Global Cell Harvesting Market to Reach US$381,4 Million by the Year 2027 – PRNewswire
Posted: November 26, 2020 at 2:50 am
NEW YORK, Nov. 25, 2020 /PRNewswire/ --Amid the COVID-19 crisis, the global market for Cell Harvesting estimated at US$233.2 Million in the year 2020, is projected to reach a revised size of US$381.4 Million by 2027, growing at a CAGR of 7.3% over the period 2020-2027.Manual, one of the segments analyzed in the report, is projected to grow at a 7.9% CAGR to reach US$284.4 Million by the end of the analysis period. After an early analysis of the business implications of the pandemic and its induced economic crisis, growth in the Automated segment is readjusted to a revised 5.6% CAGR for the next 7-year period. This segment currently accounts for a 28.3% share of the global Cell Harvesting market.
Read the full report: https://www.reportlinker.com/p05798117/?utm_source=PRN
The U.S. Accounts for Over 30.9% of Global Market Size in 2020, While China is Forecast to Grow at a 10.4% CAGR for the Period of 2020-2027
The Cell Harvesting market in the U.S. is estimated at US$72 Million in the year 2020. The country currently accounts for a 30.86% share in the global market. China, the world second largest economy, is forecast to reach an estimated market size of US$34.9 Million in the year 2027 trailing a CAGR of 10.4% through 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 6.1% and 7% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately 6.6% CAGR while Rest of European market (as defined in the study) will reach US$34.9 Million by the year 2027.We bring years of research experience to this 5th edition of our report. The 226-page report presents concise insights into how the pandemic has impacted production and the buy side for 2020 and 2021. A short-term phased recovery by key geography is also addressed.
Competitors identified in this market include, among others,
Read the full report: https://www.reportlinker.com/p05798117/?utm_source=PRN
I. INTRODUCTION, METHODOLOGY & REPORT SCOPE I-1
II. EXECUTIVE SUMMARY II-1
1. MARKET OVERVIEW II-1 Cell Harvesting - A Prelude II-1 Impact of Covid-19 and a Looming Global Recession II-1 With Stem Cells Holding Potential to Emerge as Savior for Healthcare System Struggling with COVID-19 Crisis, Demand for Cell Harvesting to Grow II-1 Select Clinical Trials in Progress for MSCs in the Treatment of COVID-19 II-2 Lack of Antiviral Therapy Brings Spotlight on MSCs as Potential Option to Treat Severe Cases of COVID-19 II-3 Stem Cells Garner Significant Attention amid COVID-19 Crisis II-3 Growing R&D Investments & Rising Incidence of Chronic Diseases to Drive the Global Cell Harvesting Market over the Long-term II-3 US Dominates the Global Market, Asia-Pacific to Experience Lucrative Growth Rate II-4 Biopharmaceutical & Biotechnology Firms to Remain Key End-User II-4 Remarkable Progress in Stem Cell Research Unleashes Unlimited Avenues for Regenerative Medicine and Drug Development II-4 Drug Development II-5 Therapeutic Potential II-5
2. FOCUS ON SELECT PLAYERS II-6 Recent Market Activity II-7 Innovations and Advancements II-7
3. MARKET TRENDS & DRIVERS II-8 Development of Regenerative Medicine Accelerates Demand for Cell Harvesting II-8 The Use of Mesenchymal Stem Cells in Regenerative Medicine to Drive the Cell Harvesting Market II-8 Rise in Volume of Orthopedic Procedures Boosts Prospects for Stem Cell, Driving the Cell Harvesting II-9 Exhibit 1: Global Orthopedic Surgical Procedure Volume (2010- 2020) (in Million) II-11 Increasing Demand for Stem Cell Based Bone Grafts: Promising Growth Ahead for Cell Harvesting II-11 Spectacular Advances in Stem Cell R&D Open New Horizons for Regenerative Medicine II-12 Exhibit 2: Global Regenerative Medicines Market by Category (2019): Percentage Breakdown for Biomaterials, Stem Cell Therapies and Tissue Engineering II-13 Stem Cell Transplants Drive the Demand for Cell Harvesting II-13 Rise in Number of Hematopoietic Stem Cell Transplantation Procedures Propels Market Expansion II-15 Growing Incidence of Chronic Diseases to Boost the Demand for Cell Harvesting II-16 Exhibit 3: Global Cancer Incidence: Number of New Cancer Cases in Million for the Years 2018, 2020, 2025, 2030, 2035 and 2040 II-17 Exhibit 4: Global Number of New Cancer Cases and