Growing Value of Stem Cells in Medicine to Create a US$2,4 Billion Opportunity for Induced Pluripotent Stem Cell ((iPSC) – GlobeNewswire
Posted: November 26, 2020 at 2:51 am
New York, Nov. 25, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Induced Pluripotent Stem Cell (iPSC) Industry" - https://www.reportlinker.com/p05798831/?utm_source=GNW 4 billion by the year 2027, trailing a post COVID-19 CAGR of 6.6%, over the analysis period 2020 through 2027. Stem cells are undifferentiated cells that hold the capability to divide, and differentiate into specialized cells in the body. Stem cells act as repair system and replenish adult tissues, maintaining the turnover of regenerative organs such as the blood and skin. In organs, such as the bone marrow, stem cells frequently form replacement cells to repair the worn out tissue. These cells can respond to signals from the body and transverse a particular developmental pathway to differentiate into one specific cell type. Due to their regenerative properties, stem cells are being researched for therapeutic applications in diabetes, cardiovascular disease, neurodegenerative disease, cancer, autoimmune diseases, spinal cord defects, among others. Stem Cell research is an exciting field where continuous discoveries are being made on new sources of stem cells and new methods of their acquisition and harvesting. Of late, adult stem cells have garnered a lions share of the stem cell space, purely based on the fact that they require less expensive clinical trials, need to comply with fewer regulatory norms and ethical issues compared to other stem cell variants such as embryonic stem cells.
Researchers around the world have been focusing research activities to develop adult stem cell therapies in order to combat a variety of diseases ranging from diabetes to heart disease. Factually, adult stem cells are the only stem cells that have been approved for use in transplants for the treatment of diseases such as cancer. Interestingly, with drug development based on embryonic stem cells being challenged amid growing debate over ethics and regulation of this research, iPSCS offers an alternate step forward in the commercialization of stem cell therapies and regenerative medicine. Embryonic stem cell research continues to remain embroiled in ethical, religious, and political controversies across various countries around the world. Induced Pluripotent Stem Cells (iPSs), which are reprogrammed to mimic embryonic stem cell-like state allowing expression of genes and human cells needed for therapeutic purposes, offers an attractive alternate way forwarding in furthering the goals of stem cell research. Pioneered in 2006 and developed in the following year, these cells are created by conversion of somatic cells into PSCs by introducing certain genes including Myc, Klf4, Oct3/4 and Sox2.
Pluripotent stem cells hold tremendous potential in the regenerative medicine arena. Based on their ability to proliferate indefinitely and develop into desirable cell type such as heart, liver, neuronal and pancreatic cells, iPSCs offer a source of new cells that can replace lost or damaged cells. For instance, iPSCs can be developed into beta islet cells, blood cells or neuronal cells for the treatment of diabetes, leukemia and neurological disorders, respectively. Parkinsons, Alzheimers & spinal cord injuries are key neurologic diseases expected to benefit from iPS research. Dramatic rise in cancer cases worldwide and the need for novel anti-cancer therapies will emerge as a key driver for the growth of iPSCs. Interest in cancer research soars high on new hopes of direct reprogramming of cancer cells with enforced expression of pluripotency factors and the resulting dedifferentiation of transformed cancer cells. The ongoing pandemic is also opening up new opportunities for Human induced pluripotent stem cells (hiPSCs) by offering a reliable model for researchers involved in studying how coronavirus indirectly or directly affects different cells in the human body. Made from a small sample of blood or skin cells, hiPSCs are robust stem cells that can be developed into any cell type and then infected with the coronavirus in order to analyse the disease prognosis and the resulting effects. By deploying hiPSCs, researchers have identified that stem cell-derived cardiomyocytes (heart muscle cells) and blood vessels remain directly exposed to COVID-19 infection. Scientists identified that a significant portion of stem cell-derived cardiomyocytes ceased beating and expired within 3 days after being infected by coronavirus. Researchers can leverage the infected cardiomyocytes to screen for potential drug candidates that can restore their function and improve their survival; and also for identifying new antiviral drugs that potentially curtail coronavirus replication in the heart, reduce cardiac injury and curb the disease prognosis. Researchers can also utilize the infected cardiomyocytes to analyze COVID-induced myocarditis through addition of immune cells to their lab experiments.
