Page 11234..1020..»

Archive for the ‘Gene Therapy Research’ Category

Gene therapy | Cancer in general | Cancer Research UK

Gene therapy is a type ofbiological therapy for cancer that is still in the early stages of research.

Genes are coded messages that tell cells how to make proteins. Proteins are the molecules that control the way cells behave. Our genes decide what we look like and how our body works.We have many thousands of separate genes.

Genes are made ofDNAand they are in the nucleus of the cell. The nucleus is the cell’s control centre.Genes are grouped together to make chromosomes. We inherit half our chromosomes from our mother and half from our father.

Cancer cells are different from normal cells. They have changes (called faults or mutations) in several of their genes which make them divide too often and form a tumour. The genes that are damaged mightbe:

Many gene changes that may make a cell become cancerous are caused by environmental or lifestyle factors, such as smoking.

Some people have inherited faulty genes that increase their risk of particular types of cancer. Inherited damaged genes cause between 2 and 3 in every 100 (2% to 3%) of cancers.

Gene therapy is a type of treatment which uses genes to treat illnesses. Researchers have been developing differenttypes of gene therapyto treat cancer.

The ideas for these new treatments have come about because we are beginning to understand how cancer cells are different from normal cells. It is stillearly days for this type of treatment. Some of these treatments are being looked at in clinical trials. Otherscan now be used for some people with types of cancer such as melanoma skin cancer.

Getting genes into cancer cells is one of the most difficult aspects of gene therapy. Researchers are working on finding new and better ways of doing this. The gene is usually taken into the cancer cell by a carrier called a vector.

The most common types of carrier used in gene therapy are viruses because they can enter cells and deliver genetic material. The viruses have been changed so that they cannot cause serious disease but they may still cause mild, flu like symptoms.

Some viruses have been changed in the laboratory so that they target cancer cells and not healthy cells. So they only carry the gene into cancer cells.

Researchers are testing other types of carrier such as inactivated bacteria.

Researchers are looking at different ways of using gene therapy:

Some types of gene therapy aim to boost the body’s natural ability to attack cancer cells. Ourimmune systemhas cells that recognise and kill harmful things that can cause disease, such as cancer cells.

There are many different types of immune cell. Some of them produce proteins that encourage other immune cells to destroy cancer cells. Some types of therapy add genes to a patient’s immune cells. Thismakes them better at finding or destroying particular types of cancer.

There are a few trials using this type of gene therapy in the UK.

Some gene therapies put genes into cancer cells to make the cells more sensitive to particular treatments. The aim is to make treatments,such as chemotherapy or radiotherapy, work better.

Some types of gene therapy deliver genes into the cancer cells that allow the cells to change drugs from an inactive form to an active form. The inactive form of the drug is called a pro drug.

First of all you have treatment with the the carrier containing the gene, then you havethe pro drug.The pro drug circulates in the body and doesn’t harm normal cells. But when it reaches the cancer cells, it is activated by the gene and the drug kills the cancer cells.

Some gene therapies block processes that cancer cells use to survive. For example, most cells in the body are programmed to die if their DNA is damaged beyond repair. This is called programmed cell death or apoptosis. Cancer cells block this process so they don’t die even when they are supposed to.

Some gene therapy strategies aim to reverse this blockage. Doctors hope these new types of treatment will make the cancer cells die.

Some viruses infect and kill cells. Researchers are working on ways to change these viruses so they only target and kill cancer cells, leaving healthy cells alone.

This sort of treatment uses the viruses to kill cancer cells directly rather than to deliver genes. So it is not cancer gene therapy in the true sense of the word. But doctors sometimes refer to it as gene therapy.

A drug called T-VEC (talimogene laherparepvec)isnowavailable as a treatmentfor melanoma skin cancer. It isalso calledImlygic. It is also being looked at in trials for other types of cancer, such as head and neck cancer.

T-VEC uses a strain of the cold sore virus (herpes simplex virus)that been changed by altering the genes that tell the virus how to behave. It tells the virus to destroy the cancer cells and ignore the healthy cells.

T-VEC can beused to treatsome people with melanoma skin cancer whose cancer cannot be removed with surgery. You have T-VEC as an injectiondirectly into yourmelanoma.

Use the tabs along the top to look at recruiting,closed and results.

Continue reading here:
Gene therapy | Cancer in general | Cancer Research UK

Home – Cell & Gene Therapy World 2018 – Meet the Future of …

“The event reflected the fantastic growing enthusiasm around cell and gene therapy, including small and large companies, investors and regulators. It was great to see everyone so engaged and so positive. The event really gives you the pulse of what is happening right now in cell and gene therapy.”

Vice President, Regulatory Science, Bluebird Bio, Inc

Great program, great people, great venue.

Managing Director, EUFETS GmbH

Dynamic, interesting and highly interactive event that promotes exchange and networking in highly specialized field of gene therapy.

Associate Director, Powell Gene Therapy Center, University of Florida

“Phacilitate provides a unique forum, bringing together research, process development, and commercial leaders on the cutting edge of cell, gene, and immunotherapy. A great conference for anyone wanting a comprehensive view of the field.”

Vice President, Research & Product Development, Dendreon

“It was all business. Ive never been to an event where over 80% of the conversations I had were constructive to my business objectives.”

Acquisition & Business Development Manager, BioMedical Materials, Chemelot Campus B.V.

Great way to expand network with global experts in cell and gene therapy who are facing similar challenges.

Director, Strategy and Engagement, GSK

Go here to see the original:
Home – Cell & Gene Therapy World 2018 – Meet the Future of …

FDA Vows Modernization to Keep Up With Biotech Advances – Bloomberg


September 7, 2017, 2:04 PM EDT

A week after its landmark approval of the first treatment thatworks by genetically altering a patients cells, the U.S. health regulator vowed to modernize to keep up with the fast-moving field of biotechnology research.

We are at a point in the history of medicine that is similar to other great inflections in science where fundamental principles of science and medicine became firmly established as part of a leap in public health, Food and Drug Administration Commissioner Scott Gottlieb said in a speech in Washington. FDAs goal is to make sure that our policies are as scientifically advanced as the products were being asked to evaluate.

Gottllieb vowed to betteradjust to the complexities of novel therapies and make sure the agencys policies match the challenges faced by companies looking to follow in the footsteps of Novartis AG, whose Kymriah drug was just approved for pediatric patients with a hard-to-treat form of leukemia. The FDA is evaluating more than 550 applications to test gene therapies and 76 related to CAR-T, the same class of compounds as Kymriah, Gottlieb said in his address to Research America, a nonprofit public education and advocacy group dedicated to health and science research.

The speech could be good news for the developers of therapies using the patients own immune system to attack tumors, including Kite Pharma Inc., which is awaiting approval for a CAR-T treatment. FDAs faster-than-expected approval of Novartiss Kymriah sent biotech shares higher last week. That optimism was tempered this week when one drugmaker halted two studies of an experimental blood cancer therapy after a patient died — a reminder of the major risks and safety concerns in the nascent field.

Gottlieb focused his talk on the earliest stage of drug development, before potential new compounds make it into patients. The agency will engage earlier with companies and researchers working in these new areas, including technology platforms like gene therapy, cell therapy and regenerative medicine, he said.

Some academic and industry drug developers arent fully aware of what is is needed to get a new product approved, particularly smaller groups that often are working with the most innovative technology, he said. Others overestimate the amount of information the agency needs to start studies in patients. FDA staff will work with researchers to eliminate unnecessary steps and incorporate new testing approaches that may help cut costs and speed the approval process, he said.

Information that is gleaned from early work in CRISPR, a technology that allows researchers to easily manipulate genes in a way that many hope will one day be used to treat disease, may be used to hasten development of other products, the commissioner said.

Read More: Groundbreaking cancer research — a QuickTake on immunotherapy

In many cases, the main challenges of novel medicines arent clinical questions about how well they work and their immediate safety, but newer issues related to how they are produced and delivered to the patient, the commissioner said. Manufacturing CAR-Ts like Kymriah, for instance, involves extracting infection-fighting cells from the patients blood; sending them to a centralized plant in New Jersey to get re-programmed; and shipping them back to be re-infused into the patient at medical centers.

The new therapies may also carry long-term risks that may not materialize for years — if ever. Attention will be needed on how the therapies hold up during routine use, with risks and benefits that are closely monitored for years, he said.

Read the original post:
FDA Vows Modernization to Keep Up With Biotech Advances – Bloomberg

Closer Than Ever to a Cure: Annual FA Fundraiser Sept. 22 in Branford –

For 23 years, North Branford’s Caruso-Bode family has been pushing to find a cure for Friedreich’s Ataxia (FA), even as the life-shortening, degenerative neuro-muscular disorder has continued to deepen its toll on the family’s inspiring, courageous siblings, Sam and Alex Bode. On Friday, Sept. 22, family and friends hope the community will continue to support their efforts, by joining in on an annual night of fun, food and fundraising to help find a cure for FA.

This year’s event has the theme”Living a Happy Life” and gets underway at 6 p.m. at Branford’s Owenego Beach and Tennis Club. Tickets are $50 per person, withappetizers, dinner by Outback Steakhouse, acash bar, araffleand “…many unique participants to entertain guests throughout the evening,” according to an event press release. The releasealso shared Alex Bode’s sentiment thatthe community spirit, friendship, kindness and love experienced at the event each year,”…keeps Sam and I optimistic and really feeling supported.”

The siblings were diagnosed with FA as children. Sam Bode was first diagnosed with FA in 1995; followed shortly by the same diagnosis in Alex.Throughthe years and in many ways, Sam, now 31, and Alex, now 27,have done much to help their mother, Mary Caruso, in raising awareness and funding for research as well as workingto promoteacceptance of differences.Caruso was also afounding member of nationalnon-profit Friedreich’s Ataxia Research Alliance (FARA), which was started in September 1998 by a group of FA patient families and three of the world’s leading FA scientists. Proceeds from the Sept. 22 event will help FARA continue to fund research.

In the last 20 years, research has progressed to the point that scientists are nowcloser than ever to the hope of finding a cure, said Caruso.Recent gains in gene therapy research, with clinical trials as the hoped-for nextstep,could bring aboutpositive, targeted results.One area of the work, cardiac gene therapy, will zero in on FA-related heart disease, which recently became an issue facing the Caruso/Bode family. The family is also hopeful about news of another promisingarea of research, which couldrestore eyesight loss due to FA.The Bode siblingsrecently lost their eyesight due to the progressive disease.

“These are the losses that really hit home,” said Caruso. “Both Sam and Alex have recently had to stop riding their hand trikes outside, [the] one activity they both enjoyed so much. To watch them lose the few activities they enjoy is so difficult.”