Cancer-related Deaths by Cancer Site for 2018 II-18 Exhibit 5: Number of New Cancer Cases and Deaths (in Million) by Region for 2018 II-19 Exhibit 6: Fatalities by Heart Conditions: Estimated Percentage Breakdown for Cardiovascular Disease, Ischemic Heart Disease, Stroke, and Others II-19 Exhibit 7: Rising Diabetes Prevalence Presents Opportunity for Cell Harvesting: Number of Adults (20-79) with Diabetes (in Millions) by Region for 2017 and 2045 II-20 Ageing Demographics to Drive Demand for Stem Cell Banking II-20 Global Aging Population Statistics - Opportunity Indicators II-21 Exhibit 8: Expanding Elderly Population Worldwide: Breakdown of Number of People Aged 65+ Years in Million by Geographic Region for the Years 2019 and 2030 II-21 Exhibit 9: Life Expectancy for Select Countries in Number of Years: 2019 II-22 High Cell Density as Major Bottleneck Leads to Innovative Cell Harvesting Methods II-22 Advanced Harvesting Systems to Overcome Centrifugation Issues II-23 Sophisticated Filters for Filtration Challenges II-23 Innovations in Closed Systems Boost Efficiency & Productivity of Cell Harvesting II-23 Enhanced Harvesting and Separation of Micro-Carrier Beads II-24
4. GLOBAL MARKET PERSPECTIVE II-25 Table 1: World Current & Future Analysis for Cell Harvesting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-25
Table 2: World Historic Review for Cell Harvesting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-26
Table 3: World 15-Year Perspective for Cell Harvesting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2012, 2020 & 2027 II-27
Table 4: World Current & Future Analysis for Manual by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-28
Table 5: World Historic Review for Manual by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-29
Table 6: World 15-Year Perspective for Manual by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-30
Table 7: World Current & Future Analysis for Automated by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-31
Table 8: World Historic Review for Automated by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-32
Table 9: World 15-Year Perspective for Automated by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-33
Table 10: World Current & Future Analysis for Peripheral Blood by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-34
Table 11: World Historic Review for Peripheral Blood by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-35
Table 12: World 15-Year Perspective for Peripheral Blood by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-36
Table 13: World Current & Future Analysis for Bone Marrow by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-37
Table 14: World Historic Review for Bone Marrow by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-38
Table 15: World 15-Year Perspective for Bone Marrow by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-39
Table 16: World Current & Future Analysis for Umbilical Cord by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-40
Table 17: World Historic Review for Umbilical Cord by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-41
Table 18: World 15-Year Perspective for Umbilical Cord by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-42
Table 19: World Current & Future Analysis for Adipose Tissue by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-43
Table 20: World Historic Review for Adipose Tissue by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-44
Table 21: World 15-Year Perspective for Adipose Tissue by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-45
Table 22: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-46
Table 23: World Historic Review for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-47
Table 24: World 15-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-48
Table 25: World Current & Future Analysis for Biotech & Biopharma Companies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-49
Table 26: World Historic Review for Biotech & Biopharma Companies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-50
Table 27: World 15-Year Perspective for Biotech & Biopharma Companies by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-51
Table 28: World Current & Future Analysis for Research Institutes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-52
