bone marrow match and beat his leukaemia has inspired school friends to go on to save the lives of two perfect strangers.

Jack Coen and Joe Rowbottom, both 18, were at Bradford Grammar School when fellow pupil Alex Anstess, now 16, was first diagnosed with Acute Myeloid Leukaemia in 2012.

After hearing a talk in school about registering on the Anthony Nolan Bone Marrow register, they - and others - signed up and both of them have gone on to successfully donate stem cells.

Jack, from Ilkley, who donated in October last year after being found to be a perfect match for a patient needing a bone marrow transplant, said: I just thought if you have the opportunity to save someones life then why not? If I was in that position, Id want someone to do it for me.

"On the day, I thought about the other person receiving my stem cells and hoped I could give them more Christmases with their family. If I never make another good decision for the rest of my life, I have at least made one good and worthwhile decision by donating."

And Joe, from Yeadon, who donated his stem cells last month, said: It was so easy to spit in a tube and sign up. It was weird to think a stranger was dependent on me and yet its such a small thing to do. It was actually surprising something so simple could save someones life. Knowing Alex spurred me on to donate because I knew what the person was going through. Its great to see Alex back at school and proves the donor register does work.

Although Alex, of Cullingworth, had gone into remission after his 2012 diagnosis, the cancer returned in July last year and doctors broke the news that his life depended on a bone marrow transplant. It was The Anthony Nolan Trust that found him a perfect match and he had the procedure in September last year, helping him on the road to recovery.

His mum, Sue, said: I cannot describe the feeling of seeing that little bag of stem cells come in for Alex. We waited a long time for that moment and Ill never forget the relief we felt. Were so thankful to the donor who literally saved his life. Its absolutely brilliant that Jack and Joe have gone on to donate and help another family like ours."

Bradford Grammar headteacher Kevin Riley said: The school motto is Hoc Age which we usually translate as Just do it. What a wonderful example Jack and Joe are of that determination to help others. Im proud of them and the other students who have responded to the appeal.

If you are aged 16-30 and in good health you too can sign up to the Anthony Nolan register at anthonynolan.org. To find out more about the Register & Be a Lifesaver programme, email registerandbe@AnthonyNolan.org or call 0207 284 8213.

Here is the original post:
Teenager's quest to beat leukaemia inspires school friends to donate stem cells to help people in need

Finn McEwen: Family's bone marrow appeal to help save seven-year-old with rare condition

A little boy with an extremely rare condition is in desperate need of a transplant to save his life.

Finn McEwen, seven, from Litherland has bone marrow failure and now his family are facing a race against time to find a stem cell match.

His condition, myelodysplastic syndrome, is extremely rare in children and cannot be treated with chemotherapy, so a transplant is Finns only hope.

His family, including dad Neil, 46, baby sister Seren, 18 months, and brother Lucas, 6, have all been ruled out as matches and Finn needs to have the transplant within the next six to eight weeks to have the best chance of recovery.

His mum Carole, 43, told the Liverpool Echo Finn has always been well and active, and it was a massive shock when doctors said he had the condition.

The family had to endure weeks of waiting after Finn suffered a serious nosebleed in January before doctors could find out what was wrong with him, as it is extremely difficult to diagnose.

Cry for help: A transplant is the only cure for the condition, which is caused by bone marrow not making enough healthy red blood cells

Carole said: Its been this massive rollercoaster, up and down. We couldnt believe it, it came from nowhere. We thought it was nothing and then thought it could be leukaemia, and then we had that couple of weeks where we thought it was going to be OK.

This is a hundred times worse than before. Every time we go in there seems to be an extra bit of bad news. It just feels like its your worst nightmare.

A transplant is the only cure for the condition, which is caused by bone marrow not making enough healthy red blood cells, white blood cells and platelets.

See the original post here:
Finn McEwen: Family's bone marrow appeal to help save seven-year-old with rare condition

David Harewood Launches Appeal For Black Stem Cell Donors

Former Homeland Star David Harewood Has Written An Online Article Urging Black U.k. Residents To Sign Up To The Stem Cell Donor Register.

The actor has teamed up with stem cell charity Anthony Nolan and the African-Caribbean Leukaemia Trust (ACLT) to launch an appeal encouraging young, black Brits to donate bone marrow so leukaemia sufferers in ethnic minorities have a better chance of receiving pioneering stem cell treatment.

Harewood has written an online article for Independent.co.uk in which he details the stem cell donation process for the African-Caribbean community, and encourages them to take part.

He writes, "The black population is badly underrepresented on the bone marrow register compiled by the blood cancer charity Anthony Nolan. In fact, there are 30 times more white people than African-Caribbean people willing to donate their stem cells in this country.

"The result of this? If you're black and have leukaemia then you have less than a 20 per cent chance of finding the best possible match when your last hope of survival is a lifesaving transplant from a stranger. We are literally dying, not because a matching donor isn't out there somewhere - but because that person never joined the register.

"This isn't right, and it urgently needs to change. It's horrible to think that if my daughters needed a transplant they would be at a disadvantage because there aren't enough black and mixed race donors on the register."

See the article here:
David Harewood Launches Appeal For Black Stem Cell Donors

The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Orlando, Florida (PRWEB) March 12, 2015

The Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

The seminars will be held on Tuesday, March 17, 2015, at 12:30 pm, 2:30 pm and 4:30 pm at Seasons 52, 7700 Sand Lake Road, Orlando, FL 32819. Please RSVP at (561) 331-2999.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages, FL), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, CA) and the Manhattan Regenerative Medicine Medical Group (Manhattan, NY), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.

Link:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orlando, Florida

Archives