Competitors identified in this market include, among others,
Read the full report: https://www.reportlinker.com/p05798831/?utm_source=GNW
I. INTRODUCTION, METHODOLOGY & REPORT SCOPE I-1
II. EXECUTIVE SUMMARY II-1
1. MARKET OVERVIEW II-1 Impact of Covid-19 and a Looming Global Recession II-1 Induced Pluripotent Stem Cells (iPSCs) Market Gains from Increasing Use in Research for COVID-19 II-1 Studies Employing iPSCs in COVID-19 Research II-2 Stem Cells, Application Areas, and the Different Types: A Prelude II-3 Applications of Stem Cells II-4 Types of Stem Cells II-4 Induced Pluripotent Stem Cell (iPSC): An Introduction II-5 Production of iPSCs II-6 First & Second Generation Mouse iPSCs II-6 Human iPSCs II-7 Key Properties of iPSCs II-7 Transcription Factors Involved in Generation of iPSCs II-7 Noteworthy Research & Application Areas for iPSCs II-8 Induced Pluripotent Stem Cell ((iPSC) Market: Growth Prospects and Outlook II-9 Drug Development Application to Witness Considerable Growth II-11 Technical Breakthroughs, Advances & Clinical Trials to Spur Growth of iPSC Market II-11 North America Dominates Global iPSC Market II-12 Competition II-12 Recent Market Activity II-13 Select Innovation/Advancement II-16
2. FOCUS ON SELECT PLAYERS II-17 Axol Bioscience Ltd. (UK) II-17 Cynata Therapeutics Limited (Australia) II-17 Evotec SE (Germany) II-17 Fate Therapeutics, Inc. (USA) II-17 FUJIFILM Cellular Dynamics, Inc. (USA) II-18 Ncardia (Belgium) II-18 Pluricell Biotech (Brazil) II-18 REPROCELL USA, Inc. (USA) II-18 Sumitomo Dainippon Pharma Co., Ltd. (Japan) II-19 Takara Bio, Inc. (Japan) II-19 Thermo Fisher Scientific, Inc. (USA) II-20 ViaCyte, Inc. (USA) II-20
3. MARKET TRENDS & DRIVERS II-21 Effective Research Programs Hold Key in Roll Out of Advanced iPSC Treatments II-21 Induced Pluripotent Stem Cells: A Giant Leap in the Therapeutic Applications II-21 Research Trends in Induced Pluripotent Stem Cell Space II-22 Exhibit 1: Worldwide Publication of hESC and hiPSC Research Papers for the Period 2008-2010, 2011-2013 and 2014-2016 II-22 Exhibit 2: Number of Original Research Papers on hESC and iPSC Published Worldwide (2014-2016) II-23 Concerns Related to Embryonic Stem Cells Shift the Focus onto iPSCs II-23 Regenerative Medicine: A Promising Application of iPSCs II-24 Induced Pluripotent: A Potential Competitor to hESCs? II-25 Exhibit 3: Global Regenerative Medicine Market Size in US$ Billion for 2019, 2021, 2023 and 2025 II-27 Exhibit 4: Global Stem Cell & Regenerative Medicine Market by Product (in %) for the Year 2019 II-27 Exhibit 5: Global Regenerative Medicines Market by Category: Breakdown (in %) for Biomaterials, Stem Cell Therapies and Tissue Engineering for 2019 II-28 Pluripotent Stem Cells Hold Significance for Cardiovascular Regenerative Medicine II-28 Exhibit 6: Leading Causes of Mortality Worldwide: Number of Deaths in Millions & % Share of Deaths by Cause for 2017 II-30 Leading Causes of Mortality for Low-Income and High-Income Countries II-30 Growing Importance of iPSCs in Personalized Drug Discovery II-31 Persistent Advancements in Genetics Space and Subsequent Growth in Precision Medicine Augur Well for iPSCs Market II-33 Exhibit 7: Global Precision Medicine Market (In US$ Billion) for the Years 2018, 2021 & 2024 II-34 Increasing Prevalence of Chronic Disorders Supports Growth of iPSCs Market II-34 Exhibit 8: Worldwide Cancer Incidence: Number of New Cancer Cases Diagnosed for 2012, 2018 & 2040 II-35 Exhibit 9: Number of New Cancer Cases Reported (in Thousands) by Cancer Type: 2018 II-36 Exhibit 10: Fatalities by Heart Conditions: Estimated Percentage Breakdown for Cardiovascular Disease, Ischemic Heart Disease, Stroke, and Others II-37 Exhibit 11: Rising Diabetes Prevalence Presents Opportunity for iPSCs Market: Number of Adults (20-79) with Diabetes (in Millions) by Region for 2017 and 2045 II-38 Aging Demographics Add to the Global Burden of Chronic Diseases, Presenting Opportunities for iPSCs Market II-38 Exhibit 12: Expanding Elderly Population Worldwide: Breakdown of Number of People Aged 65+ Years in Million by Geographic Region for the Years 2019 and 2030 II-39 Growth in Number of Genomics Projects Propels Market Growth II-39 Genomic Initiatives in Select Countries II-40 Exhibit 13: New Gene-Editing Tools Spur Interest and Investments in Genetics, Driving Lucrative Growth Opportunities for iPSCs: Total VC Funding (In US$ Million) in Genetics for the Years 2014, 2015, 2016, 2017 and 2018 II-41 Launch of Numerous iPSCs-Related Clinical Trials Set to Benefit Market Growth II-41 Exhibit 14: Number of Induced Pluripotent Stem