Table 29: World Historic Review for Research Institutes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-53
Table 30: World 15-Year Perspective for Research Institutes by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-54
Table 31: World Current & Future Analysis for Other End-Uses by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-55
Table 32: World Historic Review for Other End-Uses by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-56
Table 33: World 15-Year Perspective for Other End-Uses by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-57
III. MARKET ANALYSIS III-1
GEOGRAPHIC MARKET ANALYSIS III-1
UNITED STATES III-1 Increasing Research on Stem Cells for Treating COVID-19 to drive the Cell Harvesting Market III-1 Rising Investments in Stem Cell-based Research Favors Cell Harvesting Market III-1 Exhibit 10: Stem Cell Research Funding in the US (in US$ Million) for the Years 2011 through 2017 III-2 A Strong Regenerative Medicine Market Drives Cell Harvesting Demand III-2 Arthritis III-3 Exhibit 11: Percentage of Population Diagnosed with Arthritis by Age Group III-3 Rapidly Ageing Population: A Major Driving Demand for Cell Harvesting Market III-4 Exhibit 12: North American Elderly Population by Age Group (1975-2050) III-4 Increasing Incidence of Chronic Diseases Drives Focus onto Cell Harvesting III-5 Exhibit 13: CVD in the US: Cardiovascular Disease* Prevalence in Adults by Gender & Age Group III-5 Rising Cancer Cases Spur Growth in Cell Harvesting Market III-5 Exhibit 14: Estimated Number of New Cancer Cases and Deaths in the US (2019) III-6 Exhibit 15: Estimated New Cases of Blood Cancers in the US (2020) - Lymphoma, Leukemia, Myeloma III-7 Exhibit 16: Estimated New Cases of Leukemia in the US: 2020 III-7 Market Analytics III-8 Table 34: USA Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-8
Table 35: USA Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-9
Table 36: USA 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-10
Table 37: USA Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-11
Table 38: USA Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-12
Table 39: USA 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-13
Table 40: USA Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-14
Table 41: USA Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-15
Table 42: USA 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-16
CANADA III-17 Market Overview III-17 Exhibit 17: Number of New Cancer Cases in Canada: 2019 III-17 Market Analytics III-18 Table 43: Canada Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-18
Table 44: Canada Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-19
Table 45: Canada 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-20
Table 46: Canada Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-21
Table 47: Canada Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-22
Table 48: Canada 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-23
Table 49: Canada Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-24
Table 50: Canada Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-25
Table 51: Canada 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-26
JAPAN III-27 Increasing Demand for Regenerative Medicine in Geriatric Healthcare and Cancer Care to Drive Demand for Cell Harvesting III-27 Exhibit 18: Japanese Population by Age Group (2015 & 2040): Percentage Share Breakdown of Population for 0-14, 15-64 and 65 & Above Age Groups III-27 Exhibit 19: Cancer Related Incidence and Deaths by Site in Japan: 2018 III-28 Market Analytics III-29 Table 52: Japan Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-29
Table 53: Japan Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-30
Table 54: Japan 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-31
Table 55: Japan Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-32
Table 56: Japan Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-33
Table 57: Japan 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-34
Table 58: Japan Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-35
Table 59: Japan Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-36
Table 60: Japan 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-37