As always, the siblings are continuing to face FA with “such courage,” said their mom. The devastating, progressiveeffects of the disorderare part of a daily battle usually witnessed by only those closest to the family. Becauseso many in thecommunity may not see the struggle, Caruso wonders if perhaps some may feel as if being asked to help her family find a cure for FA may be asking too much.

“I have found part of the loneliness of it is, when you have a progressive disease without a cure, I think people like to say, ‘Holy Cow — them again?’ You get numb to it,” said Caruso. “Unfortunately, that is our life. For us, it’s an ongoing battle, and you have to always stay ahead of the game, and you have to stay optimistic. We’d love to say we have a treatment, or we have something to try; but we don’t yet. That’s the reality of it. But we have try.”

Join the Caruso/Bode family for an evening of fun, food and fundraising to find a cure for Friedreich’s Ataxia; 6 p.m. – 10p.m.Friday, Sept. 22, Owenego Beach and Tennis Club, 40 Linden Ave. Branford. Tickets, $50 available online hereor by calling (203) 246-8820 or (203) 889-6484. All proceeds assist research supported by FARA, a national, public, 501(c) (3) nonprofit, tax-exempt organization. See more information at

Read more:
Closer Than Ever to a Cure: Annual FA Fundraiser Sept. 22 in Branford –

Families raise money for research into rare diseases – KARE

University of Minnesota groundbreaking gene therapy research

Lindsey Seavert, KARE 6:54 PM. CDT September 06, 2017

Andrea and RyanShaughnessy, from the Traverse City, Michigan area, have been at the University of Minnesota Masonic Childrens Hospital for nine months, as their son, Anderson, 2, underwent two blood stem cell transplants for Hurler Syndrome. (Photo: KARE 11)

MINNEAPOLIS – The FDA just recently approved the first gene therapy available in the United States for childhood leukemia, ushering in a new frontier in medicine to reprogram a patient’s own cells to attack a deadly cancer.

The breakthrough is also bringing a long-awaited promise at the University of Minnesota for children undergoing treatment for rare, life-threatening diseases.

An estimated 20 families whose children have undergone blood stem cell transplants for rare metabolic diseases, have joined together to launch a crowdfunding campaign to help U of M doctors research safer, more effective therapies, including new gene therapy that could bring life-saving impact for their children.

Andrea and Ryan Shaughnessy, from the Traverse City, Michigan area, have been at the University of Minnesota Masonic Childrens Hospital for nine months, as their son, Anderson, 2, underwent two blood stem cell transplants for Hurler Syndrome.

The rare genetic disease, affecting 1 in every 100,000 children, occurs when the body has a defective gene and as a result, cannot make an important enzyme. Children with Hurlers Syndrome have a life expectancy of 5 to 10 years old.

Time is not on our side, the more we can do earlier on, the better off it is for his long-term survival and development, said Andrea Shaughnessy. If we could help keep anybody else from living in our shoes because it is so hard, you know it might not be able to directly impact the help Anderson needs today, but it doesnt mean that we cant help others so they can have a better outcome and life expectancy tomorrow.

The Shaughnessy family made the second donation to the crowdfunding campaign, called the Pediatric BMT Metabolic Program Research Fund.

I think its really inspiring they are doing this, said Dr. Weston Miller, a U of M pediatric blood and marrow physician overseeing many blood stem cell transplants. Research is expensive and really driving novel therapies and improving on existing therapies takes time and money.

Dr. Miller noted the lack of research and development for rare diseases, and said the gene therapy reduces the health risks associated with undergoing and surviving blood stem cell transplants.

Really the unifying theme of all these novel therapies is going to be make it safer and more effective, said Dr. Miller. So, what we of course wish and hope for is we can find a way to have effective therapies and look Mom and Dad in the eye, and say there is closer to 100 percent they will be walking out of here.

The families from across the country and world have a goal to raise $1 million to fund research projects that might otherwise never make it to the laboratory.

We are pretty proud of this team and we know they can do it, its amazing the tenacity they bring, said Andrea Shaughnessy.

The crowdfunding page details their plea for support.

They have helped countless families from all around the world navigate the uncertainty of a life-threatening diagnosis and make heart-wrenching decisions. They go above and beyond, whether it is Google translating an email to correspond with parents in other countries or wearing a Minions shirt. They have revolutionized the way the diseases are treated, drastically improved the quality of life for many of their patients, and given families hope.

2017 KARE-TV

Excerpt from:
Families raise money for research into rare diseases – KARE

Global Updated Gene Therapy Technologies, Markets and Companies Report 2017-2026 – Research and Markets – Business Wire (press release)

DUBLIN–(BUSINESS WIRE)–The “Gene Therapy – Technologies, Markets and Companies” report from Jain PharmaBiotech has been added to Research and Markets’ offering.

The markets for gene therapy are difficult to estimate as there is only one approved gene therapy product and it is marketed in China since 2004. Gene therapy markets are estimated for the years 2016-2026.

The estimates are based on epidemiology of diseases to be treated with gene therapy, the portion of those who will be eligible for these treatments, competing technologies and the technical developments anticipated in the next decades. In spite of some setbacks, the future for gene therapy is bright.The markets for DNA vaccines are calculated separately as only genetically modified vaccines and those using viral vectors are included in the gene therapy markets

The voluminous literature on gene therapy was reviewed and selected 750 references are appended in the bibliography.The references are constantly updated. The text is supplemented with 76 tables and 22 figures.

Profiles of 189 companies involved in developing gene therapy are presented along with 240 collaborations. There were only 44 companies involved in this area in 1995. In spite of some failures and mergers, the number of companies has increased more than 4-fold within a decade.

These companies have been followed up since they were the topic of a book on gene therapy companies by the author of this report. John Wiley & Sons published the book in 2000 and from 2001 to 2003, updated versions of these companies (approximately 160 at mid-2003) were available on Wiley’s web site. Since that free service was discontinued and the rights reverted to the author, this report remains the only authorized continuously updated version on gene therapy companies.

Key Topics Covered:

Part I: Technologies & Markets

Executive Summary

1. Introduction

2. Gene Therapy Technologies

3. Clinical Applications of Gene Therapy

4. Gene Therapy of Genetic Disorders

5. Gene Therapy of Cancer

6. Gene Therapy of Neurological Disorders

7. Gene Therapy of Cardiovascular Disorders

8. Gene therapy of viral infections

9. Research, Development and Future of Gene Therapy

10. Regulatory, Safety, Ethical Patent Issues of Gene Therapy

11. Markets for Gene Therapy

12. References

Part II: Companies

13. Companies involved in Gene Therapy

For more information about this report visit

Excerpt from:
Global Updated Gene Therapy Technologies, Markets and Companies Report 2017-2026 – Research and Markets – Business Wire (press release)

Opinion: How investors should play gene-therapy stocks – MarketWatch

For a few thousand people around the world, reaching the age of 20 is a landmark to dread, not to celebrate.

Coping since birth with Leber Congenital Amaurosis (LCA), anyone with this genetic eye disorder who hasnt already lost their sight can expect to be legally blind before they reach 21 years of age.

Characterized by deep-set eyes that are prone to involuntarily, jerky movements, LCA is caused by a fault in one or more of about 14 genes so far identified. There is no proven treatment, although that may soon change.

In late August, biotech company Spark Therapeutics Inc. ONCE, +1.70% was granted a priority review of a treatment for LCA that may make it the first gene therapy approved for use in the U.S. by the Food and Drug Administration (FDA).

Read: Novartis CAR-T therapy was the first to be approved in the U.S.

The Philadelphia-based company will by Jan. 12 discover whether the FDA will issue a biologics license for Luxturna, which can replace the faulty RPE65 gene that causes LCA with a properly functioning copy. Should it be approved, victims of this disease will soon be able to receive a single injection that may permanently restore functional eyesight.

Gene therapys payoffs

While traditional research is usually focused on unlocking a way to treat one condition, gene therapies such as Luxturna may be game changers because they are based on platforms that can be adapted and used to tackle multiple inherited disorders.

Using similar techniques, Spark is also working on a functional cure for hemophilia, a disease that afflicts about 20,000 people in the U.S. and around 400,000 globally for which the market is worth about $8.5 billion in the U.S. and European Union.

In-human trials of SPK-8011 recently showed that Sparks therapy has the potential to lift the Factor VIII protein necessary for normal blood clotting to functional and sustained levels. In short, as with the Luxturna, the therapy has the potential to offer a one-shot cure.

That would be seismic for hemophiliacs, whose main option today is regular infusions of Factor VIII protein. Unfortunately, within a few days almost none of the protein remains in the body and the hemophiliacs blood is again unable to clot normally. Spark is also developing a treatment for hemophilia B, a much smaller market.

A new dawn

Biotech companies have reached this point because research has advanced to the stage where weve figured out how to identify the genetic causes of disease and how to apply that knowledge to develop therapies that will replace defective genes to provide a lasting cure.

Voyager Therapeutics Inc. VYGR, +24.70% is focused on gene therapies for neurological disorders such as Parkinsons, Huntingtons, Lou Gehrigs disease or ALS, Friedreichs ataxia (which damages the nervous system), Alzheimers and chronic pain.

In addition to cancer immunotherapy and the more controversial gene editing, bluebird bio Inc. BLUE, +0.84% has eight gene therapy programs, including research into adrenoleukodystrophy, or ALD, a deadly brain disorder that mostly affects boys and men; beta thalassemia; and sickle cell, none of which have a cure.

Should Spark, or another company such as BioMarin Pharmaceutical Inc. BMRN, -0.72% or Sangamo Therapeutics Inc. SGMO, -4.43% which are also working on hemophilia, succeed with its gene therapy, it could adversely impact suppliers of traditional Factor VIII protein infusions, such as Shire PLC SHP, +0.89% which had revenue from hemophilia treatments of $870.9 million in the first quarter of 2017.

Cost problems

Cost has been a headwind for the two gene therapies so far approved. In April, Fierce Pharma reported that uniQure NV QURE, +4.42% would not ask the European Medicines Agency to renew its marketing authorization for Glybera, the worlds most expensive drug at $1 million, when it expires in October, because in the four years after it gained approval in 2012 it was used commercially and paid for once, according to the MIT Technology Review.

Europes other approved gene therapy has fared no better. GlaxoSmithKline Plc GSK, +0.28% said in July it is seeking a buyer for Strimvelis, a treatment for a rare inherited immune deficiency, which took a year after approval to gain its first patient.

Perhaps the solution is a new payments system for ultra-expensive and long-lasting gene therapies, based on annuities for each additional time period of a treatments effectiveness.

