Page 49«..1020..48495051..6070..»

Archive for the ‘Bone Marrow Stem Cells’ Category

Cell therapy firm in flurry of activity as hope nears for bone marrow … – The Times of Israel

The excitement at Jerusalem-based Gamida Cell, a maker of cell and immune therapy technologies, is palpable.

The biotechnology company has started enrolling patients for a last-stage clinical trial for a drug it believes will help increase the success of bone marrow transplants in blood cancer patients, and help them better withstand the ordeal of the lifesaving procedure.

The patients are being enrolled in the US, Spain, The Netherlands and Singapore. Should the results of the trial, as hoped, be positive, that would lead to the launch of a commercially available product in 2020, Gamida Cells CEO Yael Margolin said in an interview with The Times of Israel.

We are at an exciting transition point, and moving from being a research and development firm, based in Israel, to an international commercial firm, said Margolin who has headed the company for the past 12 years in her sun-drenched office at the biotech firms headquarters in Jerusalem. We need to prepare to commercialize the product. We are now looking at various sites in Israel for a new manufacturing facility and looking to employ some 100 people. These workers will be added to the 40 already employed in Jerusalem.

Gamida Cells CEO, Dr. Yael Margolin (Courtesy)

Preliminary clinical data has already revealed that the risk of their leading product for blood cancers, NiCord, not meeting its targets in the Phase 3 trial, is low, added Margolin.

The drug has already received a breakthrough therapy designation by the US Food and Drug Administration (FDA). The designation is given to a drug that is meant to treat a serious or life-threatening condition, and where preliminary clinical evidence indicates that it may demonstrate a substantial improvement on at least one clinically significant target (endpoint) over other available therapies. The designation also entitles the company to get more and closer FDA guidance to help bring the treatment faster to patients.

The combination of the low clinical risk based on the previous trial results and the lower regulatory risk, because the drug is being developed in close collaboration with the FDA, has spurred the company into a flurry of activity that is aimed at scaling up its production facilities to get ready for the day NiCord hits the markets.

The company said last month it raised $40 million from investors including Novartis, which is already a major shareholder in the firm. The funds will support the ongoing Phase 3 stage for NiCord. The company also announced, on July 20, that it received a $3.5-million grant from the Israeli government that will support the further development of NiCord and other drugs that the company is developing, including therapies for sickle cell disease and for blood and solid cancers. Gamida has also appointed a new chief medical officer, Ronit Simantov, who will be based in the US.

The first market for our drug will be the US, Margolin said.

The Gamida Cell lab in Jerusalem where umbilical cord blood is stored in tanks, July 16, 2017. (Shoshanna Solomon/Times of Israel)

NiCord, which would be the first drug developed by Gamida to hit the market if the trial goes well is believed to increase the chances of a successful bone marrow transplantation process for patients who do not have a rapidly available, fully matched, bone marrow donor.

Today some high-risk blood cancers cannot be cured unless patients undergo a bone marrow graft. For that purpose, a perfect 100-percent match needs to be found, a process that in the US takes an average of three to four months, if the patient is lucky. Sometimes, no match is found.

There are 70,000 patients a year globally with blood cancers who need a bone marrow transplant, Margolin said. It is a rare condition. But for that transplant, you need a donor with full tissue matching. As many as 50% dont get to the transplant phase, because they havent found a matching donor in time.

Umbilical cord blood collected from newborn babies contains stem cells, which can be used to treat diseases. Today cord-blood banks around the world store the cord blood. It great advantage is that because it is so young, there is no need for a full tissue matching.

The big advantage with umbilical blood is that you dont need full tissue matching; a partial match is enough, Margolin continued. Most patients generally find at least one unit of cord blood that partially matches them.

Stem cells in a bag in Gamida Cells Jerusalem lab, July 16, 2017 (Shoshanna Solomon/Times of Israel)

The problem is that the quantity of cells in each unit is not huge, and it is the number of stem cells in the cord blood that is critical to the success of transplantation.

Our idea is to leverage the advantages of the cord blood and overcome the limitations of the cell number by applying our own platform technology, called NAM Technology, added Margolin. This technology allows us to take one unit of umbilical cord blood and expand the number of stem cells within it and enhance their performance.

Gamida Cell selects the stem cells from the unit and puts them in a culture together with a molecule called Nicotinamide (NAM) a form of Vitamin B3 and adds other ingredients. This culture, to which the firm holds intellectual property rights, increases the number of stem cells, and enhances their functionality, Margolin said.

The cells are then harvested from the culture, frozen in a small blood-bag in a final formulation that is ready for infusion, and then shipped to hospitals via couriers. Doctors thaw the product by the bedside of the patients and infuse the fluid into them.

From start to finish, our process takes three weeks, Margolin said. The average search for a bone marrow match takes three to four months.

The clinical trial underway is enrolling patients aged 16 years and older.

An earlier trial of the drug showed that patients transplanted with NiCord showed a more rapid engraftment the amount of time needed for the development of a minimal amount of white blood cells, or neutrophils, in the blood. That minimum amount indicates the patient is now less vulnerable to infections and bleeding following the transplant, and is an indication of success.

In the pilot phase clinical trials, the median time to neutrophil engraftment with NiCord was 11 days, compared to three to four weeks in patients who received standard umbilical cord blood. The results in a study conducted at Duke University also showed a lower rate of infection 22% vs 54%; and a lower duration of hospitalization compared to standard umbilical cord engraftment, Margolin said.

Now the company is enrolling patients for its larger, Phase 3 multi-national, randomized controlled registration study. And in February it said it had already transplanted its first patient, as part of the trial.

We hope to publish positive topline data from the Phase3 study in the first half of 2019 and launch the product on the market in 2020, she said.

Metal barrel with a frozen bag of umbilical cord stem cells ready for delivery from Gamida Cells Jerusalem lab, July 16, 2017. (Shoshanna Solomon/Times of Israel)

A metal barrel within which was a frozen bag of umbilical cord stem cells was waiting to be picked by a courier in the lobby of the Gamida Cell offices, ready to be thawed and injected into a patient somewhere around the world.

We have a sophisticated infrastructure that coordinates everything between the cord bank blood and our manufacturing site and the hospital where the patient is to be treated, Margolin continued. This infrastructure is 100% robust, but we plan to scale this up toward commercialization.

The $40 million in funds the company raised last month is expected to last until late 2019. After that, she added, all options are on the table: an IPO, or teaming up with a strategic partner, are both possibilities for the future.

Read more from the original source:
Cell therapy firm in flurry of activity as hope nears for bone marrow ... - The Times of Israel

Gut viruses tied to potentially deadly complication of bone marrow … – Medical Xpress

Credit: University of California, San Francisco

A virus hiding quietly in the gut may trigger the onset of a severe complication known as graft-versus-host disease (GvHD) in patients who receive bone marrow transplants, according to a new study led by scientists at UC San Francisco and Saint-Louis Hospital in Paris, France.

GvHD affects up to 60 percent of patients who undergo bone marrow stem-cell transplants, and kills about half of those affected. After transplants, to prevent a recipient's immune cells from laying siege to unfamiliar donor cells and rejecting them, clinicians often use drugs to suppress the immune response. GvHD is a mirror image of organ rejection, in which immune cells in the transplant attack its new host, the patient.

Despite the pervasiveness of this disease, there isn't yet a clear way of foretelling patients' risk of developing it before they go into surgery. The new study, published online July 31, 2017, in Nature Medicine, unveils a viral biomarker that could allow clinicians to assess patients' risk of an acute form of the disease known as enteric GvHD, which affects the gastrointenstinal system.

The team used a technique known as metagenomic next-generation sequencing (mNGS) which can rapidly and concurrently sequence genetic material of all organisms present in any biological sample to catalog microbes in patients' digestive tracts, monitoring the evolving bacterial and viral population throughout the transplantation process.

Although mNGS analyses of bacterial populations, called microbiomes, have been much in the news, fewer studies have focused on "viromes," the term for viral populations.

"Viromes can play an important part in health and disease," said Charles Chiu, MD, PhD, an associate professor of laboratory medicine at UCSF and principal investigator of the study. "Our goal was to understand what impact transplantation has on the gut virome."

In the new work, the researchers scanned stool samples taken from 44 patients before they received a transplant and up to six weeks after, and sequenced all the DNA and RNA in the samples in order to assemble a roster of their microbial passengers.

Using this technique, the researchers identified a number of viruses that flared up in the guts of patients who developed the deadly condition. Of particular note were members of the picobirnavirus (PBV) family: the presence of these viruses before transplantation, even in very small populations, was a reliable sign that a patient would likely develop the disease after a transplant.

"I would've expected herpesviruses or adenoviruses to be the more likely cause of infection," said Chiu. "We wouldn't have picked up picobirnaviruses were it not for the metagenomics approach."

PBVs are a very diverse family of viruses more diverse than HIV, said Jrme Le Goff, PhD, associate professor at the University of Paris Diderot and lead author of the new study. "It's very difficult to design a single test to detect all viruses simultaneously," said Le Goff. "So for many years, labs did not have the means to look for PBV." Indeed, each of the 18 patients who tested positive for PBV was carrying a different strain, a diversity that makes it challenging to detect PBVs using a simple lab test.

The team also observed a previously unreported "bloom" of other resident viruses in patients that occurred three to five weeks after they had received transplants. Intriguingly, the onset of GvHD appeared to trigger the late awakening of these covert viruses, laying to rest a longstanding chicken-and-egg debate: which comes first, viral infection or GvHD? The researchers conclude that much of the viral flare they saw is due to reactivation of latent gut infections following transplantation.

Given the potential utility of PBV as a predictive biomarker, Chiu and his team now hope to develop a metagenomics-based test to screen patients before transplantation. "We also saw shifts in the microbiome but those in the virome were more pronounced," said Chiu. "Loss of bacteria colonizing the gut has been thought to predispose patients to GvHD; here we show that shifts in the virome may also play a role in the occurrence of this disease."

Although the new study strongly implicates PBVs in the onset of GvHD, it is too early to tell whether or how these viruses trigger the disease. The team is now enrolling more adult and pediatric patients both in Paris and at UCSF to expand their analyses and uncover the mechanism by which the virus modulates the risk of disease. A systematic understanding of the virus's role could ultimately inform whether using antiviral drugs or tweaking the body's immune response would be the best strategy to temper the disease.

"It would be great to have a tool that can be used to assess GvHD risk in these patients before they undergo a transplant," Chiu said, a step that Le Goff said could lead to new therapies. "We hope that in the next few years we will find a way to prevent virus-associated GvHD," said Le Goff.

Explore further: Researchers develop new strategy to limit side effects of stem cell transplants

More information: Jrme Legoff et al. The eukaryotic gut virome in hematopoietic stem cell transplantation: new clues in enteric graft-versus-host disease, Nature Medicine (2017). DOI: 10.1038/nm.4380

Read more:
Gut viruses tied to potentially deadly complication of bone marrow ... - Medical Xpress

Drive for stem cell donors in Langley – Surrey Now-Leader

Marie Grim of Langley is looking for 100 people between the ages of 17 and 35 who are willing to take a few moments to have their cheeks swabbed.

Theres no pain, no fuss, she said.

And you could save someones life, anywhere in the world.

You could match with someone in Japan.

The campaign to sign up more potential stem cell donors, people who are willing to allow DNA samples to taken using cotton swabs, was inspired by the experience of her sister-in-law.

Cloverdale resident Tania Grim, a mother of four was diagnosed with leukemia in January.

She had to wait several months before a compatible donor was found whose stem cells will be used to replace bone marrow and abnormal white blood cells eradicated by a combination of chemotherapy and radiation.

We have been on quite the journey, Marie said.

I have sat with her at appointments and heard others get news of their donor while she had not.

Now that Tania has her donor, Marie would like to improve the odds for other families.

She already has a location and tentative date to collect the swabs September 8 at Immanuel Christian Reformed Church in Langley if she can round up enough donors.

Tania, who is preparing for her stem cell procedure in September, urged prospective stem cell contributors to sign up.

I am so grateful that the word is being spread about the huge need for donors, Tania said.

It is a very simple thing to do that can save a life.

If you are the right age to be a donor, you can contact Marie at 604-530-1326 or by email at mariegrim@hotmail.com.

Interested donors can also contact Canadian Blood Services directly at https://blood.ca/en.

More than 390,000 Canadians have joined the OneMatch Stem Cell and Marrow Network registry maintained by Canadian Blood Services, volunteering to be stem cell donors for any patient in need of a transplant, anywhere in the world.

Right now, the agency says about 70 per cent of eligible donors on the registry are Caucasian, which means the odds of finding match for other ethnicities, such as Canadians with indigenous, Asian or African heritage, are not good.

The Canadian registry connects to an international network established by the World Marrow Donor Association (WMDA) that has access to over 28 million donors in over 53 countries.

Not everyone who registers will be matched to a patient and asked to donate, but each registrant provides hope for those waiting, a message posted to the agency website states.

A person could be a match within a few months of registering, a year later or even seven years later.

If a volunteer donor is found to be a match, they face a relatively minor surgical procedure and can expect to make a quick recovery.

The agency says over 80 diseases and disorders can be treated with a stem cell transplant.

There are hundreds of patients in Canada waiting for a match, but only half of them find a match.

Patients are more likely to find a matching donor from within their own ethnic group.