CHINA III-38 Rising Incidence of Cancer Drives Cell Harvesting Market III-38 Exhibit 20: Number of New Cancer Cases Diagnosed (in Thousands) in China: 2018 III-38 Market Analytics III-39 Table 61: China Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-39
Table 62: China Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-40
Table 63: China 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-41
Table 64: China Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-42
Table 65: China Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-43
Table 66: China 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-44
Table 67: China Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-45
Table 68: China Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-46
Table 69: China 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-47
EUROPE III-48 Cancer in Europe: Key Statistics III-48 Exhibit 21: Cancer Incidence in Europe: Number of New Cancer Cases (in Thousands) by Site for 2018 III-48 Ageing Population to Drive Demand for Cell Harvesting Market III-49 Exhibit 22: European Population by Age Group (2016, 2030 & 2050): Percentage Share Breakdown by Age Group for 0-14, 15- 64, and 65 & Above III-49 Market Analytics III-50 Table 70: Europe Current & Future Analysis for Cell Harvesting by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 III-50
Table 71: Europe Historic Review for Cell Harvesting by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-51
Table 72: Europe 15-Year Perspective for Cell Harvesting by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2012, 2020 & 2027 III-52
Table 73: Europe Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-53
Table 74: Europe Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-54
Table 75: Europe 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-55
Table 76: Europe Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-56
Table 77: Europe Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-57
Table 78: Europe 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-58
Table 79: Europe Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-59
Table 80: Europe Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-60
Table 81: Europe 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-61
FRANCE III-62 Table 82: France Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-62
Table 83: France Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-63
Table 84: France 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-64
Table 85: France Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-65
Table 86: France Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-66
Table 87: France 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-67
Go here to read the rest:
Global Cell Harvesting Market to Reach US$381,4 Million by the Year 2027 - PRNewswire
- Unlocking The Unlimited Potential Of Stem Cells - CodeBlue - January 9th, 2021
- Hemostemix steps into the new year with capital and its critical clinical study data in hand - InvestorIntel - January 9th, 2021
- Global Organ and Tissue Transplantation and Alternatives Market to 2024 - Impact Analysis of COVID-19 - Yahoo Finance - January 9th, 2021
- Top 10 ALS Stories of 2020 - ALS News Today - January 9th, 2021
- Brave West Lothian women discovers back pain is actually deadly blood cancer - Daily Record - January 9th, 2021
- Global Bone Marrow Aspirate Concentrates (BMAC) Market : Industry Analysis and forecast (2019 to 2026): By product Type, Application, End Users, and... - January 9th, 2021
- Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke - PRNewswire - December 22nd, 2020
- Organ and Tissue Transplantation and Alternatives - GlobeNewswire - December 22nd, 2020
- How Researchers Are Making Do in the Time of COVID-19 - The Wire Science - December 22nd, 2020
- FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn's Phase 3 Trial... - December 22nd, 2020
- Priming the Immune System to Fight Cancer - PRNewswire - December 22nd, 2020
- The 11 most mind-blowing, awe-inspiring health discoveries and innovations of 2020 - Business Insider - Business Insider - December 22nd, 2020
- Orchard Therapeutics Receives EC Approval for Libmeldy for the Treatment of Early-Onset Metachromatic Leukodystrophy (MLD) - GlobeNewswire - December 22nd, 2020
- Creative Medical Technology Stock Price Increased 80.77%: Why It Happened - Pulse 2.0 - December 22nd, 2020
- Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome - Science Advances - December 22nd, 2020
- Creative Medical Technology Holdings Announces Successful Application of ImmCelz Immunotherapy for Treatment of Stroke - KPVI News 6 - December 16th, 2020
- Novel class of targeted cancer therapies could treat myeloid leukaemias - Drug Target Review - December 16th, 2020
- 1st Patients To Get CRISPR Gene-Editing Treatment Continue To Thrive - NPR - December 16th, 2020
- Bone Regeneration Material Market: Cell-based Segment to Expand Significantly - BioSpace - December 16th, 2020
- Shingles: What triggers this painful, burning rash? - Harvard Health Blog - Harvard Health - December 16th, 2020
- Impact of Covid-19 On Orthopedic Regenerative Medicine Market Business Overview and Forecast to 2027 | Curasan, Inc., Carmell Therapeutics... - December 16th, 2020
- Early Signs of Activity and Tolerability Found in Allogeneic Product UCART22 for Patients with Relapsed/Refractory CD22+ B-Cell ALL - Cancer Network - December 16th, 2020
- Updated Findings Show Continued Efficacy for CAR T-Cell Therapy in Heavily Pretreated Myeloma - Targeted Oncology - December 16th, 2020
- Haywards Heath woman's bid to fund stem cell treatment to combat MS - Mid Sussex Times - December 16th, 2020
- Stem Cell Transplant Reduces Relapses and Disability in RRMS... - Multiple Sclerosis News Today - December 11th, 2020
- Gamida Cell Provides Pipeline Update, Including Detailed Results of Pivotal Phase 3 Clinical Study of Omidubicel, and Prepares to Start BLA Submission... - December 11th, 2020
- Groundbreaking Trial On Children With Brain Injuries In Madrid - Euro Weekly News - December 11th, 2020
- Actinium Highlights Iomab-B Safety Data Presented at the 62nd American Society of Hematology Annual Meeting - Yahoo Finance - December 11th, 2020
- Antileukemic Activity Seen With Flotetuzumab in Primary Induction Failure, Early-Relapse AML - Hematology Advisor - December 11th, 2020
- SNUH finds way to produce T-cells to prevent HSCT complications - Korea Biomedical Review - December 11th, 2020
- CLL patients in England to get AZ's Calquence after okay from NICE - - pharmaphorum - December 11th, 2020
- JP Duminy goes to bat for the SA Bone Marrow Registry - IOL - December 10th, 2020
- Donor Stem Cell Transplant Improves Survival in Older Patients with Myelodysplastic Syndrome - Cancer Health Treatment News - December 10th, 2020
- City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference - Business Wire - December 10th, 2020
- Jasper Therapeutics Announces Data from First Transplant-naive Patient in Phase 1 Clinical Trial of JSP191 as Conditioning Agent in Patients with SCID... - December 10th, 2020
- Bid to fund stem cell treatment in Mexico for woman with MS - Bournemouth Echo - December 10th, 2020
- The Technology Behind Bone Marrow Cellular Processing: The PXP System - Marketscreener.com - December 10th, 2020
- ElevateBio's HighPassBio Presents on Novel T Cell Receptor Cell Therapy for Leukemia Relapse at 62nd Annual ASH Meeting - Business Wire - December 10th, 2020
- Gene Therapy, Absolutely and For Real | In the Pipeline - Science Magazine - December 10th, 2020
- Negrin Shines Light on the Orca-T Story in GVHD - OncLive - December 10th, 2020
- Researchers Trace the Origin of Blood Cancer to Early Childhood, Decades before Diagnosis - PRNewswire - December 10th, 2020
- Magenta Therapeutics Announces Commencement of First Phase 2 Clinical Trial of MGTA-145 for Stem Cell Mobilization, Oral Presentation of MGTA-145... - December 10th, 2020
- Hadassah Medical Center and Neurogenesis Announce Groundbreaking Results from a Phase 2 Study in Progressive Multiple Sclerosis treated with NG-01... - December 10th, 2020
- Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American... - December 10th, 2020
- Venetoclax/Azacitidine Combination Efficacious for the Treatment of Older Patients With Higher-Risk Myelodysplastic Syndrome - Oncology Nurse Advisor - December 10th, 2020
- Precigen Presents New Data Supporting the Safety, Clinical Activity, Expansion and Persistence of PRGN-3006 UltraCAR-T at the 62nd ASH Annual Meeting... - December 10th, 2020
- BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium - BioSpace - December 10th, 2020