Cells based Studies by Select Condition: As on Oct 31, 2020 II-43 iPSCs-based Clinical Trial for Heart Diseases II-43 Induced Pluripotent Stem Cells for Stroke Treatment II-44 ?Off-the-shelf? Stem Cell Treatment for Cancer Enters Clinical Trial II-44 iPSCs for Hematological Disorders II-44 Market Benefits from Growing Funding for iPSCs-Related R&D Initiatives II-44 Exhibit 15: Stem Cell Research Funding in the US (in US$ Million) for the Years 2016 through 2021 II-46 Human iPSC Banks: A Review of Emerging Opportunities and Drawbacks II-46 Human iPSC Banks Worldwide: An Overview II-48 Cell Sources and Reprogramming Methods Used by Select iPSC Banks II-49 Innovations, Research Studies & Advancements in iPSCs II-50 Key iPSC Research Breakthroughs for Regenerative Medicine II-50 Researchers Develop Novel Oncogene-Free and Virus-Free iPSC Production Method II-51 Scientists Study Concerns of Genetic Mutations in iPSCs II-52 iPSCs Hold Tremendous Potential in Transforming Research Efforts II-52 Researchers Highlight Potential Use of iPSCs for Developing Novel Cancer Vaccines II-54 Scientists Use Machine Learning to Improve Reliability of iPSC Self-Organization II-54 STEMCELL Technologies Unveils mTeSR? Plus II-55 Challenges and Risks Related to Pluripotent Stem Cells II-56 A Glance at Issues Related to Reprogramming of Adult Cells to iPSCs II-57 A Note on Legal, Social and Ethical Considerations with iPSCs II-58
4. GLOBAL MARKET PERSPECTIVE II-59 Table 1: World Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-59
Table 2: World 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2020 & 2027 II-60
Table 3: World Current & Future Analysis for Vascular Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-61
Table 4: World 7-Year Perspective for Vascular Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-62
Table 5: World Current & Future Analysis for Cardiac Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-63
Table 6: World 7-Year Perspective for Cardiac Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-64
Table 7: World Current & Future Analysis for Neuronal Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-65
Table 8: World 7-Year Perspective for Neuronal Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-66
Table 9: World Current & Future Analysis for Liver Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-67
Table 10: World 7-Year Perspective for Liver Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-68
Table 11: World Current & Future Analysis for Immune Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-69
Table 12: World 7-Year Perspective for Immune Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-70
Table 13: World Current & Future Analysis for Other Cell Types by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-71
Table 14: World 7-Year Perspective for Other Cell Types by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-72
Table 15: World Current & Future Analysis for Cellular Reprogramming by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-73
Table 16: World 7-Year Perspective for Cellular Reprogramming by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-74
Table 17: World Current & Future Analysis for Cell Culture by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-75
Table 18: World 7-Year Perspective for Cell Culture by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-76
Table 19: World Current & Future Analysis for Cell Differentiation by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-77
Table 20: World 7-Year Perspective for Cell Differentiation by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-78
Table 21: World Current & Future Analysis for Cell Analysis by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-79
Table 22: World 7-Year Perspective for Cell Analysis by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-80
Table 23: World Current & Future Analysis for Cellular Engineering by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-81
Table 24: World 7-Year Perspective for Cellular Engineering by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-82
Table 25: World Current & Future Analysis for Other Research Methods by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-83
Table 26: World 7-Year Perspective for Other Research Methods by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-84
Table 27: World Current & Future Analysis for Drug Development & Toxicology Testing by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-85
Table 28: World 7-Year Perspective for Drug Development & Toxicology Testing by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-86