The odds of family members matching is extremely slight, the agency said, which is why it does not support donor drives targeting relatives.

RELATED STORY: Surrey teen rallies stem cell donors to help with desperate need for South Asians

dan.ferguson@langleytimes.com

View post:
Drive for stem cell donors in Langley - Surrey Now-Leader

Cells that stand in the way of HIV cure: Discovery expands understanding of marrow’s role – Medical Xpress

Illustration incorporating gene-expression maps and cell images from the new research. Credit: University of Michigan

Every day, 17 million HIV-infected people around the world swallow pills that keep the virus inside them at bay.

That is, as long as they swallow those pills every day for the rest of their life.

But no matter how many drugs they take, they'll always have the virus in them, lurking in their white blood cells like a fugitive from justice.

And if they ever stop, HIV will come out of hiding and bring down their immune system from the inside out, causing the disease known as AIDS and potentially spreading to others before killing them.

Now, new research into HIV's hiding places reveals new clues about exactly how it persists in the body for years. The discovery could speed the search for drugs that can flush HIV out of its long-term hideouts and cure an infection for good.

In a new paper in PLoS Pathogens, a team led by University of Michigan researcher Kathleen Collins, M.D., Ph.D. reports that HIV hides in more types of bone marrow cells than previously thought - and that when these cells divide, they can pass the virus's genetic material down to their "daughter" cells intact.

This keeps the infection going for years, without tipping off the armed guards of the immune system.

Collins and her colleagues made the discovery in bone marrow samples donated by dozens of long-term HIV patients treated at U-M's academic medical center, Michigan Medicine, and at Henry Ford Health System in Detroit.

Using funding from the National Institutes of Health, they found that HIV can hide in hematopoietic progenitor cells (HPCs), which also serve as the parents of new blood cells that replace worn-out ones on a regular basis. HIV tricks the cells into incorporating the virus's genetic material into the cells' own DNA.

"Looking for the cells that harbor functional HIV is like searching for a needle in a haystack. Our new results expand our understanding of the type of cells that can do it," says Collins, a professor of Microbiology and Immunology and of Infectious Disease at the U-M Medical School. "It's like a cancer biology problem, only the 'mutation' in the cells is the inserted viral genome."

HPCs are made by hematopoietic stem cells, the "master cells" of blood production found in the marrow. Previous research had shown that HIV can hide for years in the bone marrow.

But it was not known whether the virus persisted only in stem cells or whether the reservoir could include more differentiated progenitor cells. Demonstrating that progenitor cells form a long-lived reservoir of virus expands the number of cell types that need to be targeted.

By demonstrating that HIV genetic material can lurk in blood progenitor cells, the researchers extend other recent studies indicating that such cells can live for years, says Collins, whose lab team included lead author Nadia Sebastian, a U-M M.D./Ph.D. student.

She notes that from the point of view of the virus, finding a harbor in this kind of cell means it can hedge its bets, giving it a chance at survival and eventual reproduction if its host's defenses weaken. The virus that causes chicken pox - varicella - also does this, hiding out in nerve cells just under the skin for years until it awakens and causes the painful condition called shingles.

Knowing exactly what cells harbor HIV over the long-term is crucial to battling persistent infections. Other research has focused on the T cells that carry out key immune system functions.

"Having established this, now we're poised to ask if we can treat HIV infection by targeting hematopoietic progenitor cells," she explains. The team is evaluating potential drugs that could kill just these cells.

The research team on the new paper also includes former U-M stem cell researcher Sean Morrison, Ph.D., who now leads a research center at the University of Texas Southwestern Medical Center. Morrison's lab uses mice as a model to study stem and progenitor cells.

They find in the new paper that in order for HIV to infect a progenitor cell, that cell must have a type of receptor on its surface, called CD4, that the virus can attach to. Additionally, the researchers show that two subtypes of HIV can infect these cells: those that use the CXCR4 co-receptor to enter cells as well as those that use CCR5, which expands the types of HIVs that can potentially cause reservoirs.

Finding those progenitor cells in the marrow of the human patients who agreed to undergo a biopsy for the sake of pure research was tricky, Collins says. But thanks to them, researchers are a step closer to a day when HIV infection is no longer a life sentence for millions of people around the world.

"Moving from the state we're in, where patients will always have to be on these drugs, to a better form of therapy where they can stop, would have a huge effect," she says. "Today's medications have side effects, as well as financial costs. To get to the next step, we need to target the types of cells that form a latent infection, including these progenitor cells."

Explore further: Scientists find that persistent infections in mice exhaust progenitors of all blood cells

More information: Nadia T. Sebastian et al, CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo, PLOS Pathogens (2017). DOI: 10.1371/journal.ppat.1006509

View original post here:
Cells that stand in the way of HIV cure: Discovery expands understanding of marrow's role - Medical Xpress

Patients’ plasma, stem cells help knee problems – The Columbus Dispatch

JoAnne Viviano The Columbus Dispatch @JoAnneViviano

Dennis Matko was headed for a knee replacement when he discovered a new therapy that would instead inject his own stem cells and plasma into the joint to help prevent degradation.

The 69-year-old Clintonville resident said he had been pretty active in his 50s, leading to problems with the right knee. He eventually had his meniscus removed. He had been through physical therapy, cortisone shots and gel injections, but the pain persisted.

The therapy, he said, was a no-brainer. He was sold because the procedure involved putting his own fluids into his body with no foreign objects and no drugs.

Dr. Joe Ruane, the orthopedic doctor who treated Matko, introduced the therapy at OhioHealth, but there are a number of places using the therapy around the state and country.

It's used to treat people with osteoarthritis, the type of arthritis caused by wear and tear.

Ruane said that the need for total knee replacements in the U.S. is expected to climb by 600 percent in the next 20 years, and there is concern that there might not be enough surgeons to perform the procedures.

We need an alternative, and patients are looking for alternatives, and given the choice between a knee replacement and an injection, many patients would choose an injection, he said.

The treatment involved removing Matkos bone marrow from the back of his pelvic bone, a process done in the office under general anesthesia. The marrow was then processed to form a concentrate of stem cells and other growth factors.

Matko also had blood drawn to create platelet-rich plasma, which acts as a signaling system to get the stem cells to respond.

Ruane injected both components into the knee, delivering more than 100 stimulating and growth factors to the joint.

Ruane said the process inhibits irritating chemicals that contribute to inflammation, decreases the activity of enzymes that break down cartilage, and helps the knee to make some of its own joint fluid again.

And, to a small degree, it does help regrow some of the tissue in the knee that has been destroyed by the arthritis, Ruane said.

The procedures are most effective in young patients with early arthritis, said Dr. Adolph Lombardi of Joint Implant Surgeons in New Albany, where stem-cell and platelet-rich plasma injections are offered as separate therapies. It won't help with bone-on-bone disease, he said.

While other injections might offer short-term pain relief, platelet-rich plasma has been shown to offer a full year of relief, said Lombardi, who works with the Mount Carmel Health System. The idea is that bone-marrow stem cells, when injected into a hip or knee, can differentiate into cartilage cells and help with regeneration.

"All of this is very new but it seems to be extremely promising," Lombardi said. "This is using their own bodies' healing potential to maintain cartilage and relieve pain."

Dr. Michael Baria performs the procedure at Wexner Medical Center at Ohio State University, where the bone-marrow and platelet-rich plasma injections also are offered as separate treatments. He agreed that the hope with the bone-marrow injections is that the stem cells turn into cartilage cells, improving or halting the osteoarthritis disease.

But in his experience, the treatment is helpful for patients with advanced disease.

"The most common patient we see for this is going to be in late-stage arthritis, so kind of at the end of their rope," Baria said. "Platelet-rich plasma is usually not as good for bone-on-bone arthritis. Bone marrow doesnt seem to be limited by bone on bone."

The body has trouble healing arthritis because cartilage doesnt get enough blood supply, Ruane said. Injecting the stem cells boosts the bodys own process.

While platelet-rich plasma has been shown to decrease inflammation, stem-cell use is newer and has yet to be proven effective, Baria noted.

OhioHealth andJoint Implant Surgeons are currently in the midst of controlled randomized trials, hoping to prove the effectiveness of the procedures and obtain approval from the U.S. Food and Drug Administration.

Unless that happens, the procedure will be considered experimental, and insurance doesnt cover costs. Matko paid $2,800 for the injections at OhioHealth.

Before the treatment, Matko was having trouble with mundane things like going up and down stairs and with other activities, such as taking hikes or walks with his wife or working out. A retired police officer, he now works as a business consultant and spends a lot of time on his feet, so he was looking for better mobility there as well.

Matko said the injections have helped his knee, which is getting progressively better over time. He said hes been able to increase his activity, getting back to the gym and taking hikes and walks. He has minimal pain climbing stairs and hes more comfortable in his work.

Im not saying its all better but its much better, Matko said. Its headed in the right direction.

He realizes the treatment is not a cure.

Im not looking for a miracle, he said. I just want to forestall problems as long as possible.

.

.

jviviano@dispatch.com

@JoAnneViviano

Read more:
Patients' plasma, stem cells help knee problems - The Columbus Dispatch

ALS treatment to begin Phase 3 clinical trials in US – ISRAEL21c

BrainStorm Cell Therapeutics of Petah Tikva is recruiting American patients for a Phase 3 clinical study of its NurOwn stem-cell treatment intended to halt progression of amyotrophic lateral sclerosis (ALS).

The announcement was made in a patient webinar last week.

The NurOwn platform grew out of a technique developed at Tel Aviv University for growing and enhancing stem cells harvested from patients own bone marrow. The enhanced cells, injected via lumbar puncture, secrete elevated levels of nerve-growth factors believed to protect existing motor neurons, promote motor neuron growth and reestablish nerve-muscle interaction.

A 24-week Phase 2 safety study was concluded in 2016 on 48 participants (36 treated, 12 placebo) with possible, probable and definite ALS. This study was done at the University of Massachusetts Medical School, Massachusetts General Hospital and the Mayo Clinic.

The Phase 3 double-blind, placebo-controlled study, to begin enrollment in August, will look at efficacy and safety of repeated doses. The California Institute for Regenerative Medicine has awarded Brainstorm a $16 million grant to support the pivotal trial.

This study will accept 200 randomized study participants between the ages of 18 and 60 (half getting the treatment and half a placebo) at the three previous centers as well as California Pacific Medical Center in San Francisco, UC-Irvine near Los Angeles and another site not announced.

Potential participants must live within about 100 miles of one of the centers for ease of follow-up. They will receive three doses over a 16-week treatment phase and then undergo 28 weeks of follow-up.

BrainStorm President and CEO Chaim Lebovits said he hopes to get approval by the end of the year for a hospital exemption program in Israel an accelerated regulatory pathway that would clear the way for a first batch of 50 patients to receive NurOwn at Tel Aviv Sourasky Medical Center. However, there will be no compassionate treatment using NurOwn in Israel or elsewhere.

The NurOwn platform technology also has potential applications in any neurodegenerative disease, such as multiple sclerosis and Parkinsons.

For more information, click here.

Go here to read the rest:
ALS treatment to begin Phase 3 clinical trials in US - ISRAEL21c

Stem Cell Therapy Attacks Cancer by Targeting Unique Tissue … – R & D Magazine

A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a more localized way.

Weian Zhao, associate professor of pharmaceutical sciences, and colleagues have programmed human bone marrow stem cells to identify the unique physical properties of cancerous tissue. They added a piece of code to their engineered cells so that they can detect distinctively stiff cancerous tissue, lock into it and activate therapeutics.

In a study appearing inScience Translational Medicine, the researchers report they have effectively and safely employed this stem cell-targeting system in mice to treat metastatic breast cancer that had spread to the lung. They first transplanted the engineered stem cells to let them find and settle into the tumor site where they secreted enzymes called cytosine deaminase. The mice were then administered an inactive chemotherapy called prodrug 5-flurocytosine, which was triggered into action by the tumor site enzymes.

Zhao said his team specifically focused on metastatic cancer, which comes when the disease spreads to other parts of the body. Metastatic tumors are particularly deadly and the cause of 90 percent of cancer deaths.

This is a new paradigm for cancer therapy, Zhao said. We are going in a direction that few have explored before, and we hope to offer an alternative and potentially more effective cancer treatment.

Zhao added that this stem cell-targeting approach can provide an alternative to many forms of chemotherapy, which has a number of bad side effects. While this widely used method is powerful enough to kill rapidly growing cancer cells, it also can harm healthy ones.

Our new type of treatment only targets metastatic tissue, which enables us to avoid some of conventional chemotherapys unwanted side effects, said Zhao, who is a member of the Chao Family Comprehensive Cancer Center and the Sue & Bill Gross Stem Cell Research Center at UCI.

This published work is focused on breast cancer metastases in the lungs, he added. However, the technology will be applicable to other metastases as well, because many solid tumors have the hallmark of being stiffer than normal tissue. This is why our system is innovative and powerful, as we dont have to spend the time to identify and develop a new genetic or protein marker for every kind of cancer.

So far, the Zhao team has done preclinical animal studies to demonstrate that the treatment works and is safe, and they hope to transition to human studies in the near future. They are currently expanding to include other type of cells, including cancer tissue-sensing, engineered immune-system T cells (called CAR-T) to treat metastasizing breast and colon cancers. They also plan to transform the technology for other diseases such as fibrosis and diabetes, which result in stiffening of otherwise healthy tissue.