But how do you measure cost? In December, Biogen Inc. BIIB, +0.48% gained FDA approval for Spinraza, a treatment for spinal muscular atrophy, the leading genetic cause of infant death in the U.S. Spinraza is priced at $375,000 a year for life (after $750,000 in the first year of therapy), while a one-shot gene therapy being developed by AveXis Inc. AVXS, +1.89% for SMA may provide a cure to someone who could go on to live 80 or more years. What sort of a premium for AveXis approach is justified?

Pricing is not dissuading biotech companies. There are about 7,000 genetic diseases, and the whole pharmaceutical and biotech industry is now working to solve each of those problems.

Investors seeking to benefit from a potential medical moonshot should consider allocating capital on a long-term basis to well-managed gene therapy companies with transformative assets that give them a competitive advantage.

Ethan Lovell is co-portfolio manager of the Janus Henderson Investors Global Life Sciences strategy.

Read the rest here:
Opinion: How investors should play gene-therapy stocks – MarketWatch

Renova Therapeutics co-founder awarded highest research honor … – PR Newswire (press release)

SAN DIEGO, Sept. 6, 2017 /PRNewswire/ — Renova Therapeutics, a biotechnology company developing gene and peptide-based treatments for cardiovascular and metabolic diseases, today announced that the company’s co-founder Dr. H. Kirk Hammond is the recipient of the 2017 William S. Middleton Award, the highest biomedical laboratory research award in the U.S. Department of Veterans Affairs (VA).

The Middleton Award is given annually to recognize outstanding achievements in biomedical research. Dr. Hammond, a Professor of Medicine at UC San Diego and a cardiologist with the VA San Diego Healthcare System, received the award for his contributions to the understanding of mechanisms of cardiovascular disease and novel gene transfer treatments for angina and heart failure. Dr. Hammond is also investigating gene transfer for type 2 diabetes.

Dr. Hammond has authored more than 100 peer-reviewed publications related to cardiovascular disease and is an inventor on nine patents. He devised and led the Phase 2 clinical trial of AC6 gene transfer for the treatment of patients with heart failure and reduced ejection fraction. Results of the trial indicated that, through a one-time administration, AC6 gene transfer safely increased heart function beyond optimal heart failure therapy (JAMA Cardiology). This study was funded by the National Institutes of Health (NIH), the Gene Therapy Resource Program and Renova Therapeutics, via an NIH public-private partnership.

“If successful, these trials could lead to the first registration of a gene therapy product for treating heart disease,” said Dr. Rachel Ramoni, VA’s Chief Research and Development Officer. “Dr. Hammond is clearly a pioneer of intracoronary gene therapy and novel patient delivery mechanisms that will have a broad impact on the health care of veterans.”

AC6 gene transfer is being developed by Renova Therapeutics as RT-100, its lead gene therapy candidate advancing to a Phase 3 clinical trial known as FLOURISH.

About heart failureHeart failure is a chronic disease characterized by the inability of the heart to pump sufficient blood to meet the body’s demands. It is a progressive and fatal chronic condition, and symptoms worsen over time. Heart failure afflicts more than 28 million people globally and is the only cardiovascular disease that is increasing in prevalence. In the United States, it is the most common cause for emergency hospital admissions in patients 65 and older.

About Renova Therapeutics Renova Therapeutics is developing definitive, one-time gene therapies and peptide infusion treatments to restore the health of people suffering from chronic diseases. The first indications the company is pursuing are gene therapy treatments for heart failure and type 2 diabetes, two of the most common and devastating chronic diseases in the world. The company’s lead product, RT-100, is a treatment that delivers a therapeutic gene directly to the heart during a routine outpatient procedure and has the potential to increase heart function in millions of patients with heart failure. The company’s product pipeline also includes a groundbreaking gene therapy in preclinical stage for sufferers of type 2 diabetes, as well as a peptide infusion therapy for the treatment of acute decompensated heart failure. Renova Therapeutics was founded in 2009 and is led by an experienced management team in biopharmaceuticals and gene therapy. For additional information about the company, please visit


View original content with multimedia:

SOURCE Renova Therapeutics


Read the rest here:
Renova Therapeutics co-founder awarded highest research honor … – PR Newswire (press release)

Upcoming Duchenne Gene Therapy Trial to Be Focus of PPMD-hosted Webinar on Wednesday, Sept. 6 – Muscular Dystrophy News

Parent Project Muscular Dystrophy (PPMD) will host a one-hourwebinarat 2 p.m. Eastern Time on Wednesday, Sept. 6, that will focus on an upcoming clinical trial exploring gene therapy for Duchenne muscular dystrophy.

The webinar will be led by Dr. Jerry Mendell, who, together with fellow researcher Dr. Louise Rodino-Klapac, received a $2.2 million grant from PPMD in January 2017 for their gene therapy research project at the Nationwide Childrens Hospital in Columbus, Ohio.

The project is now approaching its first human trial, expected to begin in the next few months. Mendell will talk about how the trial is designed, including inclusion and exclusion criteria for participation. He will also share planned timelines.

Those wishing to participate are asked to register and submit questions in advance. Follow this link for more information about registering and submitting questions.

The grant was the first in the nonprofits Gene Transfer Initiative, which intends to support research into gene-therapy-based solutions. The webinar is part of a series that intends to present researchers and companies that focus on gene therapy for Duchenne.

Such therapies include gene transfer techniques, in which a small but functional version of the dystrophin gene, referred to as micro-dystrophin, is delivered with the help of a non-infectious virus. Other approaches use gene editing with the help of the CRISPR-Cas9 system (a naturally occurring bacterial defense system that has been adapted into a gene-editing tool).

The Nationwide Childrens Hospital trial will focus on the delivery of micro-dystrophin.

But while the webinar series will present research projects in various stages of progress, it spent the first parton Aug. 15 discussing what these approaches really mean, allowing patients and families to better understandthe complex science behind the therapeutic approaches. By understanding the science, PPMD hopes that families can make better choices once these therapies reach clinical trials.

PPMD also felt prompted to bring gene therapies to Duchenne patients with the recent FDA approval of Kymriah, the first gene therapy to be approved in the U.S.

While Kymriah is a cancer immunotherapy using a different approach than that likely to be used in Duchenne, the approval constitutes another piece of evidence showing the tremendous strides this technology has made since the 1990s and its early days of research, PPMDs Abby Bronson wrote in a blog post.

[The Kymriah] approval means that there are regulatory and commercial pathways for cell and gene based therapy. It means that you can put living DNA into a human and it can do its job, Bronson wrote in her blog. And it means that years of scientists making seemingly incremental advances can all come together and result into a giant step forward. A step forward that we believe will move this technology in a direction that will eventually benefit our community, our children.

Read the original post:
Upcoming Duchenne Gene Therapy Trial to Be Focus of PPMD-hosted Webinar on Wednesday, Sept. 6 – Muscular Dystrophy News

Has the Era of Gene Therapy Finally Arrived? – Scientific American (blog)

In 1990, geneticist William French Anderson injectedcells with altered genes into a four-year-old girl with severe immunodeficiency disorder. This was the first sanctioned test of gene therapy, in which genetic material is used to treat or prevent disease.

If were lucky, Anderson told The Chicago Tribune, with this little girl weve opened the door for genetic engineering to attack major killers and cripplers, particularly AIDS, cancer and heart disease.

Gene therapy has never fulfilled these grand hopes. In the decades since Andersons experiment, thousands of clinical trials of gene therapies have been carried out. But the first gene therapy was only approved for sale in the U.S. this week. The Food and Drug Administration announced its approval of Kymriah, a gene therapy produced by Novartis for a form of childhood leukemia. A few gene therapies have previously become available in China and Europe.

An FDA press release emphasizes the historic nature of the approval. Were entering a new frontier in medical innovation with the ability to reprogram a patients own cells to attack a deadly cancer, FDA Commissioner Scott Gottlieb says.

As I have noted in previousposts (see Further Reading), the hype provoked by genetic research has always outrun the reality. Gene-therapy proponents have long predicted that it will eliminate diseases such as cystic fibrosis and early-onset breast cancer, which are traceable to a defective gene, as well as disorders with more complex genetic causes.Enthusiasts also envisioned genetically engineered “designer babies” who would grow up to be smarter than Nobel laureates and more athletic than Olympians.

Gene therapy turned out to be extremely difficult, because it can trigger unpredictable, fatal responses from the body’s immune system.The National Institutes of Health warnsthat gene therapy can have very serious health risks, such as toxicity, inflammation, and cancer.

Kymriah is a case in point. The FDA press release warns that Kymriah can cause life-threatening immune reactions and neurological events, as well as serious infections, low blood pressure (hypotension), acute kidney injury, fever, and decreased oxygen (hypoxia). According to The New York Times, the FDA is requiring that hospitals and doctors be specially trained and certified to administer [Kymriah], and that they stock a certain drug needed to quell severe reactions.

Kymriah illustrates another problem with gene therapy: high cost. Novartis is charging $475,000 for Kymriah. As a recent Reuters article notes, over the past five years two gene therapies have been approved for sale in Europe, one for a rare blood disease and the other for the bubble-boy immunodeficiency disorder. The therapies cost $1 million and $700,000, respectively. So far, the companies that make the therapies have achieved a total of three sales.

As journalist Horace Freeland Judson points out in this excellent 2006 overview, The Glimmering Promise of Gene Therapy, biology and economics have conspired against gene therapy. Judsonnotes that most individual diseases caused by single-gene defectsthe kind that seem most likely to be cured by gene therapyare rare. (Sickle-cell anemia and some other hemoglobin disorders are among the few exceptions.)

Judson adds that because different diseases have different genetic mechanisms and affect different types of tissue, each presents a new set of research problems to be solved almost from scratch. As the millions burned away, it became clear that even with success, the cost per patient cured would continue to be enormous. And success had shown itself to be always glimmering and shifting just beyond reach.

The advent of CRISPR, a powerful gene-editing technique, has inspired hopes that gene therapy might finally fulfillexpectations. Researchers recently employed CRISPRin human embryos to counteract a mutation that causes heart disease. Potentially, The New York Times reported last month, the method could apply to any of more than 10,000 conditions caused by specific inherited mutations.

CRISPR has also renewed concerns about the ethics of engineering people with enhanced physical and mental traits. These concerns are grossly premature. As Science noted recently, CRISPR poses some of the same risks as other gene therapies. The methodstill has a long way to go before it can be used safely and effectively to repairnot just disruptgenes in people.And in fact questions have now been raised about the CRISPR research on embryos mentioned above.

Some day, applied genetics might live up to its hype, but that day is far from arriving.

Further Reading:

Could Olympians Be Tweaking Their Genes?

Have researchers really discovered any genes for behavior?

My Problem with Taboo Behavioral Genetics? The Research Stinks!

Hype of Feel-Good Gene Makes Me Feel Bad.