- Joliet 2-year-old gets pre-holiday gift: tests that show he's cancer-free - The Herald-News - December 10th, 2020
- Preliminary Results from NexImmune's Phase 1/2 Trial of NEXI-001 in AML Presented at 62nd ASH Annual Meeting and Exposition - GlobeNewswire - December 10th, 2020
- How do you donate stem cells? Donating cells can help treat cancer, blindness and other conditions - heres how - The Scotsman - December 4th, 2020
- Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price - Being Patient - December 4th, 2020
- Treatment to restore vision by injecting stem cells into the eye could help people with damaged eyesight - iNews - December 4th, 2020
- Sphingosine 1-phosphate Receptor Modulator ONO-4641 Regulates Trafficking of T Lymphocytes and Hematopoietic Stem Cells and Alleviates Immune-Mediated... - December 4th, 2020
- Cancer center is a contributor to 49 research studies at the 62nd American Society of Hematology Annual Meeting - Newswise - December 4th, 2020
- IN8bio announces first-in-human Phase 1 trial Update from The University of Kansas Cancer Center using INB-100, IN8bios Gamma Delta T-cell product... - December 4th, 2020
- Bone Marrow Transplant Market Size, Segmented by Type of Deployment, Application, And Region Growth, Trends, And Forecast - The Haitian-Caribbean... - December 4th, 2020
- Gut bacteria can help rebuild the immune system - Medical News Today - December 4th, 2020
- InvestmentPitch Media Video Discusses Hemostemix Successfully Obtaining all Clinical Trial Data and Announcement of $2.5 Million Unit Offering - Video... - December 4th, 2020
- Outlook on the Multiple Myeloma Drugs Global Market to 2025 - by Therapy, Drug Type, End-user, Distribution Channel and Region -... - December 4th, 2020
- Imago BioSciences Expands Phase 2 Clinical Trial of Bomedemstat (IMG-7289) for the Treatment of Myelofibrosis into Hong Kong - Business Wire - December 4th, 2020
- The New Coronavirus Vaccine Is Changing The Future Of Medicine - Forbes - December 4th, 2020
- Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous... - November 30th, 2020
- How are bones and the heart connected? - British Heart Foundation - November 30th, 2020
- Telix Pharmaceuticals Limited Acquires TheraPharm GmbH, Broadening Reach to Hematologic Cancers and Transplant Medicine - BioSpace - November 30th, 2020
- Global Hematopoietic Stem Cell Transplantation (HSCT) Market 2020 Impact of COVID-19, Future Growth Analysis and Challenges | Regen Biopharma Inc,... - November 30th, 2020
- Coronavirus Updates: The Latest Treatments and Vaccines - GovTech - November 30th, 2020
- Hematopoietic Stem Cell Transplantation (HSCT) Market To Witness Huge Growth By 2027 | Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc,... - November 30th, 2020
- Bone Marrow Processing Systems Market Top Participant to Focus on Regional Expansion - Murphy's Hockey Law - November 30th, 2020
- Family 'over the moon' as nine-year-old Aurora confirmed as being back in remission - The Isle of Thanet News - November 30th, 2020
- Pilot study finds potential signal indicative of loss of tone in blood vessels after cardiac surgery - The Hindu - November 30th, 2020
- Family's joy as schoolgirl, 9, back in remission - Kent Online - November 30th, 2020
- Family's heartache after Hebburn boy diagnosed with one in a million condition - Chronicle Live - November 30th, 2020
- Raleigh man delivers stem cells to patients around the world - WRAL.com - November 28th, 2020
- US FDA Approves Naxitamab for the Treatment of Neuroblastoma - OncoZine - November 28th, 2020
- The roles bone marrow plays in the body - Therogersvillereview - November 27th, 2020
- Severe Infections Wreak Havoc on Mouse Blood Cell Production - Technology Networks - November 27th, 2020
- Revenue from the Sales of Hematopoietic Stem Cells Transplantation Market to Witness Relatively Significant Growth During 2017 2025 - Canaan Mountain... - November 27th, 2020
- Approval of Phase I/II Clinical Trial of ATG-016 (Eltanexor), a Second Generation Selective Inhibitor of Nuclear Export (SINE), in Mainland China for... - November 27th, 2020
- Meet 'Iron Boy': Hempfield Twp. boy fighting cancer is real superhero - Gettysburg Times - November 27th, 2020
- G1 Therapeutics: Depressed Price Before Catalyst, No Apparent Reason - Seeking Alpha - November 27th, 2020