Along with Zhao, UCI doctoral students Linan Liu and Shirley Zhang, are co-leading authors of the study. The National Institutes of Health, the Department of Defense, the American Cancer Society and the California Institute for Regenerative Medicine provided support.

Read more from the original source:
Stem Cell Therapy Attacks Cancer by Targeting Unique Tissue ... - R & D Magazine

Regenerative Medicine: The Future of Medicine is Here Miami’s … – Miami’s Community Newspapers

Regenerative medicine is a revolutionary approach to treating many degenerative conditions and includes a variety of different techniques including stem cell therapy. This field joins nearly all disciplines of science and holds the realistic promise of repairing damaged tissue by harnessing the bodys ability to heal itself.

Adult stem cells are found in every part of the body and their primary role is to heal and maintain the tissue in which they reside. Stem cells are unspecialized cells capable of renewing themselves by cell division. In addition, they have the ability to differentiate into specialized cell types. Adult stem cells can be harvested from a patients own tissue, such as adipose (fat) tissue, muscle, teeth, skin or bone marrow.

One of the most plentiful sources of stem cells in the body is the fat tissue. In fact, approximately 500 times more stem cells can be obtained from fat than bone marrow. Stem cells derived from a patients own fat are referred to as adipose-derived stem cells. The mixed population of cells that can be obtained from fat is called a stromal vascular fraction (SVF). The SVF can easily be isolated from fat tissue in approximately 30-90 minutes in a clinic setting (under local anesthesia) using a mini-lipoaspirate technique. The SVF contains a mixture of cells including adipose-derived stem cells or ADSCs and growth factors and has been depleted of the adipocyte (fat cell) population.

ADSCs are multi-potential and can differentiate into a variety of different types of tissue including but not limited to bone, cartilage, muscle, ligament, tendon and fat. These cells have also been shown to express a variety of different growth factors and signaling molecules (cytokines), which recruit other stem cells to facilitate repair and healing of the affected tissue. ADSCs are very angiogenic in nature and can promote the growth of new blood vessels.

Based on research performed in our FDA registered facilities, stem cell quality and functionality can vary greatly depending on the methods utilized to obtain the cells. It is important to utilize a product that has undergone full characterization to include safety, identity, purity and potency. We have developed a method for harvesting and isolating stem cells from fat for therapeutic use. The use of a cell population that retains the ability to function in vivo will lead to more consistent patient results with long term success.

Adipose stem cells can be obtained from the patient easily, abundantly, and with minimal patient discomfort. Clinical applications for patients can be performed in an office setting safely, legally, and ethically using autologous ADSCs. Current applications include orthopedic conditions (tendon/ligament injuries, osteoarthritis, etc.), degenerative conditions (COPD, diabetes), neurological (MS, Parkinsons, spinal cord injuries, TBI, etc.) and auto-immune (RA, Crohns, colitis, lupus).

Stem cells possess enormous regenerative potential. The potential applications are virtually limitless. Patients can receive cutting edge treatments that are safe, compliant, and effective. Our team has successfully treated over 7000 patients with very few safety concerns reported. One day, stem cell treatments will be the gold standard of care for the treatment of most degenerative diseases. We are extremely encouraged by the positive patient results we are seeing from our physician-based treatments. Our hope is that stem cell therapy will provide relief and an improved quality of life for many patients. The future of medicine is here!

For additional information on our South Miami clinic, visit http://www.stemcellcoe.com.

Connect To Your Customers & Grow Your Business

See the original post here:
Regenerative Medicine: The Future of Medicine is Here Miami's ... - Miami's Community Newspapers

Regenerating the Body With Stem Cells Hype or Hope? – Labiotech.eu (blog)

When the Japanese researcher Shinya Yamanaka managed to reprogram adult cells into an embryonic-like state to yield induced pluripotent stem cells (iPSCs), this was supposed to herald a revolution in regenerative medicine. But 10 years after their discovery, a therapeutic breakthrough is still outstanding.

The overall stem cell therapy field has failed today to show a very clear cut clinical benefit, told me Georges Rawadi, VP for Business Development at Celyad. The field now needs some significant success to attract attention.

Even though investors prefer placing their bets on the hot T cell therapies these days, some stem cell technologies such as iPSCs are starting to get traction as big industry players are exploring the territory. Last year, Bayer and Versant threw $225M into the pot to launch BlueRock Therapeutics, a regenerative medicine company that plans to develop iPSC-based therapies. A year before, Fujifilm spent $307M to acquire the iPSC company Cellular Dynamics.

Although a big success story is still lagging behind, recent advances in the field argue that stem cells indeed have the potential to translate into effective therapies for currently intractable diseases. Heres an overview of what biotechs stem cells are up to!

Stem cell treatment is not a new concept hematopoietic stem cells (HSCs) were described as early as the 1960s and bone marrow transplants have been used to treat blood cancer for decades.

The reason that we get excited about stem cell therapies comes from our experience with the hematopoietic stem cells. If you want to see what a mature stem cell therapy is like, you only need to look at bone marrow transplantation explained James Peyer, Managing Partner at Apollo Ventures, who has a Ph.D. in stem cell biology.

According to Peyer, the hematopoietic stem cell field is one of the most active areas in the stem cell world right now, mainly fueled by our advances in the gene editing space. Tools like CRISPR and TALEN allow for the genetic modification of a patients own bone marrow stem cells, which can then be expanded and returned to the patient for the correction of a genetic defect.

Last year, regulators gave green light to one of the first therapies of this kind. Strimvelis, developed by GSK, consists of an ex vivo stem cell gene therapy to treat patients with the very rare type of Severe Combined Immunodeficiency (SCID). Using the patients own cells avoids the risk of graft versus host disease (GvHD), which still affects around 30% of people receiving a bone marrow transplant.

Small wonder that the CRISPR companies, CRISPR Therapeutics, Editas, and Intellia are all active in this field, with preclinical programs in a number hematological diseases.

To date, the most prominent stem cells in the clinic are mesenchymal stem cells (MSCs), which are moving through more than 300 registered clinical trials for a wide array of diseases. These cells are able to form a variety of tissues including bone, cartilage, muscle or fat, and can be readily harvested from patients or donors for use in autologous or allogeneic therapies.

While MSCs have deluded the biotech scene with good safety profiles in clinical trials, their actual regenerative potential remains controversial, and there have been a great number of clinical failures, which many blame on a lack of demonstrated mechanisms of action.

As Peyer explained, The problem here is that, as opposed to other adult stem cells, the MSC has been unclearly defined. We know roughly what it does but we dont fully understand the molecular mechanisms driving these cells. On top of being unclearly defined, the regenerative powers of MSCs have been massively over-claimed in the past.

Another reason for the lack of clinical benefit has also been attributed to the use of undifferentiated MSCs, as Rawadi explained to me. The Belgian biotech Celyad, which has been pioneering cell therapy in the cardiovascular space, is using bone-marrow derived autologous MSCs and differentiates them into cardiomyocyte precursors to produce new heart muscle in patients with heart failure.

Although the company missed its primary endpoint in a phase III trial last year, Celyad has staked out a patient subpopulation that showed significant improvement. Its technology still has the confidence of the FDA, which just handed out a Fast Track designation and Celyad is now planning a refined Phase III trial.

One of Celyads major competitors, Australian Mesoblast, is forging ahead using allogeneic MSCs with Phase III programs in heart failure, chronic low back pain (CLBP) due to disc degeneration, as well as a range of inflammatory conditions including GvHD and rheumatoid arthritis.

Although the ability of MSCs to regenerate tissues remains questionable, the Mesoblasts approach hinges on a body of evidence showing that MSCs can suppress inflammation and mobilize endogenous repair mechanisms through indirect effects on immune cells.

Indeed, the first-ever approved stem cell therapy, Prochymal, also depends on this mechanism. Prochymal was developed by US-based Osiris Therapeutics and in 2012 received Canadian approval to treat acute GvHD. But after Sanofi opted to shelve its partnership with Osiris prior to FDA approval, the biotech sold out its off-the-shelf stem cell platform to Mesoblast in a $100M deal.

In Belgium, companies like TiGenix and Promethera are also banking on the immunomodulatory properties of MSCs. The companies are developing treatments for patients with Crohns disease and liver diseases, respectively.

The ultimate hope for stem cell therapies has been to regenerate damaged or diseased tissues as found in diabetes, heart failure or blindness. Holostem Terapie Avanzate, a spin-off from the University of Modena and Reggio Emilia was the first company to move towards this goal.

Building on 20 long years of research, the biotech has developed Holoclar, the first and only autologous stem cell therapy (apart from bone marrow transplants) to enter the European market. Holoclar is based on limbal stem cells, located in a part of the eye called the limbus, which can be used to restore eyesight in patients that have lost sight due to burn injuries.

Meanwhile, UK-based Reneuron is developing off-the-shelf therapies that aim to restore the cognitive function of patients following a stroke. Backed by no other than Neil Woodford, the company recently raised an impressive 100M to advance its lead therapy to the market.

The biotechs fetal-derived neural stem cell line CTX was able to significantly reduce the disability of post-stroke patients in a Phase II trial and ReNeuron is now planning to push its candidate into pivotal trials.

A major question in the space a decade ago was safety. Today, theres been a lot of trials done that show that safety is not an issue. I think safety is kind of off the table but efficacy is still a question mark. And thats what were trying to deliver now, Olav Helleb, CEO of ReNeuron, told me.

While neural stem cells and other tissue-specific stem cells are able to regenerate the cells of a particular tissue, Embryonic Stem Cells (ESCs) and their engineered counterparts, iPSCs, are capable of making every cell type in the body, a property known as pluripotency. Pluripotent stem cells can also expand indefinitely in culture and their identification unlocked massive expectations for these cells to transform the regenerative medicine field.

Yet, these cells come with significant challenges associated with the safety of the final preparation. Apart from ethical issues surrounding ESCs, today, a lot of companies have been cautious about using these cells for therapy, because undifferentiated pluripotent cells can drive tumor formation, explained Rawadi. Since ESCs can, in principle, form every cell type, they can lead to the formation of teratomas.

A major reason for the fairly slow progress in the field is based on the difficulties of directing a pluripotent cell to exactly the cell type that is needed for cell therapy. We can readily drive the cells from the undifferentiated state to the differentiated state. However, getting those cells to pause anywhere in the middle of this continuum to yield progenitor cells is incredibly challenging, Peyer explained. Another challenge, he says, is to engraft the cells in the right place to enable them to become fully integrated.

Besides initial hurdles, companies like US-based Asterias or ViaCyte are now running the first Phase I/II trials with ESC-derived cells to treat patients with spinal cord injuries and to restore the beta cells in type I diabetes. So far, the eye has been the the dominant organ for many of the first human clinical trials with pluripotent stem cells, where the cells are assessed in diseases such as age-related macular degeneration (AMD) to restore the loss of the retinal epithelium.

Deriving retinal epithelium from pluripotent cells is relatively easy and in fact, researchers in Japan are now running the very first clinical trial using donor-derived iPSCs to treat patients with AMD. For reasons of safety and standardization, the trial is based on an allogeneic approach. However, since this doesnt offer an exact genetic match, allogeneic therapies raise the prospect of immune rejection, an issue that has been plaguing the use of ESCs.

But the scientists in Japan have contended that iPSC banks could potentially solve this problem. The team in Japan is currently establishing an iPSC bank, consisting of HLA-characterized cell lines from 5-10 different donors, which should match 3050% of Japans population.

Such haplobanks have the benefits of allogeneic cell therapy, namely cost-effectiveness and standardization, but you still have matching immune systems, Peyer agrees.

For now, this remains a vision for the future, but the potential seems enormous. As Julian Howell, CMO of ReNeuron, told me, iPSCs have still got an awful long way to go. For the iPSC program running in Japan, they recently acknowledged that it took about $1.5M and 6 months to treat each patient. Its a great idea but its still got some way to go before it reaches the scale that could get into the clinic.

Images via nobeastsofierce,Natali_ Mis,vchal/ Shutterstock

View post:
Regenerating the Body With Stem Cells Hype or Hope? - Labiotech.eu (blog)

Growth Opportunities in Cell Harvesting Systems Market: New Research Report – LANews By Abhishek Budholiya (press release) (blog)

Cell harvesting is a technique of collecting stem cells for regenerate, transplant or repair the damaged organ with healthy functioning ones. Cell harvesting is considered as an important step in biopharmaceutical manufacturing industry that can directly affect the product quality and related downstream processes. Stem cells harvesting helps in treating with diseases namely cancers, blood disorders, immune deficiency diseases and various injuries. This therapy is also beneficial for burn victims which help them in grafting new skin cells as a replacement for damaged ones. Many companies are focusing on regeneration of myocardial tissue by injection of cell graft consist of adult stem cells from the patients for manufacturing regenerating medicines. For the treatment of eye diseases new healthy cells are also be grown. For harvesting bone marrow a companies are manufacturing devices with passive flexible drilling unit and suction mechanism which will help in reducing the invasiveness of bone marrow transplantation. Cell harvesting system helps in reducing the invasiveness of bone marrow aspiration from the iliac bone with less punctures. Moreover, helps in reducing procedure time and contamination by T-cells.