New York TimesHypes “Infidelity Gene.”

Quest for Intelligence Genes Churns out More Dubious Results.

Warrior Gene Makes Me Mad.

Should Research on Race and IQ Be Banned?

Read more:
Has the Era of Gene Therapy Finally Arrived? – Scientific American (blog)

Lasker Awards honor Planned Parenthood and research on preventing and fighting cancer – Los Angeles Times

Planned Parenthood, the embattled nonprofit health provider that specializes in reproductive health, has won the 2017 Lasker Award for public service.

The Albert and Mary Lasker Foundation also honored Dr. Douglas Lowy and John Schiller of the National Cancer Institute with its clinical research award for work that led to the development of a vaccine against human papillomavirus, which causes cervical cancer. Molecular biologist Michael N. Hall received the foundations basic medical research award for laying the scientific groundwork for advances in the treatment of cancer, diabetes, neurodegenerative disorders and diseases of aging.

The Lasker Awards, announced Wednesday, are given annually to recognize advancements in the prevention and treatment of disease. Each award carries an honorarium of $250,000. Dozens of past winners have gone on to win the Nobel Prize.

The Lasker-Bloomberg Public Service Award to Planned Parenthood comes at a time when the international organizations global mission has come under budgetary assault on Capitol Hill. The healthcare provider offers cancer screenings, testing for sexually transmitted diseases, birth control services and general care to millions of people each year. But the organization also provides abortion services, which makes it a frequent target of some lawmakers and others with antiabortion views.

Approximately one in five women in the U.S. have received its assistance at some point during their lives, the Lasker Foundation said in its award citation. Without Planned Parenthood, many individuals would not have access to high-quality and affordable health care.

Lowy and Schillers research on infection-fighting antibodies led to the development of a vaccine against human papillomavirus. The virus, also known as HPV, causes the worlds second-most common cause of malignancy in women, cervical cancer. In 2014, that work led President Obama to award Lowy and Schiller the National Medal of Technology and Innovation.

All of this years honorees acknowledged the changed political environment in which they conduct their activities. All warned that their work and other work like it would be squelched if the Trump administrations proposed restrictions on womens healthcare and cuts to basic biomedical research funding are adopted by Congress.

Planned Parenthood President Cecile Richards noted that her organizations founders, Dr. Margaret Sanger and Dr. Bessie Moses, were the first women to be awarded the Lasker prize for medicine for their contributions to contraception at a time when it was illegal in the United States. She marveled that more than 65 years later, the U.S. government has reprised its hostility to the policies that the work of Sanger and Moses made possible.

Were at a moment in the U.S. where there are major political efforts to get a rollback of reproductive care and reproductive rights, Richards said.

The scientists honored by the Lasker Awards offered more indirect criticism. They suggested that amid deep budget cuts in federal funding for biomedical research, scientists will not have the latitude to pursue research on subjects whose significance in not yet understood.

Basic science is the engine that drives important breakthroughs in public health, said Schiller, whose work led to the development of the first vaccine to prevent a cancer.

Its not clear which basic discoveries are going to lead to public health breakthroughs, he added. Its an example where we cant be too top-down in our research enterprise. You cant dictate which discoveries will be made.

Evan Vucci / Associated Press

National Cancer Institute researchers Douglas Lowy, left, and John Schiller, shown here with President Obama, have been awarded the Lasker Award for clinical research.

National Cancer Institute researchers Douglas Lowy, left, and John Schiller, shown here with President Obama, have been awarded the Lasker Award for clinical research. (Evan Vucci / Associated Press)

That was certainly the case for Hall, an American and Swiss scientist based at the University of Basel in Switzerland whose work has been translated into therapies for a variety of diseases.

He won his Lasker Award for his discovery of a protein called TOR (short for target of rapamycin) that tells cells when to grow, divide and survive. The gene that expresses TOR is found in organisms ranging in complexity from yeast to humans, and it often mutates in cancer cells. In mammals, who have a version called mTOR, its also a key player in activation of the immune system.

Halls elucidation of how TOR works has led to the use of a class of targeted cancer drugs called mTOR inhibitors, including rapamycin and mimics such as the drug everolimus (marketed as Afinitor), in the treatment of certain aggressive cancers of the kidney, breast or brain.

Faulty signaling in the mTOR network is implicated not only in cancer, but in a range of other diseases linked to aging, such as diabetes and brain diseases. That has led many to believe that understanding how TOR works will lead to insights that could extend the human lifespan.

Among the insights already gleaned: that in mice, at least, calorie restriction lengthens lifespan by inhibiting the activity of mTOR.

The basic research honored by this years Lasker Award was part of an international race among scientists to unravel a mystery: why (and how) did the drug rapamycin, an antifungal medication that emerged from soil harvested on Easter Island, also have the ability to suppress the proliferation of both cancer cells and immune cells in mammals?

Hall and his colleagues identified and sequenced the TOR1 and TOR2 genes in yeast, and published the result in the journal Cell in 1993.



After California got rid of personal exemptions for vaccines, medical exemptions went way up

PSA screening for prostate cancer saves lives after all, study says

See the article here:
Lasker Awards honor Planned Parenthood and research on preventing and fighting cancer – Los Angeles Times

Stevenage-based Cell and Gene Therapy Catapult gets 12 million … – Comet 24

PUBLISHED: 18:08 31 August 2017 | UPDATED: 18:08 31 August 2017

Mia Jankowicz

The Gene and Cell Therapy Catapult is due to open in Autumn 2017. Picture: Daniel Buman

daniel burman

Email this article to a friend

To send a link to this page you must be logged in.

The Cell and Gene Therapy Catapult is making its home at the Stevenage Bioscience Catalyst campus in Gunnels Wood Road, and is due to open in autumn 2017.

Now an extra 12 million in government funds will go towards fitting out the buildings second floor.

The centre had already attracted 55 million of funding in 2014 from the Department for Business, Innovation and Skills (now the Department for Business, Energy & Industrial Strategy).

The extra funds will double the centres capacity and at full capacity it is predicted to bring 1.2 billion in revenue by 2020.

Chief executive officer Keith Thompson explained to the Comet that Stevenage was a good fit for the site, with the towns closeness to airports as well as the presence of other scientific expertise all big positives.

We went through a very rigorous search across the UK for our site, said Mr Thompson.

Theres a strong pedigree of pharmaceuticals around the area.

Stevenages workforce also stands to benefit, with the potential creation of around 180 support jobs.

The Cell & Gene Therapy Catapult has a mission to accelerate the UKs cell therapy industry and to make Stevenage an industry world leader.

Currently, one problem holding up cell research globally is the low availability of the large numbers of cells needed to perform large-scale clinical trials.

The 7,200-square-metre facility will allow UK businesses that are developing new cell therapy treatments to use its labs to manufacture cells for clinical trials at a large scale.

Cell and gene therapies are showing potential worldwide to combat numerous illnesses.

At the frontier of medical science, cell therapy is a technique which involves the injection of living cells into the human body in order to repair the direct causes of genetic diseases.

For example, the Cell & Gene Therapy Catapult played a large role in the creation of modified cells that are trained to recognise a certain protein in leukaemia cells, and then attack and destroy the cancerous cells.

To find out more visit

Here is the original post:
Stevenage-based Cell and Gene Therapy Catapult gets 12 million … – Comet 24

News of NoteGene therapy to protect the heart; boosting chemo with cardio drugs; reversing memory loss – FierceBiotech

Could junk DNA protect our hearts?

Scientists at the University of California at Los Angeles and the Howard Hughes Medical Institute reported that they successfully used gene therapy to lower cholesterol in mouse models of familial hypercholesterolemia. The gene they used, called LeXis, was once considered junk DNA because it seemed to serve no purpose. But when the researchers gave the mice LeXis and then fed them a high-cholesterol diet for 15 weeks (think cheeseburgers and fries), their cholesterol went down, artery blockages opened up andless fat appeared to build upin their livers. The research was published in the journal Circulation. Release

Researchers at the Francis Crick Institute have discovered that acute myeloid leukemia (AML) causes bone marrow to leak blood, which in turn impedes the proper delivery of chemotherapy. So they tried mixing chemo with experimental drugs designed to treat heart and blood vessel disorders, and the results were promising. In mouse models of AML and in human tissue samples, the heart drugs stopped the leaks and the chemo became more effective, the researchers reported in the journal Cancer Cell. They believe the findings may point to a potential new combination of treatments for AML. Release

Researchers at Columbia University have completed mouse studies suggesting that a hormone produced by bone cells, osteocalcin, may be useful in reversing memory loss that occurs as part of aging. They gave aged mice continuous infusions of the hormone for two months and observed improvements on two different memory tests. Similar results were seen when the mice were given plasma from young mice, which have naturally high levels of osteocalcin. They plan to do more research to determine whether their findings, published in the Journal of Experimental Medicine, can be translated to drug therapies for people. Release

Read more here:
News of NoteGene therapy to protect the heart; boosting chemo with cardio drugs; reversing memory loss – FierceBiotech

Gene therapy using ‘junk DNA’ could lower risk for heart disease – UCLA Newsroom


Scientists from UCLA and the Howard Hughes Medical Institute successfully used a gene that suppresses cholesterol levels as part of a treatment to reduce plaque in mice with a disorder called familial hypercholesterolemia. In a preclinical study, researchers found that the gene, LeXis, lowered cholesterol and blockages in the arteries, and the treatment appeared to reduce the build-up of fat in liver cells.

Familial hypercholesterolemia is an inherited condition characterized by extremely high levels of low-density lipoprotein cholesterol (commonly referred to as bad cholesterol) and an increased risk of early heart disease.

The LeXis gene belongs to a unique group of genes that until recently were considered junk DNA because scientists believed they served little purpose. However, evidence from the human genome project led to the discovery that genes like LeXis are actually active. The study of these genes,now referred to as long noncoding ribonucleic acids, or lncRNAs, is a rapidly evolving area in biology.

Researchers wanted to test whether a single injection of LeXis could slow the development of heart disease. To do so, they gave the mice either LeXis or a control gene, and fed them a 15-week diet consisting of food high in sodium and cholesterol the mouse equivalent of fast-food hamburgers and french fries. Researchers then measured the progression of heart disease.

In the next phase of the study, researchers intend to confirm the findings in larger animals and test the therapy in combination with currently available treatments.

Although previous research has shown that lncRNAs can be important, this is the first study to show that they could potentially be used to treat a human disease using gene therapy. Junk genes could one day offer a framework for treating people with familial hypercholesterolemia and other conditions that are otherwise very difficult to treat.

The papers authors are Xiaohui Wu, Zhengyi Zhang and Dr. Tamer Sallam of UCLA; and Dr. Peter Tontonoz, Marius Jones and David Salisbury of the Howard Hughes Medical Institute.