Table 29: World Current & Future Analysis for Academic Research by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-87
Table 30: World 7-Year Perspective for Academic Research by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-88
Table 31: World Current & Future Analysis for Regenerative Medicine by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-89
Table 32: World 7-Year Perspective for Regenerative Medicine by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-90
Table 33: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-91
Table 34: World 7-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2020 & 2027 II-92
III. MARKET ANALYSIS III-1
GEOGRAPHIC MARKET ANALYSIS III-1
UNITED STATES III-1 Table 35: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-1
Table 36: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-2
Table 37: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-3
Table 38: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-4
Table 39: USA Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-5
Table 40: USA 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-6
CANADA III-7 Table 41: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-7
Table 42: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-8
Table 43: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-9
Table 44: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-10
Table 45: Canada Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-11
Table 46: Canada 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-12
JAPAN III-13 Table 47: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-13
Table 48: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-14
Table 49: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-15
Table 50: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-16
Table 51: Japan Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-17
Table 52: Japan 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-18
CHINA III-19 Table 53: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-19
Table 54: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-20
Table 55: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-21
Table 56: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-22
Table 57: China Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-23
Table 58: China 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-24
EUROPE III-25 Table 59: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 III-25
Table 60: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2020 & 2027 III-26
Table 61: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-27
Table 62: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-28
Table 63: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-29
Table 64: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-30
Table 65: Europe Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-31
Table 66: Europe 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-32
FRANCE III-33 Table 67: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-33
Table 68: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-34
Table 69: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-35
Table 70: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Research Method - Percentage Breakdown of Value Sales for Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods for the Years 2020 & 2027 III-36
Table 71: France Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Application - Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-37
Table 72: France 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Application - Percentage Breakdown of Value Sales for Drug Development & Toxicology Testing, Academic Research, Regenerative Medicine and Other Applications for the Years 2020 & 2027 III-38
GERMANY III-39 Table 73: Germany Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-39
Table 74: Germany 7-Year Perspective for Induced Pluripotent Stem Cell (iPSC) by Cell Type - Percentage Breakdown of Value Sales for Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells and Other Cell Types for the Years 2020 & 2027 III-40
Table 75: Germany Current & Future Analysis for Induced Pluripotent Stem Cell (iPSC) by Research Method - Cellular Reprogramming, Cell Culture, Cell Differentiation, Cell Analysis, Cellular Engineering and Other Research Methods - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-41
Please contact our Customer Support Center to get the complete Table of ContentsRead the full report: https://www.reportlinker.com/p05798831/?utm_source=GNW
About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.