Cell Harvesting Systems Market are witnessing maximum growth owing to increase bone marrow transplantation procedures attributed to high prevalence of blood cancer and anemia. Moreover, improving healthcare expenditure, survival rate after treatment, increasing investment in logistic services, expansion bone marrow transplant registry for heart along with neuronal disorders and growing per capita healthcare expenditure. However, high cost of cumbersome treatment, lack of reimbursement policies, immunological rejection, viable cell density, and identification of stem cells in adult tissues, and complications during cell harvesting and inadequate number of HSCs cells for transplantation is a major barrier to the cell harvesting systems market.

The cell harvesting systems market has been classified on the basis of techniques, application and end user.Based on techniques, the cell harvesting systems market is segmented into the following: Altered Nuclear Transfer, Blastomere Extraction; Based on application, the cell harvesting systems market is segmented into the following: Bone Marrow, Peripheral Blood, Umbilical Cord Blood, Adipose Tissue; Based on end-user, the cell harvesting systems market is segmented into the following: Research Centers, Academics Institutes, Diagnostic Labs, Hospitals

Cell harvesting systems market witnessed substantial growth owing to equipment efficacy and accuracy during stem cells harvest. By application type, bone marrow aspiration is anticipated to hold the major share in the cell harvesting systems market owing to less process error, safe and simple procedure and less side effects. People suffering from Leukemia eligible for bone marrow transplant, is expected to contribute highest share in the global cell harvesting systems market. Cell harvesting systems helps in enhancing proper pigmentation in scar reconstruction which encourage companies for continuous technology advancement in both cell isolation techniques and downstream purification processes.

Depending on geographic region, cell harvesting systems marketis segmented into seven key regions: North America, Latin America, Eastern Europe, Western Europe, Asia Pacific, Japan, and Middle East & Africa. Asia Pacific dominates the cell harvesting systems marketfollowed by Europe, Japan and North America owing to high concentration of bone marrow stem cells harvesting centers and registries along with skilled doctors for the process of harvesting stem cells in these regions. Asia Pacific, Middle East and Africa hold huge potential and shows substantial growth in terms of wide acceptance of new technologyowing to awareness among population, increasing healthcare expenditure along with high number of potential candidate for the procedure.

Key players of cell harvesting systems market are PerkinElmer Inc.Tomtec, Bertin Technologies, TERUMO BCT, INC., hynoDent AG, Avita Medical, Argos Technologies, Inc., SP Scienceware, Teleflex Incorporated., Arthrex, Inc., Thomas Scientific, BRAND GMBH

Request Report Sample@ http://www.futuremarketinsights.com/reports/sample/rep-gb-1754

See the original post here:
Growth Opportunities in Cell Harvesting Systems Market: New Research Report - LANews By Abhishek Budholiya (press release) (blog)

New NUH study to test stem cells as treatment for liver disease – TODAYonline

SINGAPORE The use of stem cell treatment to repair liver cirrhosis, or hardening of the liver, will be tested in a clinical trial here involving 46 patients and costing S$2.6 million.

The four-year study, which was launched yesterday, came amid a growing waiting list in Singapore for a liver transplant, which is currently the only cure for patients with end-stage liver cirrhosis.

Conducted by a multi-centre team from several restructured hospitals here, the study is led by the National University Hospital (NUH).

Liver failure is one of the top 20 causes of death in Singapore, but many patients are not suitable for a transplant due to factors such as age and surgical fitness.

Out of every five patients doctors see with end-stage liver disease, only one qualifies for a liver transplant, said Dr Dan Yock Young, principal investigator of the clinical trial and senior consultant at NUHs division of gastroenterology and hepatology.

(A liver transplant) is curative, but it is a complex procedure, and many patients are not suitable for it. For these patients, treatment is limited, but morbidity and mortality rates are high as high as 50 per cent in one year and this is probably worse than many (of the) other terminal illnesses we talk about today, he said.

Animal studies conducted over the last five years have shown that stem cells can reconstruct the micro-environment of a normal liver.

Like how branches are of critical importance in supporting the leaves and fruits of a tree, the endothelial (stem) cells contribute to supporting a nutritious environment for the hepatocyte (liver) cells, Dr Dan explained.

While similar stem-cell studies have been conducted in other centres in Asia, there has been no definitive evidence of the benefits of the treatment for liver patients.

The study will recruit 46 patients aged between 40 and 70 years old, and who are at the terminal stages of chronic liver disease, over three years. It is funded by the National Medical Research Council.

During the clinical trial, patients will be divided into a therapeutic group and a control group.

All patients will receive an injection to stimulate their bone marrow cells as part of the supportive treatment for their liver cirrhosis. However, only patients in the study group will have the stem cells from the bone marrow extracted and deposited directly into their liver for more targeted repair.

Using ones own stem cells will avoid the problem of cell rejection.

The liver tissue will be examined three months later, and an investigation to compare pre- and post-transplant results will be conducted after a year.

Since invasive surgery is not required for stem-cell therapy, the fatality risk is significantly lowered for the patient. However, other risks such as severe bleeding and infections still remain, given the patients weakened condition.

NUH also noted that the stem-cell therapy does not replace liver transplants, and the latter remains the best available treatment for liver cirrhosis.

It is very painful to turn patients away when we cannot offer them a liver transplant, said Dr Dan, adding that this stem cell therapy will serve as an alternative option.

We hope that this is a stepping stone to trials for stem cell candidates, he added.

MORE WAITING FOR A LIVER

The number of people on the waiting list for a liver transplant has been growing in recent years. In June last year, it was reported that there were 54 people on the list, more than double the 24 patients in 2011.

Chronic Hepatitis B remains the primary cause of non-alcoholic fatty liver disease, which refers to a range of liver conditions affecting people who drink little to no alcohol. However, obesity has become a contributing factor to the illness as well.

Link:
New NUH study to test stem cells as treatment for liver disease - TODAYonline

Private clinics’ unproven stem cell treatment is unsafe and unethical – Business Standard

Professional medical organisations have raised concerns about these expensive cell therapies

Stem cell science is an area of medical research that continues to offer great promise. But as this weeks paper in Science Translational Medicine highlights, a growing number of clinics around the globe, including in Australia, are exploiting regulatory gaps to sell so-called stem cell treatments without evidence that what they offer is effective or even safe.

Such unregulated direct-to-consumer advertising typically of cells obtained using liposuction-like methods not only places the health of individuals at risk but could also undermine the legitimate development of stem cell-based therapies.

Many academic societies and professional medical organisations have raised concerns about these futile and often expensive cell therapies. Despite this, national regulators have typically been slow or ineffective in curtailing them.

As well as tighter regulations here, international regulators such as the World Health Organisation and the International Council on Harmonisation need to move on ensuring patients desperate for cures arent sold treatments with limited efficacy and unknown safety.

So whats on offer?

Hundreds of stem cell clinics post online claims that they have been able to treat patients suffering from a wide range of conditions. These include osteoarthritis, pain, spinal cord injury, multiple sclerosis, diabetes and infertility. The websites are high on the rhetoric of science often using various accreditation, awards and other tokens to imply legitimacy but low on proof that they work.

Rather than producing independently verified results, these clinics rely on patient testimonials or unsubstantiated claims of improvement. In so doing these shonky clinics understate the risks to patient health associated with these unproven stem cell-based interventions.

Properly administered informed consent is often overlooked or ignored, so patients can be misled about the likelihood of success. In addition to heavy financial burdens imposed on patients and their families, there is often an opportunity cost because the time wasted in receiving futile stem cells diverts patients away from proven medicines.

The many recent reports of adverse outcomes demonstrate the risks of receiving unproven cell therapies are not trivial. In the USA three women were blinded following experimental stem cell treatment for macular degeneration (a degenerative eye disease that can cause blindness). One man was rendered a quadriplegic following a stem cell intervention for stroke. And a woman whose family sought treatment for her dementia died in Australia.

Other notorious cases involving the deaths of patients include the German government shutting down the X-Cell Centre and the Italian government closing the Stamina Foundation it had previously supported.

Whats approved?

At present, the only recognised stem cell treatments are those utilising blood stem cells isolated from bone marrow, peripheral blood (the cellular components of blood such as red and white blood cells and platelets) or umbilical cord blood.

Hundreds of thousand of lives have been saved over the last half-century in patients with cancers such as leukaemia, lymphoma and multiple myeloma, as well as rare inherited immune and metabolic disorders.

A few types of cancer and autoimmune diseases may also benefit from blood stem cells in the context of chemotherapy. Different stem cells are also successfully used for corneal and skin grafting.

All other applications remain in the preclinical research phase or are just starting to be evaluated in clinical trials.

Often dismissed by for-profit clinics as red tape hampering progress, the rigour of clinical trials allows for the collection of impartial evidence. Such information is usually required before a new drug or medical device is released into the marketplace. Unfortunately, in the case of for-profit stem cell clinics, their marketing has gazumped the scientific evidence.

The action is required on many fronts. Regulators at both an international and national level need to tackle regulatory loopholes and challenge unfounded marketing claims of businesses selling unproven stem cell interventions.

Researchers need to more clearly communicate their findings and the necessary next steps to responsibly take their science from the laboratory to the clinic. And they should acknowledge that this will take time.

Patients and their loved ones must be encouraged to seek advice from a trained reputable health care professional, someone who knows their medical history. They should think twice if someone is offering a treatment outside standards of practice.

The stakes are too high not to have these difficult conversations. If a stem cell treatment sounds too good to be true, it probably is.

For more information on recognised stem cell treatments visit the National Stem Cell Foundation of Australia and Stem Cells Australia, Choice Australia, EuroStemCell, International Society for Stem Cell Research, and International Society for Cellular Therapy.

Megan Munsie, Deputy Director - Centre for Stem Cell Systems and Head of Education, Ethics, Law & Community Awareness Unit, Stem Cells Australia, University of Melbourne and John Rasko, Clinical Haematologist and President-Elect, International Society for Cellular Therapy., University of Sydney

This article was originally published on The Conversation. Read the original article.

See the original post:
Private clinics' unproven stem cell treatment is unsafe and unethical - Business Standard

WVU researchers study leukemia, bone marrow treatments – The Dominion Post

TheDPost.comComment Policy TheDPost.com encourages readers to engage in conversations about site content. If you would like to comment, please abide by the follow guidelines: Stay on topic:Do not include comments about other subjects. Be civil:Challenge opinions but dont personally attack or degrade others. No use of all-caps, bold or italics. Watch your language and image:No vulgarity, obscene or profane photos or language (actual or implied), including intentionally misspelling words, using characters or dashes. No frauds:Do not use the identity of a company or another person (living or dead). No free ads:Do not use comments to promote a business, money-making endeavor or individual promotion. Link limit:It is not permitted to excessively link to external sites. TheDPost.com reserves the right to remove any comment deemed unacceptable or that fails to meet our commenting guidelines. The DPost.com also reserves the right to suspend or revoke commenting privileges should a user violate the commenting guidelines. A suspension or revocation of privileges could affect the commenting privileges of others in your household.

TheDPost.com takes seriously any attempts to threaten, harass or intimidate readers and employees, and will report such behavior to authorities.

The rest is here:
WVU researchers study leukemia, bone marrow treatments - The Dominion Post

Avera Medical Minute AMcK: Firefighter with recurrent Hodgkin Lymphoma will need bone marrow transplant in future … – KSFY

Firefighter Dustin Luebke puts his life on the line everyday protecting and serving the community. Never did he think his life would be threatened in a different way.

So now in 2017, Im going through it for the third time. So now its again recurring Hodgkins, said Luebke.

It all started in March of 2014. After 12 rounds of chemotherapy and six months in remission, it came back. He needed a stem cell transplant and was able to use his own stem cells.

Shortly after completing a year of chemotherapy after the transplant, it came back for the third time.

Its tough to swallow the first time and the second time. And then with the third time, its frustrating, said Luebke.

This father to three little girls will eventually need a bone marrow transplant.

But with this time, right now Im just doing an immunotherapy and were hoping that brings it back down to a cellular level and I can be on that for as long as until it stops working. So then it would require a stem cell transplant with a donor this time, said Luebke.

Thats where you and I can do our part and become part of the bone marrow registry and potentially be the match and save a life like Luebke's.

You fill out a short questionnaire. It talks about your health history and some personal questions, like how willing would you be to become a donor and then the swabbing process is really simple. We just swab each of your cheeks for a couple of minutes and then youre done, said Jalisa Spittler, transplant coordinator.

Spittler says 70% of patients who need a donor dont have a match in their family making the bone marrow registry their only hope.

We do have a lot of patients here that are waiting for matches that we just cant find for them. So its really helpful if we can create a diverse list with tons of people from here in South Dakota, said Spittler.

I got three little girls to raise and beautiful wife at home so I gotta stick around for a few more years, said Luebke.

Its pretty tough to realize that now youre relying on someone else where before it was all the medicine and just chemotherapy and now youre relying on somebody else with healthy stem cells to keep you going, said Luebke.

Sometimes it takes months to find a match.

Its taxing on them because they have to take more chemotherapy the longer it takes us to find a match for them. And the more chemotherapy they take, the harder it is on their body to get through the transplant. So its really important that we have a huge number of people to look at first, said Spittler.

Theres many ways that you can help out with people lives. And whether its in a fire, on a medical call and even helping somebody with life itself and furthering their life and making it better so they dont have to do chemotherapy anymore, said Luebke.