The study waspublished onlinein the journal Circulation.

The research was supported by grants from the National Heart, Lung, and Blood Institute; the American College of Cardiology; and the Lauren B. Leichtman and Arthur E. Levine UCLA Cardiovascular Discovery Fund.

Learn more about the cardiovascular research theme at UCLA.

Continue reading here:
Gene therapy using ‘junk DNA’ could lower risk for heart disease – UCLA Newsroom

A ‘historic’ cancer treatment designed by Penn researchers just got approved by the FDA – The Daily Pennsylvanian

National Eye Institute / CC 2.0

Penn Medicine researchers made huge strides in the medical world Wednesday when the Food and Drug Administration approved a gene-altering cancer treatment that they designed. It’s the first of its kind to be approved.

The therapy is marketed as Kymriah and made by Novartis, but was originally developed at Penn by Carl June, a Penn Medicine professor in immunotherapy, and his team, The New York Times reported. The treatment, which is the first-of-its-kind in the United States, uses the patient’s genetically altered immune cells to fight the disease.

The FDA called the gene therapy a “historic” act.

Timothy Cripe, an oncologist with Nationwide Children’s Hospitalin Columbus, Ohio, referred to the research as the “most exciting thing I’ve seen in my lifetime,” The Washington Post reported.

The treatment is meant for children and young adults with B-cell acute lymphoblastic leukemia, especially those who don’t respond well to traditional treatment methods.

According to the New York Times, the first child to receive the therapy was Emily Whitehead in 2012. Whitehead was severely ill from leukemia in 2012, but after treatment, has been free from cancer for more than five years.

Penn researchers have been working on approving this treatment method for years. In 2011, the results of the CAR-T cell therapy, as the treatment was initially called, were published in the New England Journal of Medicine and Science Translational Medicine by June and his team. It was the first demonstration of the use of gene transfer therapy to create serial killer T cells targeting cancerous tumors, according to a press release by the Penn medical school.

A year later, the University partnered with Swiss pharmaceutical company Novartis to continue research on immunotherapy research. At the time, the collaboration was the largest academic-industry agreement in Penns history.

In 2016, Penn Medicine, along with five other peer institutions, partnered with The Parker Institute for Cancer Immunotherapy after receiving a $250 million grant to develop new techniques for cancer treatment.

Novartis said the gene-therapy would cost $475,000 and would be available at an initial network of 20 approved medical centers, as the treatment is hard to administer.

I have to keep pinching myself to see that this happened, June said to The New York Times. It was so improbable that this would ever be a commercially approved therapy, and now its the first gene therapy approved in the United States. Its so different from all the pharmaceutical models. I think the cancer world is forever changed.

Continued here:
A ‘historic’ cancer treatment designed by Penn researchers just got approved by the FDA – The Daily Pennsylvanian

‘Hit-and-run’ gene therapy nanoparticles could enhance CAR-T … – FierceBiotech

Personalized cancer treatments known as CAR-T cells (chimeric antigen receptor T cells) have dominated the headlines lately, thanks to Novartis tisagenlecleucel, which won an early approval from the FDA for the treatment of leukemia on Aug. 30. But CAR-T treatments are labor-intensive and expensive to make, and they can attack healthy tissues in the body, leading to dangerous side effects.

Scientists at the Fred Hutchinson Cancer Research Center have developed a tool that they believe could address both those shortcomings of CAR-T and other forms of cell engineering. They have invented nanoparticles that deliver proteins to cells, which in turn edit those cells genes temporarily. Lead author and bioengineer Matthias Stephan describes it as hit-and-run gene therapy, and he believes the technique will streamline the manufacturing of cell-based therapies.

Heres how it works: The nanoparticles home in on specific cells, such as the T cells in the immune system. They then deposit messenger RNA (mRNA) to those cells, which triggers short-term changes in the proteins the genes produce. The technology does not permanently change the DNA, but it makes enough of an impact on it to produce a therapeutic outcome.

RELATED: Can CAR-T cancer treatments be fine-tuned to avoid toxic side effects?

Whats more, the nanoparticles can be freeze-dried and then activated with a small amount of water. They really let you fulfill all your wishes as a genetic engineer because you can pack in all your different [gene-therapy] components and further improve the therapeutic potential of your cell product without additional manufacturing steps, Stephan said in an article posted on Fred Hutchs website.

Stephans team proved out their concept by testing the nanoparticles in three different cell-engineering applications, one of which was CAR-T. Currently, CAR-T treatments are made by giving T cellsgenes that teach them to destroy cancer cells. The Fred Hutch scientists used their nanoparticles to remove a different gene from T cellsone that normally prompts them to attack healthy tissue.

Then they tried enhancing the CAR-T cells in a different manner. They temporarily gave them genes that have the potential to make central memory T cells, which are able to survive over the long term, remembering their cancerous targets and attacking them should they ever resurface.

The scientists tested their engineered CAR-T cells in mouse models of leukemia and found that the animals that received them lived twice as long as mice that got conventional CAR-T cells. They also tested the nanoparticles in two other cancer-related applications of gene therapy.

Despite all the excitement over CAR-T, concerns about side effects continue to dog the field. A dangerous immune reaction known as a cytokine storm has been seen in trials of both Novartis treatment and Axi-Cel, a CAR-T from Kite Pharma, which is being acquired by Gilead. The third player in the CAR-T field, Juno Therapeutics, saw its late-stage trials delayed when some patients died of neurological side effects.

Fred Hutch scientists have been working on other techniques for improving CAR-T. In December, a set of researchers there who receive funding from Juno announced positive results from a trial of a fine-tuned CAR-T treatment in patients with chronic lymphocytic leukemia (CLL). Instead of using just one type of CAR-T, the team combined two specially selected cell subtypes into one treatment. They also announced they had identified biomarkers that they believe can be used to predict which patients are likely to have severe reactions to the treatment.

Stephans team is now collaborating with several companies to fine-tune CAR-T treatments for cancer, according to Fred Hutch. And they believe their freeze-dried nanoparticles may prove useful in developing treatments for a range of other diseases, too, including HIV and blood disorders caused by defective hemoglobin.

Excerpt from:
‘Hit-and-run’ gene therapy nanoparticles could enhance CAR-T … – FierceBiotech

Ipswich resident Talia Duff’s fight for life continues, family hopes to raise funds for research – Wicked Local Ipswich

By Bryan Sater

The urgent race to cure a rare disease that attacks the muscular system does not happen overnight.

Researchers have made significant progress toward saving 11-year-old Talia Duffs life. Duff suffers from CMT4J, a degenerative genetic disease similar to ALS. But plenty of work remains.

While the Duff family pushes the science of gene therapy to save Talia, fundraising efforts in the community continue and local teens have a plan to help Talia with the challenges of her daily life.

Working toward a cure

The potential cure for Talia exists in the form of gene therapy, where a healthy gene replaces the mutated gene (FIG4), which causes CMT4J.

Scientists at Jackson Laboratory, in Bar Harbor, Maine, have harvested a benign virus, like the common cold, stripped some of its DNA, and attached it to a healthy copy of the FIG4 gene.

Called a vector, this manipulated virus delivers the healthy FIG4 gene into the body by infecting cells in a targeted location, such as motor neurons in the spinal cord.

Theoretically, gene therapy not only stops the disease, but could allow peripheral nerves to heal and give Talia back some of her lost strength.

The gene therapy that could save Talias life could also have a wide-reaching effect on how rare disease are treated throughout the world. Potentially, others who suffer from a one-gene mutation defect could benefit by replicating the same sort of find and replace method that gene therapy proscribes.

Currently, research on mice genetically-altered to have CMT4J is being conducted at Jackson Labs. The mice have received the viral vector and are being studied for their response. Results of the experiment have not yet been published, but the Duffs scientific team expects to make an announcement in the coming weeks regarding the status of the test-subject mice.


While gene therapy has been identified as the potential cure for CMT4J, paying for the process is still a major obstacle. The money raised so far covered the cost of the viral vector creation, but as CMT4J advances its assault on Talias respiratory system, the Duffs continue to face increasing urgency in their fundraising efforts.

Pharmaceutical companies are not inclined to pipeline drugs for a disease that affects less than two dozen people worldwide. And normal scientific channels could take more than a decade, time which Talia does not have.

The Duffs did get some help from Jackson Labs, as the facility allocated money it received from a National Institute of Health grant toward some of the pre-clinical trial expenses.

However, the Duffs still need to raise between $1 million and $2 million in the coming year in order to fund a clinical trial in humans. They have raised nearly $300,000 so far and fundraising efforts are ongoing.

On Oct. 20, the Dare to Be Rare Gala will be Cure CMT4Js biggest fundraiser yet. Between sponsorship, ticket sales and live and silent auctions, the organization hopes to raise nearly $100,000.

Local fundraisers continue to chip away as well, including last weeks Tidbits for Talia at the Mayflower restaurant, flower sales at Ipswich Flowers, ongoing sales of brightly-colored shoelaces in the community, and outreach to major donors for significant gifts.

The amazing Ipswich community has contributed so much to our cause both financially and emotionally, said Talias mother, Jocelyn. Their support means so much to our family. It also lends tremendous credibility as we continue to pursue corporate and private donors beyond Ipswich. We hope they will feel compelled to give once they learn of Ipswich’s generosity and the incredible work being done by our scientists in the lab.”

Robotic arm

A group of high school students is doing what they can to help improve Talias quality of life. As CMT4J has progressed, Talia has lost most use of her extremities, including her arms and legs, compromising her ability to do simple things, such as lift a fork to her mouth or hold a book to read.

Enter the Ipswich High School Robotics Team. The students have established a four-phase plan to develop a robotic arm to help Talia with some of these regular tasks. They have secured a $10,000 Payne Grant to fund the project and have put together an initial prototype for the robotic arm that Talia will be able to use.

The team intends to accomplish two things with this project, said Rick Gadbois, team mentor, who met Jocelyn Duff at a rare disease conference last fall. Students will invent a device that helps Talia with daily activities, and will also publicize the effort to bring attention to CMT4J, to get funding for clinical research, for treatment and for a cure.

Talias health

While CMT4J weakened her limbs to the point where she depends entirely on a wheelchair, it has now begun to attack Talias respiratory system as well. The involuntary muscles that precipitate breathing are weakening, preventing her from coughing or taking deep breaths.

Three times per day, Talia must submit to a cough-assist machine, which, said Jocelyn Duff, forces air down her lungs and then vacuums it right back out in order to clear out any secretions in the lungs.

In addition, Talia now sleeps with a BIPAP machine, which delivers focused pressure to her lungs while she sleeps. The purpose is to maintain the oxygen saturation in her body at night, thus helping her sleep better and providing her more energy during the day.