__________________________
See the rest here:
Growing Value of Stem Cells in Medicine to Create a US$2,4 Billion Opportunity for Induced Pluripotent Stem Cell ((iPSC) - GlobeNewswire
- Unlocking The Unlimited Potential Of Stem Cells - CodeBlue - January 9th, 2021
- Hemostemix steps into the new year with capital and its critical clinical study data in hand - InvestorIntel - January 9th, 2021
- Global Organ and Tissue Transplantation and Alternatives Market to 2024 - Impact Analysis of COVID-19 - Yahoo Finance - January 9th, 2021
- Top 10 ALS Stories of 2020 - ALS News Today - January 9th, 2021
- Brave West Lothian women discovers back pain is actually deadly blood cancer - Daily Record - January 9th, 2021
- Global Bone Marrow Aspirate Concentrates (BMAC) Market : Industry Analysis and forecast (2019 to 2026): By product Type, Application, End Users, and... - January 9th, 2021
- Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke - PRNewswire - December 22nd, 2020
- Organ and Tissue Transplantation and Alternatives - GlobeNewswire - December 22nd, 2020
- How Researchers Are Making Do in the Time of COVID-19 - The Wire Science - December 22nd, 2020
- FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn's Phase 3 Trial... - December 22nd, 2020
- Priming the Immune System to Fight Cancer - PRNewswire - December 22nd, 2020
- The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 - Business Insider - Business Insider - December 22nd, 2020
- Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) - GlobeNewswire - December 22nd, 2020
- Creative Medical Technology Stock Price Increased 80.77%: Why It Happened - Pulse 2.0 - December 22nd, 2020
- Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome - Science Advances - December 22nd, 2020
- Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke - KPVI News 6 - December 16th, 2020
- Novel class of targeted cancer therapies could treat myeloid leukaemias - Drug Target Review - December 16th, 2020
- 1st Patients To Get CRISPR Gene-Editing Treatment Continue To Thrive - NPR - December 16th, 2020
- Bone Regeneration Material Market: Cell-based Segment to Expand Significantly - BioSpace - December 16th, 2020
- Shingles: What triggers this painful, burning rash? - Harvard Health Blog - Harvard Health - December 16th, 2020
- Impact of Covid-19 On Orthopedic Regenerative Medicine Market Business Overview and Forecast to 2027 | Curasan, Inc., Carmell Therapeutics... - December 16th, 2020
- Early Signs of Activity and Tolerability Found in Allogeneic Product UCART22 for Patients with Relapsed/Refractory CD22+ B-Cell ALL - Cancer Network - December 16th, 2020
- Updated Findings Show Continued Efficacy for CAR T-Cell Therapy in Heavily Pretreated Myeloma - Targeted Oncology - December 16th, 2020
- Haywards Heath woman's bid to fund stem cell treatment to combat MS - Mid Sussex Times - December 16th, 2020
- Stem Cell Transplant Reduces Relapses and Disability in RRMS... - Multiple Sclerosis News Today - December 11th, 2020
- Gamida Cell Provides Pipeline Update, Including Detailed Results of Pivotal Phase 3 Clinical Study of Omidubicel, and Prepares to Start BLA Submission... - December 11th, 2020
- Groundbreaking Trial On Children With Brain Injuries In Madrid - Euro Weekly News - December 11th, 2020
- Actinium Highlights Iomab-B Safety Data Presented at the 62nd American Society of Hematology Annual Meeting - Yahoo Finance - December 11th, 2020
- Antileukemic Activity Seen With Flotetuzumab in Primary Induction Failure, Early-Relapse AML - Hematology Advisor - December 11th, 2020
- SNUH finds way to produce T-cells to prevent HSCT complications - Korea Biomedical Review - December 11th, 2020
- CLL patients in England to get AZ's Calquence after okay from NICE - - pharmaphorum - December 11th, 2020
- JP Duminy goes to bat for the SA Bone Marrow Registry - IOL - December 10th, 2020
- Donor Stem Cell Transplant Improves Survival in Older Patients with Myelodysplastic Syndrome - Cancer Health Treatment News - December 10th, 2020
- City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference - Business Wire - December 10th, 2020
- Jasper Therapeutics Announces Data from First Transplant-naive Patient in Phase 1 Clinical Trial of JSP191 as Conditioning Agent in Patients with SCID... - December 10th, 2020
- Bid to fund stem cell treatment in Mexico for woman with MS - Bournemouth Echo - December 10th, 2020
- The Technology Behind Bone Marrow Cellular Processing: The PXP System - Marketscreener.com - December 10th, 2020
- ElevateBio's HighPassBio Presents on Novel T Cell Receptor Cell Therapy for Leukemia Relapse at 62nd Annual ASH Meeting - Business Wire - December 10th, 2020
- Gene Therapy, Absolutely and For Real | In the Pipeline - Science Magazine - December 10th, 2020
- Negrin Shines Light on the Orca-T Story in GVHD - OncLive - December 10th, 2020