Luebke is a hero to this family and the community.

The first step to being someones cure is to join Be the Match Registry.

This Tuesday at the Oyate Community Center in Sioux Falls, there will be a bone marrow registry drive from noon to 7PM. It is put on by Avera, the city of Sioux Falls, and Be the Match. Registering takes less than 15 minutes.

For more information, just call 877-AT-AVERA.

See the article here:
Avera Medical Minute AMcK: Firefighter with recurrent Hodgkin Lymphoma will need bone marrow transplant in future ... - KSFY

How to Grow a Human Hand – Edgy Labs (blog)

Heres an interesting project: somebody has been growing a human hand in a lab and displaying it for the world to see.

We live in a time where the meaning of impossible needs to be updated.

As we make new discoveries, new possibilities open up to us. And if you want a good example of that, just look at how advanced prosthetics have become in the last decade. Soon, you might be able to grow a humanhand like a Chia pet.

Or take a look at Dr. Sergio Canavero, who plans to perform a full-on head transplant later this year.

But that example may be a little extreme.

See, theres something miraculous about giving something vital like a limb or an organ to someone to needs it. In the past, it couldnt be done, but with the future in sight, were slowly changing our minds on that.

So, the future can be full of hope. And when one of us loses a hand, possibly due to someone we have only just learned is our father, we wont have to worry too hard.

Ok, heres a better example of the kind of future Im talking about.

Artist Amy Karle has an interesting new project that combines 3D printing with stem cell research. The idea is to grow a functional human hand, and if it works she wants to make the design free and open source.

And trust me, that will be one weird-yet-cool day for the people who frequent Instructables.com.

Karle may be an artist, but shes no amateur. She works with nonprofit groups that design 3D printed prosthetic arms, and she has help from a team of scientists.

The project is called Regenerative Reliquary, and it is being displayed in San Franciscos Pier 9 space while it grows. Or, to be more accurate, while part of it grows.

Karle has designed a 3D printed trellis in CAD which was printed using a cellular growth medium called pegda. Over several weeks, the pegda trellis was grown in a bioreactor on display. The next step will be to grow a cell line on the trellis, something Karle is culturing stem cells for now.

The team is using stem cells extracted from bone marrow, and with any luck, the idea will bear fruit and be released to the public.

I like the sound of an open source prosthetic design, especially considering how much more of an option 3D printing is these days. Lose a limb, and you may one day be able to make a replacement within the comfort of your own garage.

For now, though, were still waiting to see if Karles project will work. According to the artist, Well see if the cells have a mind of their own. I like to step back and let the artwork take over.

Now you know how Karle plans to grow a human hand. Lets rewind a bit, back to where I mentioned Dr. Canavero and his upcoming head transplant.

As crazy as it sounds, if Canaveros plan works science will have taken a big step toward manipulating the central nervous system. And thats really, really important. If scientists can connect a head to a spine, and they can grow a limb in a tank, it follows that they may one day be able to attach that limb as a replacement.

And that doesnt just apply to limbs, either. Scientists have been looking into growing replacement organs for years, just look at this article from way back in 2014.

We may be on the verge of the ability to reproduce and replace parts of the human body. And at this rate, who knows what kind of effect this can have on the survivability rate of human beings in the future.

Im sure well never resurrect the dead or anything, but I think the fictional Dr. Frankenstein would be proud.

Creating replacement body parts is something that has been a mainstay of science fiction, and it isnt crazy any longer to think that it may become a reality. So, like I said earlier, we may need to push the goal posts back on the word impossible.

View original post here:
How to Grow a Human Hand - Edgy Labs (blog)

Stem cell therapies: medical experts call for strict international rules – The Guardian

Stem cells have long been used to treat blood cancers and some immune diseases. But some doctors are offering stem cell treatments for diseases still under clinical trial. Photograph: Mauricio Lima/AFP/Getty Images

Medical and legal experts from around the world have united to call for more stringent regulation of stem cell therapies to prevent people pursuing unproven and potentially deadly treatments overseas.

In a perspective piece for the US journal Science Translational Medicine, 15 experts from countries including the UK, the US, Canada, Belgium, Italy and Japan wrote that national efforts alone would not be enough to counter an industry offering unproven treatments to vulnerable patients.

Stem cell-based interventions are classified under diverse and potentially incompatible national regulatory frameworks, the authors wrote.

Approaches for international regulation not only need to develop consistent rules over the commercialisation of medical practices and products but also need to give them teeth by developing cross-border partnerships for compliance.

Stem cells found in bone marrow and umbilical cord blood have long been used to successfully treat blood cancers including leukaemia and some immune diseases. But those are among the few proven treatments. Legitimate and ethics-approved clinical trials by academic centres are also occurring, exploring the potential of stem cells to treat a wider range of diseases.

But some doctors are directly offering to the general public stem cell treatments for diseases still under clinical trial or for which no evidence exists and for which the safety and efficacy is as yet unproven.

Deaths as a result of stem cell treatments have already occurred. In 2013 Sheila Drysdale died in a New South Wales nursing home after undergoing an unproven liposuction stem-cell therapy at a western Sydney clinic. Following Drysldales death, her doctor, Ralph Bright, gave a statement to police in which he claimed that stem-cell treatment could improve comorbidities and that stem cells could move from joints to other parts of the body to improve disease in distant sites including lungs and brain, vision, mentation and pain.

In his report into Drysdales death, the coroner Hugh Dillon wrote that he could not say what motivated Dr Bright to perform this unproven, dubious procedure on Sheila Drysdale.

But regardless of his motivation, Dr Brights performance as a medical practitioner was, for the reasons outlined above, poor and resulted in Sheila Drysdales death.

The Medical Council of NSW investigated Bright and placed a number of restrictions on his right to practice. Bright is still authorised to practise stem cell therapy for patients with osteoarthritis or who are taking part in research studies approved by an ethics committee. He is also still allowed to treat patients returning for remaining injections of stored cells.

In 2013 a Queensland woman, Kellie van Meurs, died when she travelled to Russia to undergo stem-cell treatment for a rare neurological disorder. She died of a heart attack as a result.

Australias drug regulator, the Therapeutic Goods Administration, last year sought feedback on the regulation of autologous stem-cell therapies but is yet to publish those submissions. A TGA spokeswoman said the Administration was still examining the options for changes to the legislation to reflect public and industry views. The TGA currently considers autologous treatments, which involve treating someone with their own tissue or cells, to be a therapeutic good and, therefore, does not regulate them. Stem cells used for medical practice and therapeutic purposes are covered by different regulatory frameworks.

Associate Professor Megan Munsie, a University of Melbourne stem cell scientist and a co-author of the paper, said: The idea that stem cells are magical holds court in the community, along with this idea the advances in treatment are being held up by red tape.

Unethical health practitioners exploited this, she said, along with the vulnerability of patients with difficult-to-treat or incurable conditions.

There is a precedent for international regulation of this industry because regulations already exist around drugs the way they are manufactured, she said.

This could be extended to the regulation to the stem cell and tissue-based therapies. This international stance would then force or encourage stronger local regulations.

There have been successful efforts by scientists to push back against unscrupulous doctors. In Italy scientists and regulators highlighted the unproven yet government-subsidised treatments being offered by the entrepreneur Davide Vannoni and fought to stop him. He was convicted of criminal charges but the sentence was later suspended.

Read this article:
Stem cell therapies: medical experts call for strict international rules - The Guardian

Artsakh Soldier Saves Life Of Cancer Patient In Iran – Asbarez Armenian News

Sergey with his wife and son

ABMDR salutes young officer and celebrates its 30th life saved through a transplant

LOS ANGELESThe Armenian Bone Marrow Donor Registry (ABMDR) announced that it has facilitated its 30th bone marrow stem cell transplant, thanks to stem cells harvested from a young ABMDR matched donor. The stem cells of the donor, Sergey, who is a 23 year-old army officer serving on the frontline in Artsakh, were utilized to save the life of a cancer patient in Iran.

On July 3, 2017, Sergey became the 30th ABMDR donor to experience the joy of saving the life of someone he had never met, said ABMDR President Dr. Frieda Jordan.

Dr. Sevak Avagyan, Sergey, Dr. Andranik Mshetsyan

In 2012, Sergey had joined the ranks of ABMDRs donor registry during a recruitment drive at the Vazken Sagsyan Military Institute, in Yerevan. Five years later, he was found to be a perfect match for a patient in Iran who was suffering from leukemia and whose only hope for survival was to receive a bone marrow stem cell transplant from a compatible donor. Sergey turned out to be a perfect match for the patient. He was given a day off to leave the frontline to come to ABMDRs Stem Cell Harvesting Center in Yerevan to donate his stem cells and save a patients life.

Accompanied by his young wife and six-month old son, Sergey was greeted by ABMDR staff at the Stem Cell Harvesting Center. The painless, non-invasive harvesting procedure, performed by Dr. Andranik Mshetsyan, lasted approximately four hours. Also present at the procedure were ABMDR Executive Director Dr. Sevak Avagyan and Medical Director Dr. Mihran Nazaretyan.

Sergey, Dr. Mihran Nazaretyan, and Lab Staff Member

At the conclusion of the harvesting, as staff members performed quality-control analyses of the harvested cells and packed them for the special courier who was waiting to transport the precious gift of life to the patient in Iran, Sergey, a hero in the eyes of all, on the frontlines as well as far away from them, joined his young family while someone in Iran was about to get a second chance at life.

Established in 1999, ABMDR, a nonprofit organization, helps Armenians and non-Armenians worldwide survive life-threatening blood-related illnesses by recruiting and matching donors to those requiring bone marrow stem cell transplants. To date, the registry has recruited over 29,000 donors in 42 countries across four continents, identified over 4,190 patients, and facilitated 30 bone marrow transplants. For more information, call (323) 663-3609 or visit abmdr.am.

Continued here:
Artsakh Soldier Saves Life Of Cancer Patient In Iran - Asbarez Armenian News

Bursting the Bubble – Texas Medical Center (press release)

Blanca Romero gave birth to her son, Sebastian, on Feb. 12, 2017, at Houston Methodist Hospital in Katy. At 8 lbs. 9 oz., Sebastian had plump cheeks, big brown eyes and a head full of thick black hair. He was, by all appearances, a perfectly healthy baby boy.

Sebastian was Romeros third child, so she was familiar with the post-delivery drill. She took him to his newborn screening with the pediatrician, but something wasnt quite right with one of his tests. The results showed abnormalities in Sebastians immune system.

It was scary to hear your child has something, but you dont know what it is, Romero said.

Romero and her husband, Emil, met with Sarah Nicholas, M.D., an allergy and immunology specialist at Texas Childrens Hospital, who explained that their son had a rare genetic disorder called severe combined immunodeficiency (SCID). The condition is more commonly known as bubble boy disease, named for David Vetter, who suffered from the same illness and was forced to live his short life in a sterile plastic bubble. Born in 1971, Vetter was also treated at Texas Childrens.

Patients with SCID are born missing their T cells, a type of white blood cell that protects the body from foreign invaders by killing viruses and sending instructions to the rest of the immune system. In some SCID cases, patients may be born without their B cells, a white blood cell that produces antibodies, or natural killer (NK) cells, a white blood cell that kills viruses and tumor cells.

Without the bodys natural defense system, Sebastian and other babies with SCID are at high risk for severe and recurrent infections, such as pneumonia.

Even a slight cold could turn deadly, a rash could turn into an infection and turn deadly, Romero said. Anything could kill him.

But there was hope. With chemotherapy and a bone marrow transplant, Sebastian had a good chance of living in the real world.

Although Sebastian didnt need to live in a plastic chamber like Vetter, the environment he required at home created a bubble of social isolation for Romero and her family.

Soon after his diagnosis, Romeros husband and the couples other two children, Abraham, 7, and Kayla, 5, caught colds.

Romeros instincts kicked in. She began formulating a way to keep Sebastian safe from pathogens and people, including his own family. First, she and her husband disinfected theirentire home, buying four air filters to remove dust, pollen, mold and bacteria from the air.

Then, they transformed the master bedroom into living quarters for her and Sebastian. Romero spent her days alone with the baby, venturing outside the room only for brief moments.

My husband would bring food into the bedroom whenever the kids would leave for school and he would leave for work, Romero said. He would Lysol the entire house so that I could go in the living room or the kitchen to get something to eat, and then Id go right back into the room.

Romero notified her childrens school of Sebastians condition. The classrooms where Abraham and Kayla spent most of their time were sanitized daily. The school also let Romero know when any students were sent home with fevers, so that she could decide whetheror not her children should go to school.

Rather than eating lunch in the cafeteria with the rest of his class, Abraham stayed in the classroom with his teacher and one friend.

When the kids returned home from school, they were required to shower immediately to make sure they didnt carry any outside pollutants or germs into the house.

Even then, the master bedroom was off limits. Although Abraham and Kayla were eager to hold and play with their baby brother, they had to stand far from the door. Romero would hold Sebastian up in the air like in Lion King when theyre showing Simba, she said, sothey could see him.

They went from being able to touch and love the baby to not being able to touch him anymore, Romero said. At first, they didnt understand, so they would cry a lot. We had to explain to them that this was life-threatening and he could die.

The kids were isolated from their mother, as well.