Throughout it all, Talia continues to fight, and according to her mother, She is still her amazing, resilient, brave self.

Talias summer

Despite her condition, Talia was still able to enjoy summer as much as any 11-year-old. Her family vacationed in Maine, where she got to kayak, one of her favorite activities.

She took in a Red Sox game with a fellow CMT4J patient who visited from Seattle. The pair went onto the field at Fenway for batting practice and met Sox first baseman Mitch Moreland, who chatted with them.

Talia also began preparing for the start of sixth grade next week by going to locker night at the middle school and gathering her back-to-school supplies.

I think she is excited about school starting again this year, seeing her old friends and making some new ones, said Jocelyn Duff.

Visit link:
Ipswich resident Talia Duff’s fight for life continues, family hopes to raise funds for research – Wicked Local Ipswich

Global Cartilage Repair Market 2017-2021 – Gene Therapy and Stem Cell Therapy is the latest Market Trend Making … – Business Wire (press release)

DUBLIN–(BUSINESS WIRE)–The “Global Cartilage Repair Market 2017-2021” report has been added to Research and Markets’ offering.

The global cartilage repair market to grow at a CAGR of 11.59 % during the period 2017-2021.

The treatment of articular cartilage has evolved tremendously in the past decade. Reparative and restorative methods have been developed to address the significant source of morbidity in the young and active patients. Articular cartilage injury can be focal, which is localized or systemic. Procedures are being developed not only to alleviate the symptoms associated with articular cartilage defects but also to limit the progression of cartilage damages into degenerative diseases.

According to the report, one of the major drivers for this market is Rising incidence of accidental injuries. Globally, the road traffic injuries are increasing, with post complicated symptoms such as weakening of tendons, cartilage tear, and orthopedic issues.

The latest trend gaining momentum in the market is Gene therapy and stem cell therapy. Gene therapy is one of the promising fields in the cartilage repair. Many clinical studies have been performed for cartilage repair. The researchers are trying to develop gene therapy for cartilage repair and currently been investigated for clinical application.

Further, the report states that one of the major factors hindering the growth of this market is Product side effects. Surgeons use cartilage repair products such as tissue scaffold to improve the recovery. These products once grafted in the body may cause serious complications, resulting in their increased scrutiny for safety and efficacy. In many autologous chondrocyte implantation, there were common complications such as graft rejection, symptomatic hypertrophy, disturbed fusion and delamination.

Key vendors

Other prominent vendors

Key Topics Covered:

For more information about this report visit

See original here:
Global Cartilage Repair Market 2017-2021 – Gene Therapy and Stem Cell Therapy is the latest Market Trend Making … – Business Wire (press release)

$91M Deal: CSL Acquires California Stem Cell Gene Therapy Developer – NBC 10 Philadelphia

CSL Behring, a Montgomery County-based global developer of biotherapeutic products, has entered into a deal to buy Calimmune Inc. for $91 million.

The deal also includes the potential for Calimmune to earn additional performance based milestone payments of up to $325 million over a period currently anticipated to be around eight years or more following the closing of the transaction. The transaction is expected to close within the next two weeks.

Calimmune, a biotechnology company specializing in hematopoietic stem cell gene therapy, has research and development facilities in Pasadena, Calif., and Sydney, Australia. [Hematopoietic stem cells are responsible for the production of all cellular blood components.]

The acquisition provides CSL Behring of King of Prussia, Pa., with Calimmunes pre-clinical asset, CAL-H, an experimental gene therapy for the treatment of sickle cell disease and beta-thalassemia. Officials at CSL Behring, a division of CSL Ltd. of Australia, said CAL-H complements CSL Behrings current product portfolio and its “deep expertise” in hematology.

To read the full story, click here.

For more business news, visit Philadelphia Business Journal.

Published at 9:28 PM EDT on Aug 28, 2017

$91M Deal: CSL Acquires California Stem Cell Gene Therapy Developer – NBC 10 Philadelphia

RegenxBio to Acquire Dimension Tx in Combo of Gene Therapy Companies – Xconomy

Xconomy Boston

Dimension Therapeutics has agreed to be acquired by RegenxBio, the gene therapy developer that originally helped form the company four years ago.

RegenxBio (NASDAQ: RGNX), based in Rockville, MD, will pay $3.41 per share in the all-stock deal valued at approximately $86 million. By comparison, Cambridge, MA-based Dimension (NASDAQ: DMTX) went public at $13 per share in 2015. Dimensions closing stock price on Thursday was $1.20.

The acquisition agreement comes two months after Dimension laid off a quarter of its staff and shifted its priorities away from its experimental hemophilia B gene therapy, DTX101. Dimension made those moves in the wake of early clinical trial results that suggested the therapy prompted a possible immune system response. While immunosuppressive steroids can tamp down these responses, such treatment can also diminish the effect of gene therapy. Dimensions stock price tumbled by nearly 50 percent on those January results.

Gene therapies aim to treat inherited disorders by transplanting normal genes that correct or fix genes that are missing or defective. Fixing the gene is meant to address the root cause of a disease and offer a long-lasting treatment, and perhaps even a cure. The FDA has not yet approved any gene therapies, but at one point, Dimension was in the mix of companies aiming to bring these treatments to the market. Spark Therapeutics (NASDAQ: ONCE) has since emerged as the company likely to receive the first U.S. gene therapy approval. The Philadelphia biotechs lead gene therapy candidate, a potential treatment for an inherited form of blindness, is currently being reviewed by the FDA. Spark has also reported progress in early-stage clinical trials for its hemophilia B gene therapy candidate.

Dimensions gene therapies deliver healthy genes using a modified virus, a gene delivery technology that was developed by RegenexBio. In 2013, RegenxBio joined with Fidelity Biosciences to form Dimension. Dimensions scientific and technical advisory board was led by James Wilson, a University of Pennsylvania geneticist who was RegenxBios scientific founder.

In acquiring Dimension, RegenxBio will add to its pipeline two Dimension gene therapy candidates: One compound, called DTX301, is being prepared to start clinical testing in patients who have ornithine transcarbamylase (OTC) deficiency, a disorder characterized by the lack of an enzyme key to breaking down and removing nitrogen from the body. The other compound, DTX401, is in development as a potential treatment for glycogen storage disease type 1a (GSD1a), an inherited disorder that leads to the buildup of a complex sugar called glycogen. RegenxBio will also acquire other preclinical compounds in development, as well as intellectual property that Dimension developed using RegenxBios technology.

The merger agreement prohibits Dimension from seeking a better deal, and the company has agreed to unspecified certain restrictions on responding to any proposals that may come its way, according to a securities filing. Dimension shareholders still need to sign off on the deal, which has received approval from the boards of directors of both companies. But if Dimension calls off the deal, it must pay RegenxBio a $2.85 million termination fee, according to the filing.

The companies expect to close the acquisition by the end of 2017. Upon closing, Dimension will become a subsidiary of RegenxBio; Dimension shareholders will own approximately 10.9 percent of the combined company, according to the agreement.

Image from Depositphotos.

Frank Vinluan is editor of Xconomy Raleigh-Durham, based in Research Triangle Park. You can reach him at fvinluan [at]

Read the rest here:
RegenxBio to Acquire Dimension Tx in Combo of Gene Therapy Companies – Xconomy

Global Gene Therapy Partnering Terms and Agreements 2010 to … – Business Wire (press release)

DUBLIN–(BUSINESS WIRE)–The “Global Gene Therapy Partnering Terms and Agreements 2010 to 2017” report has been added to Research and Markets’ offering.

The Global Gene Therapy Partnering Terms and Agreements 2010-2017 report provides an understanding and access to the gene therapy partnering deals and agreements entered into by the worlds leading healthcare companies.

The report provides a detailed understanding and analysis of how and why companies enter gene therapy partnering deals. The majority of deals are early development stage whereby the licensee obtains a right or an option right to license the licensors gene therapy technology or product candidates. These deals tend to be multicomponent, starting with collaborative R&D, and commercialization of outcomes.

This report provides details of the latest gene therapy, oligonucletides including aptamers agreements announced in the healthcare sectors.

Global Gene Therapy Partnering Terms and Agreements includes:

In Global Gene Therapy Partnering Terms and Agreements, the available contracts are listed by:

Key Topics Covered:

Executive Summary

Chapter 1 – Introduction

Chapter 2 – Trends in Gene therapy dealmaking

Chapter 3 – Leading Gene therapy deals

Chapter 4 – Most active Gene therapy dealmakers

Chapter 5 – Gene therapy contracts dealmaking directory

Chapter 6 – Gene therapy dealmaking by technology type

Chapter 7 – Partnering resource center

For more information about this report visit

See the original post:
Global Gene Therapy Partnering Terms and Agreements 2010 to … – Business Wire (press release)

Cambridge gene therapy firm Dimension Therapeutics to be acquired – Boston Business Journal

Boston Business Journal
Cambridge gene therapy firm Dimension Therapeutics to be acquired
Boston Business Journal
One of the three gene therapy biotechs in Cambridge, Dimension Therapeutics, has agreed to be acquired by a Maryland company in an all-stock transaction that values Dimension at just $86 million a fraction of its value a year ago. … team and of

Read the rest here:
Cambridge gene therapy firm Dimension Therapeutics to be acquired – Boston Business Journal

Birth control research is moving beyond the pill – Science News Magazine

Mention the pill, and only one kind of drug comes to mind. The claim that oral contraceptives have on that simple noun testifies to the pills singular effect in the United States. Introduced in 1960, the pill gave women reliable access to birth control for the first time. The opportunity to delay having children opened the door to higher education and professional careers for many women.

More than 50 years later, the most commonly used form of reversible contraception in this country is still the pill. Additional methods have been developed for women such as implants, patches, vaginal rings and injectables but most do basically the same thing as the pill: use synthetic versions of sex steroid hormones to suppress ovulation. The method has proved its merit, but the current crop of contraceptives doesnt work for everyone. Some women cant tolerate the side effects stemming from manipulation of the hormones. Others cant use hormonal contraceptives at all, because of underlying health conditions.

In a survey, 62 percent of U.S. women ages 15 to 44 reported using contraception in 2011 to 2013. The pill was the most popular form of birth control, followed by female sterilization (which permanently blocks the fallopian tubes). Rounding out the top five methods were the male condom, long-acting reversible contraception (like intrauterine devices and implants) and male sterilization (vasectomy). In the survey, if women used more than one method, only the most effective method was counted.

And whats new for men? Their main mode of contraception, the condom, has been around for at least 400 years, perhaps longer. Alternatively, men who want to take the lead on family planning can go the surgical route with a vasectomy.