- Researchers Trace the Origin of Blood Cancer to Early Childhood, Decades before Diagnosis - PRNewswire - December 10th, 2020
- Magenta Therapeutics Announces Commencement of First Phase 2 Clinical Trial of MGTA-145 for Stem Cell Mobilization, Oral Presentation of MGTA-145... - December 10th, 2020
- Hadassah Medical Center and Neurogenesis Announce Groundbreaking Results from a Phase 2 Study in Progressive Multiple Sclerosis treated with NG-01... - December 10th, 2020
- Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American... - December 10th, 2020
- Venetoclax/Azacitidine Combination Efficacious for the Treatment of Older Patients With Higher-Risk Myelodysplastic Syndrome - Oncology Nurse Advisor - December 10th, 2020
- Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting... - December 10th, 2020
- BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium - BioSpace - December 10th, 2020
- Joliet 2-year-old gets pre-holiday gift: tests that show he's cancer-free - The Herald-News - December 10th, 2020
- Preliminary Results from NexImmune's Phase 1/2 Trial of NEXI-001 in AML Presented at 62nd ASH Annual Meeting and Exposition - GlobeNewswire - December 10th, 2020
- How do you donate stem cells? Donating cells can help treat cancer, blindness and other conditions - heres how - The Scotsman - December 4th, 2020
- Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price - Being Patient - December 4th, 2020
- Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight - iNews - December 4th, 2020
- Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated... - December 4th, 2020
- Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting - Newswise - December 4th, 2020
- IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product... - December 4th, 2020
- Bone Marrow Transplant Market Size, Segmented by Type of Deployment, Application, And Region Growth, Trends, And Forecast - The Haitian-Caribbean... - December 4th, 2020
- Gut bacteria can help rebuild the immune system - Medical News Today - December 4th, 2020
- InvestmentPitch Media Video Discusses Hemostemix Successfully Obtaining all Clinical Trial Data and Announcement of $2.5 Million Unit Offering - Video... - December 4th, 2020
- Outlook on the Multiple Myeloma Drugs Global Market to 2025 - by Therapy, Drug Type, End-user, Distribution Channel and Region -... - December 4th, 2020
- Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong - Business Wire - December 4th, 2020
- The New Coronavirus Vaccine Is Changing The Future Of Medicine - Forbes - December 4th, 2020
- Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous... - November 30th, 2020
- How are bones and the heart connected? - British Heart Foundation - November 30th, 2020
- Telix Pharmaceuticals Limited Acquires TheraPharm GmbH, Broadening Reach to Hematologic Cancers and Transplant Medicine - BioSpace - November 30th, 2020
- Global Hematopoietic Stem Cell Transplantation (HSCT) Market 2020 Impact of COVID-19, Future Growth Analysis and Challenges | Regen Biopharma Inc,... - November 30th, 2020
- Coronavirus Updates: The Latest Treatments and Vaccines - GovTech - November 30th, 2020
- Hematopoietic Stem Cell Transplantation (HSCT) Market To Witness Huge Growth By 2027 | Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc,... - November 30th, 2020
- Bone Marrow Processing Systems Market Top Participant to Focus on Regional Expansion - Murphy's Hockey Law - November 30th, 2020
- Family 'over the moon' as nine-year-old Aurora confirmed as being back in remission - The Isle of Thanet News - November 30th, 2020
- Pilot study finds potential signal indicative of loss of tone in blood vessels after cardiac surgery - The Hindu - November 30th, 2020
- Family's joy as schoolgirl, 9, back in remission - Kent Online - November 30th, 2020
- Family's heartache after Hebburn boy diagnosed with one in a million condition - Chronicle Live - November 30th, 2020
- Raleigh man delivers stem cells to patients around the world - WRAL.com - November 28th, 2020
- US FDA Approves Naxitamab for the Treatment of Neuroblastoma - OncoZine - November 28th, 2020
- The roles bone marrow plays in the body - Therogersvillereview - November 27th, 2020
- Severe Infections Wreak Havoc on Mouse Blood Cell Production - Technology Networks - November 27th, 2020
- Revenue from the Sales of Hematopoietic Stem Cells Transplantation Market to Witness Relatively Significant Growth During 2017 2025 - Canaan Mountain... - November 27th, 2020
- Approval of Phase I/II Clinical Trial of ATG-016 (Eltanexor), a Second Generation Selective Inhibitor of Nuclear Export (SINE), in Mainland China for... - November 27th, 2020
- Meet 'Iron Boy': Hempfield Twp. boy fighting cancer is real superhero - Gettysburg Times - November 27th, 2020
- G1 Therapeutics: Depressed Price Before Catalyst, No Apparent Reason - Seeking Alpha - November 27th, 2020