I couldnt hug my kids, Romero said. I couldnt kiss them because I have to protect Sebastian as his main caregiver.

Instead, she would give her two oldest children pretend hugs. She would hug herself and they would hug themselves at the same time, as if they were hugging each other.

I feel guilty, Romero said. Everybody tells me not to because Sebastian is the one who needs us the most right now, but I cant help, as a mother, to feel like Im failing my other two children because they also need me.

On May 14, Mothers Day, Blanca and Emil Romero packed their suitcases and drove Sebastian from their home in Katy to Texas Childrens. They settled into a small room with a metal crib for Sebastian and a sofa that converted into a pull-out mattress. For the next month, this would be their second home.

Currently, the only curative option for patients with SCID is a one-two punch of chemotherapy and a bone marrow transplant using stem cells.

With this treatment, the survival rate at Texas Childrens has been shown to be more than 90 percent for patients with SCID if treated within 3 months of age. Left untreated, however, SCID is almost always fatal from infection within a year of age.

Any time you see your patient go through a difficult procedure you really worry about the risks youre subjecting them to, but SCID is really universally fatal without intervention, Nicholas said. I feel good recommending it to my patients because I know its a lifesaving therapy.

Stem cells are the mother cells of the blood that eventually mature into red blood cells, platelets and white blood cells, explained Caridad Martinez, M.D., Sebastians bone marrowtransplant specialist and associate clinical director of the Pediatric Bone Marrow Transplant Program at Texas Childrens Cancer and Hematology Centers. Healthy white blood cells canfurther divide into various subtypesincluding lymphocytes, which are the bodys B cells, T cells and NK cells.

Since the lymphocytes arise from stem cells that are located in the bone marrow, the only curative option for SCID patients is basically to replace that sick marrow producing abnormallymphocytes with a normal marrow producing functional lymphocytes, Martinez said.

There are three options for patients who need a bone marrow transplant: a sibling donor, an unrelated marrow donor or a cord blood unit. A sibling donor is the preferred option, but only 25 percent of patients who need a bone marrow transplant will have a matched sibling donor.

Patients without a matched sibling require either a transplant from an unrelated marrow donor or a cord blood unitstem-cell-rich blood left in the umbilical cord and placenta after birth that was donated to a public cord blood bank.

But none of these options worked for Sebastian, who is Hispanic. Minoritiesincluding Hispanics, African Americans and Asiansare underrepresented in the bone marrow transplant registry, making it difficult for babies of those ethnic backgrounds to find a good donor match.

Martinez said it was the first time in her 10 years of transplanting SCID babies that she and her team werent able to find a matched sibling or cord blood unit for transplant.

Without many options left, Martinez decided on a different type of transplant, one that had never been performed on a SCID patient at Texas Childrens: a haploidentical transplant. A haploidentical, or half-match, donor can be a patients mother, father or sibling, as long as they havent been exposed to certain viruses, including cytomegalovirus (CMV), a commonvirus that affects 85 percent of adults.

Once a person is exposed to CMV, the virus remains dormant inside the body and can be reactivated.

Those viruses are like common colds, but when they reactivate in the transplant period it can be a problem, Martinez said.

Fortunately, Romero tested negative for those viruses, making her an ideal haploidentical donor for Sebastian.

Martinez administered a drug called granulocyte colony-stimulating factor to stimulate the production of Romeros stem cells and mobilize them out of the bone marrow to the peripheral blood for extraction. After measuring the amount of cells her body was producing, Martinez and her team discovered that Romero had four to five times the amount of stem cells Sebastian needed for his transplant. Romero called them her super cells.

The extracted stem cells were then sent to a lab for graft engineering and T cell depletion, a purification process that separates unmatched T cells to prevent graft-versus-host disease (GVHD).

Finally, on the evening of Thursday, May 25, Martinez and her team walked into Sebastians hospital room carrying a small blood bag full of purified stem cells. They hooked up the bag to the IV pole next to Sebastians bed and began administering 78 milliliters of the super cells.

Romero watched as the pink liquid snaked through the tube into Sebastians central line. An hour and 10 minutes later, his body received the final drops of lifesaving stem cells.

But Sebastian wasnt out of the woods yet. He was still experiencing side effects from chemotherapy.

In preparation for the bone marrow transplant, Sebastian underwent 10 days of chemotherapy to suppress any remaining immune response that might reject the donor cells and to clear space in the bone marrow for the new stem cells to grow and expand. Although this is a necessary part of the treatment, it takes a painful toll on the body.

During the chemo days, he looked fine, but now to see the after effects, I cant do anything and nothing soothes him, Romero said. I try to hold him and its horrible. I cant do anything. It sucks. I wish I could just know what hes feeling.

Monday, May 29, was one of their hardest days yet. Emil Romero sat in the pull-out bed, gently holding Sebastian in his arms, while the slack of catheter tubes attached to Sebastians body trailed around them. Sitting next to her husband, Blanca Romero gazed forlornly at her 3-month-old baby boy and listened to his subdued whimpering.

He has learned that, if he cries, it hurts him more, so he whimpers more than he cries, she said. He doesnt babble as much either because it hurts him.

As she caressed Sebastians head, strands of his hair stuck to her hands, a side effect of chemo. Sebastian inched closer to her and started rubbing her face. Could he sense his mothers pain, or was he just practicing his hand-eye coordination?

There are moments when Im pretty okay and then there are moments when I go into the bathroom and just cry it out, Romero said. Its tough to see your child going through this stuff but hes there fighting and were fighting along with him.

A new immune system takes time to grow and be normal, Martinez said.

You need to wait until that immune system is mature enough to be functional and able to fight viruses or respond to vaccines, she added. That usually happens about nine months to a year after the transplant is done.

On Wednesday, June 14, Sebastians doctors delivered some surprising news: His T cell count in his bone marrow was steadily increasing above optimal levels. He was going to be released that afternoon, ahead of schedule.

It was a mix of emotions, Romero said. You get choked up knowing were ready to go home, but at the same time, super scared because youve been in this environment where everybody knows they have to protect him.

But it was wonderful to have the family back together again. Sebastians two older siblings could finally shower their baby brother with affection. They had been waiting patiently and loving Sebastian from a distance, but now, they could hug and kiss him.

This is the closest theyve all been since he was born, Romero said.

Sebastian will continue to stay in isolation at home for at least three months. He was supposed to leave only for clinic visits three times a week to receive blood or platelet transfusions, but because of a fungal infection he contracted, Romero still takes him to the hospital for treatment every day for four to six hours. Its an exhausting routine traveling back and forth from Katy to the hospital, Romero said, but at least theyre home.

Were so thankful that hes been doing so good, she said, her voice a couple octaves higher, as she nuzzled Sebastians neck and cuddled with him on the sofa in their living room.

Over the past four months, Romero and her familys lives took an unexpected turn because of Sebastians SCID diagnosis. But Romero, ever the optimist, said she hopes Sebastians journey will raise more awareness about SCID and inspire others to become bone marrow or cord blood donors.

I know theres a plan and a purpose. I can see that through sharing our story, she said. If you could go, be a match and sign up, do it. You can save a life. Whats better than that? You can be somebodys hero.

Continue reading here:
Bursting the Bubble - Texas Medical Center (press release)

Stem cell therapies breaking barriers Features The Guardian … – Guardian (blog)

STEM CELL THERAPIES BREAKING BARRIERSPhysicians all over the world are increasingly employing stem cell therapies for the treatment of chronic diseases including hypertension, diabetes, chronic kidney disease, neurological disorders, asthma, diabetes, rheumatoid arthritis, spinal cord injuries, female and male sexual dysfunction, joint pain and autoimmune disease. INSET is Dr. David Ikudayisi, of the Glory Wellness and Regenerative Centre PHOTO CREDIT: http://theconversation.com

Technology offers groundbreaking new treatment option for chronic diseases to patients Physicians all over the world are increasingly employing stem cell therapies for the treatment of chronic diseases including hypertension, diabetes, chronic kidney disease, neurological disorders, asthma, diabetes, rheumatoid arthritis, spinal cord injuries, female and male sexual dysfunction, joint pain and autoimmune disease.

A study published last week in the FASEB Journal showed that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Also, researchers have successfully patched up damaged hearts to treat heart failure, using the patients own muscle stem cells but another study published last week in journal Circulation found that the treatment could be more harmful than helpful if cardiac stem cells are involved.

In another study published in the journal Science Translational Medicine, team of investigators has successfully repaired severe limb fractures in laboratory animals with an innovative technique that cues bone to regrow its own tissue. If found to be safe and effective in humans, the pioneering method of combining ultrasound, stem cell and gene therapies could eventually replace grafting as a way to mend severely broken bones.

Using new gene-editing technology, researchers have rewired mouse stem cells to fight inflammation caused by arthritis and other chronic conditions. According to the study published in the journal Stem Cell Reports, such stem cells, known as SMART cells (Stem cells Modified for Autonomous Regenerative Therapy), develop into cartilage cells that produce a biologic anti-inflammatory drug that, ideally, will replace arthritic cartilage and simultaneously protect joints and other tissues from damage that occurs with chronic inflammation.

Scientists have for the first time created a special type of neuron from human stem cells that could potentially repair spinal cord injuries. The study was published in the Proceedings of the National Academy of Sciences.

Also, early results of a clinical trial suggest that stem cell therapy may be a promising treatment for erectile dysfunction, after the procedure was found to restore sexual function in men with the condition.

Meanwhile, the ANOVA IRM Stem Cell Centre has opened its doors in Frankfurt, Germany offering a groundbreaking new treatment option to patients worldwide.

One of the pioneers of stem cell therapy in Nigeria, Dr. David Ikudayisi, of the Glory Wellness and Regenerative Centre, with clinics in Abuja and Lagos, told The Guardian that there are several thousand clinical trials based on autologous (patients own) Mesenchymal Stem Cells (MSCs). He said these type of stem cells are relatively easy to obtain from a patient via bone marrow blood or fat tissue and have been shown to hold vast healing potential.

Ikudayisi is a United States (U.S.) Board Certified Internist with a strong passion for regenerative aesthetic and cosmetic medicine.

Ikudayisi said ASCT and Platelet Rich Plasma Therapy (PRPT) are under a new specialty of medicine known as regenerative medicine, which is a specialist segment of medicine that helps people to naturally regenerate and rejuvenate their bodies from the different conditions they may be suffering from without using chemicals or the orthodox medicine we are used to.

ASCT may hold answers to many questions and problems that we doctors believed had no solutions, especially neurological disorders. Adult stem cell therapy with or without PRPT revitalizes and regenerates the body organs and systems; it also reverses and repairs many pending subclinical medical problems before they become apparent, including the diseases that are age-related, Ikudayisi said.

He said that ASCT and PRPT are safe as shown by many published research reports and clinical trials done already. He, however, said this does not guarantee that adverse effects cannot occur if physicians that are not properly trained do the treatment.

The US-trained said ASCT has helped a lot of people all over the world to regain their lives back from debilitating ailments and Nigerians are not left behind. He said there are real people in Nigeria that were either wheelchair bound but now walking freely with occasional use of a cane or using a cane before but now walking without one; diabetes patients are able to have restoration of vision in their eyes, and some feel and look younger.

He said ASCT has helped chronic kidney disease patients in Nigeria that are on haemodialysis to either reduce the frequency of haemodialysis per week or like in a patient that was recommended to have kidney transplant a year ago is now off haemodialysis and off diabetic medications, and remain stable for the last six months.

Ikudayisi said men with erectile dysfunction are now feeling like young men again. He further explained: I would be remiss to mention that the type of treatment protocol, the dosage of stem cells used also play a role in the efficacy of the treatment, and not everyone will respond in the same manner. Most of the patients showed improvements after the first treatment, and the few that needed second treatment went on to see great results after more treatments were done; needless to say that they were elated with the results.

The only groups of patients that will always need more than a couple of transplantation sessions are patients with the neurological disorders. The latest researches and evidence-based studies show the number of treatment session needed to get significant clinical results can decreased by adding Exosomes to the treatment sessions.

Ikudayisi said there are some diseases that conventional treatments have no cure for, but ASCT can reverse the symptoms of those diseases, repair, and regenerate the damaged tissues or organs involved. He explained: In some cases, it significantly slows down the progression of the disorder. For example, it can regenerate the bony joints in arthritis, repair and strengthen partial Rotator cuff tears and avascular necrosis of the hip without surgery, revitalize the sexual organs in men and women, regenerate renal cells in kidney diseases, modulate immune system without use of medications that have very serious side effects in conditions like rheumatoid arthritis, lupus, scleroderma, Crohns disease, etc. Another advantage is its application in neurological disorders like Amyotrophic lateral sclerosis (ALS) and spinal cord injury.

Ikudayisi said ASCT can gradually lower diabetic medications dosage and eventually may get the patients off diabetic medications. This is evidenced by stem cells in a hyperglycemic medium differentiating into pancreatic cells; therefore leading to increased development of new blood vessels, secretion of various products of the immune system, and up-regulation of pancreatic transcription factors and vascular growth factor. This aids the pancreas to regenerate and boost its ability to produce insulin. In stroke patients, stem cells activate cells around the suffering brain tissue to catalyze rapid healing and to improve brain function, thereby restoring motor function. Until recently, it was believed that damage to the brain tissue was permanent. This is being challenged by the evidences of re-growth of brain cells and improvements of neurological function documented with the use of adult stem cells, he said.