The dearth of alternatives is not due to a lack of research. Reproductive biologists and other researchers have made many exciting discoveries since the pill was introduced. But taking a promising finding in cells or in mice to human testing is hard for any drug. And for contraceptives, theres an extra wrinkle: Youre developing products for very healthy people, so you have to make sure [the drugs] are incredibly safe, and the side effect profile is acceptable, says Diana Blithe, a biochemist and chief of the contraceptive development program at the National Institute of Child Health and Human Development in Bethesda, Md.

Even with the long road to human testing, odds are that by the time the pill turns 75, there will be new options stocking the contraceptive cabinet. Researchers are currently exploring a method that keeps womens eggs in a state of suspended animation for later use. For men, there could be nonhormonal methods that stop sperm from developing and launching their epic journey. The impact of these novel methods might ripple out into society much as the pills once did.

There were 6.1 million pregnancies in the United States in 2011. Forty five percent of them, or a whopping 2.8 million, were not intentional, according to a 2016 report in the New England Journal of Medicine.

Unplanned pregnancies can have consequences for parents and kids, studies find. Womens education can be cut short. Unwanted pregnancies are linked to delayed prenatal care probably because moms dont realize theyre pregnant as well as low birth weight in infants. Postpartum depression is more common for mothers who did not intend to have a baby than for those who did.

The numbers also suggest that the contraceptives available arent meeting everyones needs. Some methods are expensive. And some users have health concerns or just dont stick with an option. In 2008, about 40 percent of unintended pregnancies were in couples that used contraception, but inconsistently, according to the Guttmacher Institute, a reproductive health research and policy organization in New York City.

Proportion of U.S. pregnancies in 2011 that were unplanned

From 2011 to 2013, the most popular reversible contraceptive choice for women ages 15 to 44 was the pill, with use at nearly 26 percent. The pill and other hormonal contraceptives contain the female sex steroid hormones estrogen and progesterone, or progesterone alone, usually in synthetic forms. These hormones prevent ovulation by suppressing the brains release of follicle-stimulating hormone and luteinizing hormone.

Some women find that hormonal contraceptives work well; other women experience side effects such as headaches, nausea, mood changes and acne. Oral contraceptives also increase the risk of blood clots, taking the drugs off the table for women with a history of blood clots, stroke or cardiovascular disease. The pill is also a no-go for women with severe hypertension or who have ever had breast cancer.

Relying on hormones to halt sperm production can also work. A new hormone-based gel for men, applied to the skin, is in human testing. It combines the male sex steroid testosterone with a synthetic progesterone. Plans are under way for couples to test the gel as their only form of birth control. But giving men hormones can come with side effects, such as reduced muscle mass and a drop in sexual function.

Discoveries that are beginning to explain the earliest stages of egg development and the finishing touches of sperm growth may lead to steroid-free alternatives.

Hormonal contraception disrupts ovulation, and the egg that was scheduled for departure from an ovary dies. But what if there was a method that preserved the egg for later?

When women are born, their ovaries have a full set of oocytes, or eggs a million or so. Each is housed within a sac of cells called a follicle. The outer portion of each ovary is filled with the earliest, dormant form of these egg-carrying follicles, called primordial follicles. The sleeping cells are waiting to be woken up, so they can begin growing in preparation for ovulation. But why the alarm clock goes off for one primordial follicle and not another is an open question, says reproductive biologist David Ppin of Massachusetts General Hospital and Harvard Medical School.

You could potentially preserve that pool of eggs for later in life, theoretically.

David Ppin

Todays hormonal contraceptives act on ovarian follicles that are already growing, and once that starts, there is no going back if ovulation doesnt happen, the egg dies. Aiming contraception at the sleeping eggs could mean putting off pregnancy, while holding on to the eggs. By preventing that first wake-up call, actually, you keep the egg, Ppin says. You could potentially preserve that pool of eggs for later in life, theoretically.

Meet the biological agent that could keep eggs asleep: Mllerian-inhibiting substance, or MIS. Also known as anti-Mllerian hormone, MIS is not a sex steroid hormone. It is produced in the developing testes and prevents male embryos from growing female reproductive parts. In adult female mice, MIS can also be a perpetual snooze button for primordial follicles, Ppin and colleagues, including Mass General and Harvard pediatric surgeon Patricia Donahoe, reported in the Feb. 28 Proceedings of the National Academy of Sciences.

Hundreds of follicles are estimated to be in various stages of development at any given time. The active growers release MIS locally, which limits the number of primordial follicles that wake up. This process allows the body to control and maintain the supply of eggs over a womans reproductive life span.

Primordial follicles, the sacs that house immature eggs, reside in the outermost region of the ovary. When follicles wake up, they begin to develop and move farther into the ovary. When a womans monthly menstrual cycle begins, follicle-stimulating hormone prompts additional growth of certain developing follicles. A dominant follicle matures. Luteinizing hormone helps the mature follicle open up, and the egg is ovulated and released into the fallopian tube. New experimental approaches to birth control aim to keep the primordial follicles dormant, so they can be available later in a womans life.

In their study, Ppin, Donahoe and colleagues used a virus to introduce a modified version of the MIS gene into certain cells in mice. This permanent change gave the mice a higher dose of MIS protein than is found normally in females. The follicles that had already been growing completed their development, but after that, no new follicles were activated, leaving a collection of sleeping-beauty primordial follicles.

When the researchers paired female mice treated with the gene therapy with males, the females were still able to become pregnant and have healthy babies within the first six weeks, because of those follicles that had already started growing in the ovaries. Once that supply was used up, the females were infertile.

Youre just stopping the horses that havent yet come out of the gate, Donahoe says.

To test a nonpermanent approach, the team gave normal female mice the MIS protein as a twice-daily shot. Activation of primordial follicles stopped. When treatment ended, the ovaries got back to business and follicles began growing again.

Ppin and Donahoe see several uses for MIS as a contraceptive. The permanent gene therapy method could be a nonsurgical contraceptive approach for pets or stray animals. The research team is working with the Cincinnati Zoo to study this method in cats.

Frequent shots of the MIS protein are too expensive for broad use, but they could help protect the reserve of ovarian follicles in young cancer patients. Growing follicles are dividing quite rapidly, so they are very sensitive to chemotherapy, Ppin says. Chemo can kill off the growing follicles, which means there is no more MIS to stop activation of other primordial follicles. Too many follicles wake up, which can deplete a womans egg supply. In mice given chemotherapy drugs, MIS-treated animals were left with more primordial follicles than untreated animals, the researchers found.

Still eager to make an MIS-like contraceptive for all women that is cheap and easy to use, perhaps as a pill, the researchers are searching libraries of small molecules to find one that mimics the action of MIS. Maybe it would be an already existing [U.S. Food and Drug Administration] approved medication thats the first screen we are performing or maybe its a very simple molecule, very cheap to synthesize, Ppin says.

Story continues below image

In the ovary of a normal mouse (left), a large follicle is shown at a late stage of development (a light pink oocyte surrounded by follicular cells, inset). In the ovary of a mouse treated with Mllerian-inhibiting substance, follicle development ceased and only primordial follicles were found (arrows, right).

In men, vitamin A does more than promote healthy eyes. Its essential for sperm production, too. The testes take up vitamin A from carrots and other foods and convert it to retinoic acid. The acid binds to the retinoic acid receptor, which is found in cells throughout the body.

In the 1990s, scientists reported that when they disrupted the gene for one version of the retinoic acid receptor, referred to as alpha, in mice, the animals are fine, but the males are sterile, says geneticist Debra Wolgemuth of Columbia University Medical Center. Wolgemuth and her colleagues, who study the biology of sperm production, set out to find a drug that could interfere with the receptor, rather than permanently knocking out the gene.

Wolgemuth came across a paper from 2001 by a group studying a drug that could bind to all three versions of the receptor, including alpha. The drug inactivates the receptor and shuts down the series of events that typically follow. Although tests in rats showed the drug could be taken orally and broken down safely by the body, the researchers highlighted one notable side effect. They called it testicular toxicity, Wolgemuth says.

Rather than a negative, Wolgemuth saw the toxicity as a sign of a potential male contraceptive. With molecular biologist Sanny Chung of Columbia and colleagues, she gave the drug to male mice for seven days, then examined their testes.

Sperm go through many stages of development as they transition from round germ cells to their final shape with a characteristic head and tail. Before sperm are released to begin their journey through the male reproductive system, says Wolgemuth, they line up like little soldiers in a battalion to leave the testes.

Story continues below image

In healthy mice, normal sperm line up at the center of a part of the testes known as the seminiferous tubule, ready for release (left, arrows). Mice treated with a drug that blocks whats known as the retinoic acid receptor have defective sperm that dont line up (right, arrows).

In mice treated with the drug, the sperm dont align properly, Wolgemuth and colleagues reported in 2011 in Endocrinology. The sperm arent released, so they die in the testes. The researchers found no evidence of harm to other organs. Male mice given the drug once a day for four weeks became infertile by the end of treatment and remained that way for four weeks after treatment stopped. By 12 weeks after treatment, the mice regained their mojo and successfully mated with females.

Later, the team gave mice a smaller dose of the drug for 16 weeks, over a quarter of their reproductive lives, notes Chung. The treated mice became sterile, but once off the drug, they soon became papas to healthy pups that grew into fertile adults, the researchers wrote in Endocrinology last year.

Next step: Wolgemuth plans to test the drug in nonhuman primates. Her group is also collaborating with a team of medicinal chemists to look for compounds that target only the alpha version of the retinoic acid receptor. Even though the tested drug did not lead to side effects, having an option that doesnt interfere with the other two versions of the receptor would be ideal, says Wolgemuth.

Another nonhormonal male contraceptive is the result of a long research career dedicated to such a product. In the late 1960s, Joseph Tash had two tours as a summer student in an obstetrics and gynecological department at Michael Reese Hospital in Chicago. He saw how heavily the burden of birth control fell to women. I felt it was important to try to expand the contraceptive and family planning choices to men, he says.

In 2013, the compound H2-gamendazole became the first nonhormonal contraceptive to receive FDA regulatory guidance, a crucial thumbs-up along the drug development road. Its a kind of checklist of the testing conditions and experiments necessary to proceed with preclinical and human trials.

Tash, now at the University of Kansas Medical Center in Kansas City, and colleagues began with an anticancer drug that, during clinical trials, severely cut down on sperm production. But there were a lot of side effects, Tash says, which would be totally unacceptable to otherwise healthy males. So the researchers designed similar drugs to minimize the side effects, including H2-gamendazole. Rats given a single oral dose of the drug once a week for six weeks became sterile after two weeks of use. By 10 weeks after the dosing stopped, all of the animals were fully fertile again.