Ikudayisi said a procedure called P-Shot for Men uses PRPT to resolve challenges relating to erectile dysfunction by regenerating the damaged tissues. It gives treated men the possibility of saving their relationships by increasing stamina, enjoying bigger and harder genitals, and eventually increasing the length and girth. Orgasm-Shot for Women, the regenerative medicine procedure for womens sexual function, leads to increased ability to have orgasm, better arousal from clitoris stimulation, decreased pain during intercourse, tighter vaginal opening, increased sexual desire and natural lubrication, and increased arousal from G-spot stimulation. In addition, because of the O-Shot rejuvenation capabilities, there is help available for women suffering from urinary stress incontinence without the need for invasive surgery, he said.

Ikudayisi said since the stem cells used are autologous, there is no risk of rejection of the stem cell transplant, but as with any procedure, there is a risk of infection, which can be very minimal or non-existent if done under the right conditions. He said adult stem cells transplantation can also be considered by people looking for alternative treatments especially in the areas of diabetes, hypertension, kidney disease, female and male sexual dysfunction, joint pain, neurological disorder and autoimmune disease.

The regenerative medicine expert, however, said: Currently, the cost of treatment varies, and it is not for everyone. However, you cant place a price tag on life just as the saying goes that Health is wealth.

7 hours ago Features

7 hours ago Features

7 hours ago Health

7 hours ago Health

7 hours ago Features

7 hours ago Focus

Read more here:
Stem cell therapies breaking barriers Features The Guardian ... - Guardian (blog)

Global Cell Therapy Report 2017 – Technologies, Markets and … – PR Newswire (press release)

This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

The cell-based markets was analyzed for 2016, and projected to 2026. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 306 of these are profiled in part II of the report along with tabulation of 291 alliances. Of these companies, 170 are involved in stem cells. Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 64 Tables and 22 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

Key Topics Covered:

Part I: Technologies, Ethics & Regulations

Executive Summary

1. Introduction to Cell Therapy

2. Cell Therapy Technologies

3. Stem Cells

4. Clinical Applications of Cell Therapy

5. Cell Therapy for Cardiovascular Disorders

6. Cell Therapy for Cancer

7. Cell Therapy for Neurological Disorders

8. Ethical, Legal and Political Aspects of Cell therapy

9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions

10. Markets and Future Prospects for Cell Therapy

11. Companies Involved in Cell Therapy

12. Academic Institutions

13. References

For more information about this report visit https://www.researchandmarkets.com/research/hpj9sh/cell_therapy

Source: Jain PharmaBiotech

Media Contact:

Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/global-cell-therapy-report-2017---technologies-markets-and-companies-2016-2026-with-profiles-of-key-companiesinstitutions-300483356.html

SOURCE Research and Markets

http://www.researchandmarkets.com

Original post:
Global Cell Therapy Report 2017 - Technologies, Markets and ... - PR Newswire (press release)

Danvers health group offers alternative solution to surgery – Wicked Local North of Boston

Stem cell therapy: the next wave in regenerative medicine?

All it involved was a quick injection no different, really, than a flu shot.

A few weeks later, Bill Ambrose realized hed become significantly less reliant on taking Aleve for knee pain, and he was re-learning how to walk without shuffling his feet.

Surgery, it turned out, might not be necessary after all.

Last November, Ambrose scheduled knee surgery to alleviate discomfort in his knees caused by what orthopedic doctors called true bone-on-bone at the joint. But for one reason or another, he kept missing pre-surgery and the surgery never happened.

The next month, Ambrose met with Dr. Bill Nolan, of Cherry Street Health Group, to discuss advertising space in the Danvers Herald.

For the purpose of full disclosure, Ambrose is an employee of Gatehouse Media Company, and he works in the advertising department for Wicked Local, the local branch of GHM newspapers.

After Nolans ads ran inthe Jan. 5issue of the Herald, Ambrose said he reached out to Nolan again. This time, for himself.

Nolans practice offered a solution to his knee pain an alternative to knee surgery he had never considered before: stem cell therapy.

Essentially, the solutionCherry StreetHealth Group offered was an injection of amniotic fluid into Ambrose's knee joint. The stem cells and other growth factorsin the fluid would allow for the regeneration of the cartilage at the joint.

I became interested so I decided to go ahead with it, Ambrose said.

He brought in scans to show Nolan, who said, contrary to what orthopedic doctors had told him, he didnt have true bone on bone. There was still a small space between the bones.

I decided to have one leg done and my knee started getting much better, he said.

Satisfied with the results of the first injection, Ambrose decided to get his left knee done in April.

I still experience some pain in [the left knee], but I get up in the morning and theres very little pain at all, he said in an interview a few weeks following the appointment.

The stem cell option

In the U.S., there are three ways that stem cells are used, Nolan said. Theyre either taken from bone marrow, fat cells, or the amniotic membrane of a healthy c-section from a consenting woman.

When stem cellsare injected into the body,they're expected to increase space at the joint, rebuild cartilage, and ultimately, provide more stability in the joint. As many as 570 businesses across the country advertise some kind of stem cell therapy, according to a 2016 paper.

Stem cell therapy is not necessarily a new discovery, but it is relatively recent in the world of regenerative medicine.Stem cells were first used as much as century ago, first for eye procedures and as filler for the spinal cord, according to Regenexx, which claims to have pioneered orthopedic stem cell treatments in 2005.

Adult stem cells are retrieved directly from the patient, either frombone marrow or fat cells,and concentrated beforeits reinjectedinto the patient's site of pain.

In the case of amniotic fluid therapy,amniotic fluid, which contains stem cells and other growth factors, is injected into the site. These cellshave been shown to "expand extensively" and show "high renewal capacity,"according to research published in the National Library of Medicine.

We know that as you age, your stem cell count decreases,Nolan said, explaining the benefit of using cells from the amniotic membrane. We know that when we get it from the amniotic membrane, theres a large amount of stem cells that are present. From the amniotic membrane, there are no antibodies or antigens, so its safe for anyone to get.

At Cherry Street Health Group, theproduct usedis produced by General Surgical and distributed by RegenOMedix, according to Nolan.The product, which is called ReGen Anu RHEO, is American Tissue Bank approved and FDA cleared.

RHEO is marketed as "a human tissue allograft derived from placental tissue; amniotic membrane and amniotic fluid."Its a"powerful combination" of amniotic fluid and mesencymal stem cells, which are known to differentiate into a variety of cell types, according to RegenOMedix.It also contains growth factor proteins andis "rich" in other necessary components for tissue regeneration.

The product is non-steroidal and comes with no side effects, and the company says no adverse events have been recorded using the product.

Nolan said stem cell therapy has been offered as a treatmentat Cherry Street since 2016.

Across the U.S., there are as many as 56 businesses marketing some form of amniotic stem cellsto its consumers, according to the same paper.

At Rush University Medical Center in Chicago, for example, orthopedic surgeon Adam Yanke enrolled one of his patients into an experimental amniotic cell therapy treatment program. The woman, a 65-year-old suffering from osteoarthritis in both knees, told reporters the injections were "by far the most effective pain treatment" she had tried, and so farthat relief has lasted up to a year.

But while the use of amniotic fluid therapyas a regenerative medicine is becoming increasingly popular throughout the U.S.,the use of amniotic stemcellsdoesn't comewithout concern from some within the community.

Dr. Chris Centeno, who specializes in regenerative medicine andthe clinical use of adult stem cells, has blogged numerous times for Regenexx on the "scam" of using amniotic stem cells most recently in sharply worded post on May 22.

"Regrettably, we have an epidemic on our hands that began when sales reps began telling medical providers thattheir dead amniotic and cord tissues had loads of live cells on it," he wrote.

Nolan said he was familiar with Centeno's posts.

"A lot of the stem cell stuff is new," he said. "Some of the products out there ... They were doing testing on them and not finding cells."

Cherry Street Health Group has treatedabout 50patients with this form of regenerative medicine and had significant success, according to Nolan. Although Nolan owns the health group on Cherry Street in Danvers, the stem cell treatments are provided under the medical practice of Dr. Pat Scanlan.

Weve had really, really amazing success, Nolan said. Weve had over 95 percent success of all the patients weve had in the office. Its been a game changer from a practice standpoint.

The "worst thing" that could happen is there might not be any regeneration, he explained.

"You might get pain relief, but no regeneration," Nolan said. "But from what weve seen, there have been no negative side effects."

At Cherry Street, knees are the most commonly treated joints, followed by hips, shoulders and the lower back. The cervical spine is the least common.

"I hesitated on the surgery, and I'm gladI did," Ambrose said. "Even if[the stem cells]don't do any more than what they've done, its been well worth it."

Patients who do present with true bone on bone, however, are not candidates for this form of therapy, Nolan said.

The cost comparison

At Cherry Street Health Group, the cost of the injection comes toroughly $4,000 per knee, a cost that isn't covered by insurance. By comparison, health-care providers often charge insurers more than $18,000 for knee replacement surgeries in the Boston area, according to a report by the Blue Cross and Blue Shield Association.

The report, however, doesn't account for what the patient actually pays.

Nolan said when other factors of post-op are considered time off of work, rehabilitation time and cost the out-of-pocketcost for surgery compared to stem cell treatment is comparable.

"When you really boil it down, it can be the same or, in a lot of cases, a savings," he said.

Ambrose said it "boggles his mind" that more people don't choose this treatment over surgery.

"Why would you spend $40,000 on a car and not want to spend $4,000 on a knee?," he said."Its crazy. Yes, its out of pocket. So what? We buy a lot of stuff we dont need, and then for something like this, something that people, if they do it, theyll be glad they did it. Its just hard to convince them to do it."

In arecent report in STAT news, a health news start up of the Boston Globe, a study of orthopedic procedures in the U.S. suggested an estimated one-third of knee replacement surgeries are inappropriate. More than 640,000 of these surgeries are performed each year, making for a $10 billion dollar industry in knee surgery.

The study said that evidence isn't limited to just knee surgeries.

"There's a lot that needs to change when we look at health care in general,"Nolan said. "It's really no surprise that something like doing this regenerative medicine is going to take time for it to really take off."

Go here to see the original:
Danvers health group offers alternative solution to surgery - Wicked Local North of Boston

RegenOrthoSport Facility Launched – Outlook India

it will provide regenexx, a regenerative stem cells procedure to treat orthopedic and sports injuries (Attn.Editors: The following press release comes to you under an arrangement with NewsVoir. PTI takes no editorial responsibility for the same).

It will provide Regenexx, a regenerative stem cells procedure to treat orthopedic and sports injuries

Mumbai, Maharashtra, India (NewsVoir)July 5, 2017-- Regenexx, the world's most advanced stem cell procedures for treating orthopedic conditions and sports injuries has entered in Mumbai. This is there second branch in Asia. It would offer two stem cell procedures using imaging and interventional orthopaedic techniques to non-surgically repair and regenerate.The first one is a same-day procedure where stem cells are harvested, isolated and re-implanted on the same day. The second one is blood-derived plasma-rich platelet procedure. They would help athletes and non-athletes overcome early, mild, moderate ortho problems in a way that is devoid of surgery.

Regenexx is the most advanced stem cell and platelet procedures for treating orthopedic injuries, arthritis and other degenerative conditions. These procedures offer non-surgical alternatives to commonly occurring musculoskeletal conditions. Patented Regenexx procedures use precise injections of your own stem cells or blood platelets to help your body's ability to heal damaged muscles, tendons, ligaments, cartilage, spinal disc and bone. Regenexx Stem Cell Therapy and Platelet Procedures, avoid the need for invasive surgery, in turn eliminating any complications that are typically seen with surgeries.

On this occasion Dr. Venkatesh Movva, MD, Regenexx India says, "The only option till now was total knee replacement. Now with this technology we can heal and regenerate the lost tissues like cartilage, meniscus and ligaments to reverse the arthritis and in turn avoid any major surgery. Patients return to their loved activities in no time. We could also treat conditions like lower back pain, hip arthritis, bulging discs, ankle and shoulder rotator cuff tears with stem cells orthopedics procedure. Majority of these are lifestyle related conditions,"

Regenexx procedures are image guided needle based procedures, so the downtime for recovery is minimal or none. These are truly ambulatory procedures without the need for hospitalization. The procedure process involves harvesting bone marrow stem cells, using our sophisticated lab process to separate cells and precise image guided injections into the target joints in an outpatient setting. Dr. Apurv Mahalle, MGIMS, says, "Regenexx procedures are out-patient procedues and that patients can walk out of the treatment the same day. Physiotherapy team at Regenexx will help patients make the necessary changes to their physical movements so that the procedures are effective." There is no alternative for arthritis patients but to wait until the joint is bad enough for a replacement and then go through a surgery. Regenexx procedures are going to help these patients get back to the normal routine without the necessity of a replacement surgery.

About Dr. Venkatesh Movva

Dr. Movva has fellowship trained in Sports Medicine & is board certified in pain management. He incorporates his unique training into a minimally invasive non-surgical approach in his practice, providing various cutting-edge treatments. Dr. Venkateshss Movva has introduced the world's most advanced Regenerative orthopedic stem cell and platelet procedures known as Regenexx. Training Experience:

University of Oklahoma

O Clinical Base at Eastern Oklahoma Orthopedic Center Team Physician

O Tulsa University Basketball and Football Team NCAA I Team Physician

O Oral Roberts University Basketball,Soccer, Volleybal Track and Field Teams NCAA I

Team Physician

O Northeastern State University Football Team NCAA II

Board Certification:

American Board of Pain Medicine (ABPM) American Academy of Pain Medicine (AAPM) American Board of Internal Medicine (ABIM)

Memberships:

American Medical Association (AMA)

Amercan Medical Society for Sports Medicine (AMSSM) American College of Sports Medicine (ACSM) National Acedemy of Sports Medicine (NASM) Amercan Board of Sports Medicine (ABPM) American Academy of Pain Medicine (AAPM) About Regenexx

Regenexx is based out of Colarado, U.S.A is a group of doctors working towards the development of non-surgical procedures for treating orthopaedic injuries, arthritis, meniscus tears and other degenerative conditions. These procedures have been in development for over a decade and Dr. Venkatesh Movva one of the initial group of Regenexx doctor's has been contributing to the research and development of these procedures. Over 40,000 procedures have been performed using Regenexx regenerative science since 2006.

Here is the original post:
RegenOrthoSport Facility Launched - Outlook India

Former Emerald standout eyes next season – Index-Journal

Emerald baseball coach Stanley Moss called current College of Charleston infielder Bradley Dixon one of the better players and kids he's ever coached.

The former Emerald standout was a slick-fielding shortstop, according to Moss, who was a cornerstone to the Emerald program.

"He was one of my favorites of all time," Moss said. "He always did what he was asked to do and went above and beyond to try to represent our program."

Dixon shared the field with current Clemson commit Sheldon Reed, who was a year under him at Emerald. Having the two of them play together was a joy and pleasure to be a part of, Moss said.

"(Dixon) and Sheldon hit in the middle of our lineup the whole time," Moss said. "They were big producers for us offensively."

Dixon's dominant play at Emerald earned him an opportunity to play Division I baseball with the Cougars. Dixon's senior season at Emerald, College of Charleston made it to a Super Regional which was just the second appearance in the program's history.

"It's what you grow up dreaming to do, playing Division I baseball," Dixon said. "Whenever you get an opportunity to do it, you take it and make the best of it."

But dreams have sometimes been met with struggles for Dixon. His freshman year in 2015 a week before opening weekend he sprained his MCL, ACL and suffered a bone contusion, forcing him to redshirt.

The following season, though, Dixon's redshirt freshman campaign, everyone got a glimpse of what he could do on the ball field when he's healthy.

Dixon started 45 games and was fourth on the team in batting average hitting .273 with a homer. They weren't the most eye-popping stats, but they proved what he was worth when on the field.

His 2017 season, however, was met with more injuries. Dixon recently had to get stem cells taken from the bone marrow in his hip and injected into the sesamoid bones in both his feet.

All the cartilage had worn down, which meant Dixon didn't have any protection around his bones. He played through the injury the entire season, hitting just .251.

+3

Moss believes he'll be a force again once healthy.

"Bradley's work ethic has always been where you would like to be," he said. "He's that kid in the offseason. Obviously if he can get himself completely healthy he's the kind of kid that can definitely go out and have a big year for College of Charleston."

The recovery time for his injury is 12 weeks, Dixon said, which means he'll be ready for the fall.

The team put together an underwhelming year last season, going just 13-11 in the Colonial Athletic Association, 28-31 overall and losing to Northeastern in the conference tournament.

On top of that, College of Charleston's coach, Matt Heath, was fired on Friday.

Despite the setbacks, Dixon is looking help right the ship.

"I really want to increase some of the numbers I had last year," Dixon said. "And just do better for my teammates, know my role and do whatever I can to help us win."

Contact staff writer Julian McWilliams at 864-223-1814 or on Twitter @JulianMack105

More:
Former Emerald standout eyes next season - Index-Journal

Stem Cell Injections: Emerging Option for Joint Pain Relief – Health Essentials from Cleveland Clinic (blog)

Are you suffering from chronicjoint pain? If so, you may want to ask your doctor whetherstem cellinjections are right for you. If you want to avoid the surgical route of repairing a damaged knee or treating an arthritic shoulder, a stem cell injection may give you the relief you need.

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Stem cells are specialtypes of cells with the ability to self-renew or multiply. They have the potential to replicate any cell in your body. In other words, they canbecome a cartilage cell, a muscle cell or a nerve cell, says orthopedic surgeonAnthony Miniaci, MD.

They have a tremendous capacity to differentiate and form different tissues, so thats the thought behind regenerating cartilage, regenerating nerve cells and healing any injured tissues, he says.

The source of stem cells isfound in your own bone marrow orfat or you can also receive stem cells from donor sources, particularlyamniotic sourcessuch as the placenta or the amniotic fluid and lining surrounding a fetus. These cells are not part of the embryo, Dr. Miniaci says.

The number of stem cells that you have and theirquality and activity diminish as you get older, he says. Amniotic stem cells, on the other hand, are from young tissue, so theoretically these are younger, more active cells.

Thetreatment team harvests stem cells from your bone marrow or fat or uses donor cells . Later on, your treatment team injects the cells preciselyinto your joint, ligament or tendon.

Theoretically, the cells will then divide and duplicate themselves and develop into different types of cells depending on the location into which they have been injected. For example, if you have damagedknee cartilage, stem cells placed near the damaged cartilage can develop into new cartilage tissue.

However, for patients with asevere loss of cartilageor no cartilage at all, a stem cell injection is unlikely to createa new joint, Dr. Miniaci says.

Severe loss of cartilage typically leads to bone erosion or bone deformity, so a stem cell injection is highly unlikely to work in terms of reversing those changes, he says.

It can, however, improve your symptoms of pain and swelling.

The earlier you can treat someones joint pain, the better chance this has of working, making it less painful for thepatient, less inflamed, and improve their function, he says.

The main risk from a stem cell injection is in harvesting the stem cells. When taking the cells from your bone marrow, the treatment team inserts a large needle into your pelvis and removes some blood and the cells.

Any time you make incisions or insert sharp instrument into somebodys pelvis, they can have problems such as acquiring an infection, Dr. Miniaci says.

If youre taking the stem cells from fat, you you can remove some out from under the skin, he says. Again, you have a risk for an infection because were making little nicks into the skin to get to the fat.

While the use of stem cell injections to treatjoint painholds much promise, Dr. Miniaci cautions that this treatment option is still very new. Researchers needto study its effectiveness further.

We dont have a lot of data or proof indicating that stem cell injections actually repair the joint, he says.

He explains that if you have cartilage orbone damage, stem cells candifferentiate and produce bone and cartilage and tissues. So, theoretically, they could heal damaged tissue within a muscle, tendon, bone or cartilage.

Thats the theory behind it, but this type of treatment and research is just in its infancy, he says.

We really dont know whats effective, whats not effective, how many cells are necessary, how many actual injections you need and how often, he says. Nobody knows how well it works yet. But we will eventually.

Anecdotally, Dr. Miniaci finds that some patients can have significant improvement in their symptoms with stem cellinjections. But he has not seen any proof yet that they are regrowing or regenerating a joint.

Many people think that theyre going to come in with their arthritic joint and leave with a newer version of their knee joint. That doesnt happen, he says.

What does occur is a biological reaction which makes the environment in their joints a little healthier, which probably makes it less inflamed, and as result, gives them less pain.

Original post:
Stem Cell Injections: Emerging Option for Joint Pain Relief - Health Essentials from Cleveland Clinic (blog)

Canadian clinics begin offering stem-cell treatments experts call unproven, possibly unsafe – National Post

The arthritis in Maureen Munsies ankles was so intense until barely a year ago, she literally had to crawl on hands and knees to get upstairs.

The pain, she recalls now, took my breath away, and played havoc with the avid hikers favourite pastime.

In desperation, Munsie turned to a Toronto-area clinic that provides a treatment many experts consider still experimental, unproven and of questionable safety.

The 63-year-old says the stem cells she received at Regenervate Medical Injection Therapy 18 months ago were transformational, all but eliminating the debilitating soreness and even allowing her to hike Argentinas Patagonia mountains two months ago.

For me its been a life saver, Munsie says. Ive been able to do it all again I dont have any of that pain, at all.

Canadians drawn to the healing promise of stem cells have for years travelled outside the country to such places as Mexico, China or Arizona, taking part in a dubious form of medical tourism.

But Regenervate is one of a handful of clinics in Canada that have begun offering injections of stem cells, satisfying growing demand but raising questions about whether a medical idea with huge potential is ready for routine patient care.

Especially when those patients can pay thousands of dollars for the service.

Clinics in Ontario and Alberta are treating arthritis, joint injuries, disc problems and even skin conditions with stem cells typically taken from patients fat tissue or bone marrow.

The underlying idea is compelling: stem cells can differentiate or transform into many other types of cell, a unique quality that evidence suggests allows them to grow or regenerate tissue damaged by disease or injury.

Researchers including hundreds in Canada alone are examining stem-cell treatments for everything from ailing hearts to severed spinal cords.

With few exceptions, however, the concept is still being studied in the lab or in human trials; virtually none of the treatments have been definitively proven effective by science or approved by regulators like Health Canada.

The fact that Canadian clinics are now offering stem-cell treatments commercially is concerning on a number of levels, not least because of safety issues, says Ubaka Ogbogu, a health law professor at the University of Alberta.

Three U.S. women were blinded after receiving stem-cell injections in their eyes, while other American patients have developed bony masses or tumours at injection sites, Ogbogu said.

Stem cells have to be controlled to act exactly the way you want them to act, and thats why the research takes time, he said. It is simply wrong for these clinics to take a proof of concept and run with it.

Ogbogu says Health Canada must crack down on the burgeoning industry but says the regulator has so far been conspicuous by its inaction.

Other experts say the procedures provided here typically for joint pain are likely relatively safe, but still warn that care must be taken that the stem cells do not develop into the wrong type of tissue, or at the wrong place.

Alberta Health Services convened a workshop on the issue late last year, concluding there is an urgent need to develop a certification system for cell preparation and delivery to avoid spontaneous transformation of (stem cells) into unwanted tissue.

But one of the pioneers of the service in Canada says theres no empirical evidence that such growths can develop, and suggests the treatments only real risk as with an invasive procedure is infection.

Meanwhile, patients at Regenervate have enjoyed impressive outcomes after paying fees from $750 to $3,900, says Dr. Douglas Stoddard, the clinics medical director.

About 80 per cent report less pain, stiffness and weakness within a few months of getting their stem-cell injection, he said.

I believe medical progress is not just limited to the laboratory and randomized double-blind trials, Stoddard said. A lot of progress starts in the clinic, dealing with patients You see something works, you see something has merit, and then its usually the scientists that seem to catch up later.

The Orthopedic Sport Institute in Collingwood, Ont., the Central Alberta Pain and Rehabilitation Institute and Cleveland Clinic in Toronto all advertise similar stem-cell treatments for orthopedic problems.

Edmontons Regen Clinic says it plans to start doing so this fall.

Ottawas Innovo says it also treats a range of back conditions with injections between the vertebrae, and uses stem cells to alleviate nerve damage.

Orthopedic Sport says its doctor focuses on FDA and Health Canada approved stem-cell injection therapy for patient care.

In fact, no treatment of the sort the clinics here provide has ever been authorized.

Health Canada says the vast majority of stem-cell therapies would constitute a drug and therefore need to be authorized after a clinical trial or new drug submission.

A number of stem-cell trials are underway, but only one treatment Prochymal has been approved, said department spokesman Eric Morrissette. Designed to combat graft-versus-host disease where bone marrow transplants for treating cancer essentially attack the patients body its unlike any of the services the stem-cell providers here offer.

But as the U.S. Food and Drug Administration aggressively pursues the hundreds of clinics in America, Health Canada says only that its committed to addressing complaints it receives.

It will take action based on the risk posed to the general public, said Morrissette, who encouraged people to pass on to the department information about possible non-compliant products.

Stoddard said the injections his clinics provide are made up of minimally manipulated tissue from patients own bodies and any attempt to crack down would be regulation for the sake of regulation.

But academic experts remain skeptical about the effectiveness of the treatments.

Scientific evidence suggests the injections may help alleviate joint pain temporarily, but probably just because of anti-inflammatory secretions from the cells not regeneration, said Dr. David Hart, an orthopedic surgery professor at the University of Calgary who headed the Alberta workshop.

Theres a need for understanding whats going on here and theres a need for regulation, he said.

Most of the clinics say they use a centrifuge to concentrate the stem cells after removing them from patients fat tissue or bone marrow. But its unclear if the clinics even know how many cells they are eventually injecting into patients, says Jeff Biernaskie, a stem-cell scientist at the University of Calgary.

Munsie, on the other hand, has no doubts about the value of her own treatment, even with a $3,000 price tag.

The procedure from extraction of fat tissue in her behind to the injection of cells into her ankles took barely over an hour.

Within three months, the retired massage therapist from north of Toronto says she could walk her dogs again. Last week, she was hiking near Banff.

Im a real believer in it, and the possibility of stem cells, says Munsie. I just think Wow, if we can heal with our own body, its pretty amazing.

tblackwell@nationalpost.com

See the article here:
Canadian clinics begin offering stem-cell treatments experts call unproven, possibly unsafe - National Post

Archives