The drug interferes with the last stage of sperm development, when the cells acquire their familiar sperm features. At this stage, as well as throughout the developmental process, sperm are tended to by Sertoli cells, which feed and support the growing sperm. The sperm are actually tethered to the Sertoli cells to prevent them from leaving the reef before they can swim.

H2-gamendazole disrupts the junctions between the sperm and the Sertoli cells, releasing the sperm prematurely and leading to their destruction. The testes have a built-in cleaning system, so to speak, that gets rid of the abnormal sperm, Tash says.

Tashs team has also tested H2-gamendazole in mice, rabbits, dogs and monkeys. In each animal, there was a block in sperm production just exactly like we see in the rats, Tash says. The team has also found that the drug can be taken as a pill and is rapidly taken up by the testes, at levels 10 to 20 times higher than in other tissues. I think this explains to a large extent why we havent seen any remarkable side effects, Tash says.

The work on H2-gamendazole, yet to be published, led to the FDAs regulatory guidance, a show of confidence in the drug. If Tash and colleagues can demonstrate to the FDA that the drug is safe and well tolerated, that might pique the interest of pharmaceutical companies to handle the final stages of testing and to take the drug to market. Its going to have to be a squeaky clean compound for pharma to become interested, Tash says.

Birth control methods born of these projects might shake things up outside the bedroom. If further testing finds that eggs kept asleep by an MIS-based contraceptive remain healthy and viable, delaying pregnancy may not necessarily lead to reduced fertility. A lot of women 35 and older are faced with reduced fertility, Ppin says. A method to target the activation of primordial follicles so you could keep them for later I think that would be beneficial.

Any new contraceptive options for men could shift the conversation men and women have about birth control. A multinational survey published in 2005 found more than half of men would be willing to use a new method of male birth control. There is an increasing number of men who are willing to help carry that burden, Tash says.

When that first product gets out there for men, Blithe adds, I think that will be a turning point.Any new contraceptive options for men could shift the conversation men and women have about birth control. A multinational survey published in 2005 found more than half of men would be willing to use a new method of male birth control. There is an increasing number of men who are willing to help carry that burden, Tash says.

This story appears in the Sept. 2, 2017 Science News with the headline, “Access denied: Scientists seek innovative ways to block the union of egg and sperm.”

More here:
Birth control research is moving beyond the pill – Science News Magazine

Apic Bio Launches to Advance First-in-Class Gene Therapy for … – Business Wire (press release)

CAMBRIDGE, Mass.–(BUSINESS WIRE)–Apic Bio, Inc., a pre-clinical stage gene therapy company leveraging its proprietary platform to advance therapies to treat rare diseases with complex mechanisms, in particular Alpha-1 Antitrypsin Deficiency (Alpha 1), launched today with an initial investment led by the venture philanthropy arm of the Alpha-1 Foundation and a private investor with the disease.

Its lead product, APB-101, targets the liver via an AAV delivered Dual Function Vector (df-AAV) whereby the Z-AAT protein is silenced and M-AAT protein is augmented. APB-101 has achieved a pre-clinical proof of concept with efficacy demonstrated in vitro and in vivo. It is currently undergoing pre-clinical GLP toxicology studies in non-human primates. Patients living with Alpha 1 lack sufficient levels of circulating AAT protein to protect lung tissue against damage from proteases, and experience the accumulation of mutant AAT polymers in the liver. Clinically, the deficiency is manifested by progressive emphysema and the accumulation presents a significant risk of liver cirrhosis.

John Reilly, Co-Founder & President said: We are grateful to TAP and A1AT Investors, LLC who have supported the successful start of Apic Bio by providing the first tranche of our seed financing round allowing us to secure key intellectual property rights and operational support. With such strong support from the advocacy and patient community, we are confident that we will identify the right corporate partners to help us achieve our business development goals and bring this exciting new therapy to patients.

The df-AAV platform allows treatment of other diseases with complex mechanisms where the mutant gene product must be reduced and the normal gene product must be augmented.

Dr. Chris Mueller, Co-founder and Chief Scientific Officer of Apic Bio said: We are encouraged by the feedback that we have received during our pre-IND meeting with the FDA that there is a clear path for us to conduct a first-in-human Phase 1/2 clinical study. Furthermore, we are very much looking forward to demonstrating the benefit of APB-101 to patients that have been living with alpha-1 and have had very little hope for a cure. Our data suggests this is a liver sparing approach for gene augmentation which may exceed the therapeutic and safety margins when compared to a strict gene augmentation without gene silencing that may exacerbate the underlying liver disease.

TAP is very pleased to provide this funding to Apic Bio. Their cutting-edge work on a therapy that addresses both the liver and lung disease brings us closer to finding a cure for Alpha-1 Antitrypsin Deficiency, thus fulfilling our mission, said Jean-Marc Quach, CEO for The Alpha-1 Project.

Todays launch of Apic Bio has been a long time coming for the hundreds of thousands of people who are challenged by Alpha 1, said Ed Krapels, who has been living with Alpha 1 and is the new companys first individual investor. Now that we are moving forward, we hope to work with patients, their advocates and researchers to make a cure readily available. Krapels added.

About Apic Bio: Apic Bio, Inc. is a spin-off from the University of Massachusetts Medical School (UMMS) and is based upon nearly 30 years of gene therapy research by its scientific founders Christian Mueller, PhD, Associate Professor of Pediatrics and a member of the Horae Gene Therapy Center at the University of Massachusetts Medical School, Terence R. Flotte, MD, the Celia and Isaac Haidak Professor in Medical Education, dean of the School of Medicine and provost and executive deputy chancellor of the University of Massachusetts Medical School; and colleagues at the Horae Gene Therapy Center. Their research is funded in part by an $11M grant from the National Heart, Lung, and Blood Institute (NHLBI).

View original post here:
Apic Bio Launches to Advance First-in-Class Gene Therapy for … – Business Wire (press release)

Comic and Telethon Host Jerry Lewis Dies At 91 – WebMD

Aug. 21, 2017 — Jerry Lewis, a consummate performer on stage and screen who used his fame to raise billions of dollars toward a cure for muscular dystrophy and other neuromuscular diseases, died Sunday at his home in Las Vegas. He was 91.

Born Joseph Levitch on March 16, 1926, in Newark, NJ, to vaudeville parents, Lewis wrote, appeared in, and directed 80-plus movies and TV shows over 5 decades in show business. He was memorable for his goofball antics and rubbery face (The Nutty Professor, The Bellboy, and The Ladies Man) and for his capacity for self-parody. Early in his career, he formed half of a comedy team with the late Dean Martin, with whom he hosted “The Martin and Lewis Radio Show” and made 16 films. In 1956, Lewis recorded an album (Jerry Lewis Just Sings) that made the Top 20 on the Billboard charts.

For many people, Lewis will be remembered best for raising awareness and money for the Muscular Dystrophy Association (MDA) during the 50-plus years he hosted the nationally televised Labor Day weekend telethon. In all, the shows raised more than $2 billion.

From 1956 until 2010, Lewis was the face of muscular dystrophy, a relatively rare neuromuscular disease that often begins in childhood and progressively robs a person of mobility. Lewis would wrap up the 21 1/2-hour annual show with a heartfelt version of Youll Never Walk Alone. He would typically sing it in a voice hoarse from hours of urging viewers to contribute to the cause, and probably from smoking on air throughout the broadcast.

In 1977, Lewis was nominated for a Nobel Prize for his 50 years of fighting muscular dystrophy.

(We) will be forever grateful to Jerry Lewis, a world-class humanitarian.

The reason for his stepping down as host of the telethon isnt clear — The Hollywood Reporter wrote that he was unceremoniously dumped — but Lewis never seemed to have talked about it publicly.

The MDA, on its website, praised Lewis efforts, saying it will be forever grateful to Jerry Lewis, a world-class humanitarian, for his indefatigable and inspiring work on behalf of kids and families with neuromuscular diseases, and for the countless dollars his commitment helped raise for critical research and services.

Perhaps Lewis left because the telethon, which had shrunk to a 2-hour show, had outlived its usefulness. In May 2015, the MDA announced it would end the telethon because of the expense and the realities of viewership and concentrate its fundraising on social media and other web-based channels.

The MDA raises money for medical research on 40 neuromuscular diseases, including Duchenne/Becker muscular dystrophy, the most prevalent form of MD, and amyotrophic lateral sclerosis (ALS), or Lou Gehrigs disease. In 2015, the organization said it was focusing support on gene therapy research and new drugs.

While Lewis did not suffer from a neuromuscular disease, he struggled with health issues for years. He had type 1 diabetes and pulmonary fibrosis, a condition in which tissue deep in the lungs scar and stiffen, making it more difficult for oxygen to get into the blood and causing shortness of breath. He suffered two heart attacks. He also had prostate cancer surgery in 1982. He had chronic back pain, which led to an addiction to the prescription painkiller Percodan, which he successfully replaced with an implanted device that dulls nerve impulses. In 2003, he had to wean himself off of steroids used to treat his lung disease.

Lewis last performances on stage were in March 2014, when he sold out two shows at La Mirada Theatre in California. He was 88 at the time, although he appeared in the 2016 film The Trust, with Nicolas Cage and Elijah Wood.

Lewis was divorced from Patti Lewis, with whom he had six children, and married SanDee Pitnick in 1983. They adopted a daughter together. In 2009, Lewis youngest son, Joseph, who struggled with drug addiction, committed suicide at age 45. In an interview he gave to The Hollywood Reporter in June 2014, Lewis was broken up by Josephs death, saying, To this day I don’t understand it because it’s unfair — not unfair to me, but unfair to him. That he went that way made the unfairness stupidity. But he was my son and he’s gone, and there’s not a lot I can do about that. I beat myself a thousand times.

He was beloved throughout the world, but the French were particularly enchanted by Lewis. In 2006, for his 80th birthday, Lewis was awarded a medal and induction as a commander into the Legion of Honor, which is considered the highest decoration in France. It is akin to being knighted by the queen in England.

Lewis has two stars on the Hollywood Walk of Fame and received the Jean Hersholt Humanitarian Award at the 2009 Oscars ceremony. He received many other honors throughout this life, both for his humanitarian work and his work as a TV and movie star, and as a producer and director.

IMDb: Jerry Lewis Biography. Jerry Lewis.

Muscular Dystrophy Association.

The Hollywood Reporter: At Home With Jerry Lewis as He Opens Up About Son’s Death, Skirmishes With Fans.

The Associated Press: Jerry Lewis telethon ends decades-long run, fundraising awareness for Muscular Dystrophy Association.

CDC: Facts About Muscular Dystrophy.

Pulmonary Fibrosis Foundation.

View original post here:
Comic and Telethon Host Jerry Lewis Dies At 91 – WebMD