Page 49«..1020..48495051..6070..»

Archive for the ‘Skin Stem Cells’ Category

Japan scientists target 3D-printed body parts

(MENAFN - The Peninsula) Japanese scientists say they are on their way to being able to create custom-made skin, bone and joints using a 3D printer.

Several groups of researchers around the world have developed small masses of tissue for implants, but now they are looking to take the next step and make them functional.

Tsuyoshi Takato, a professor at the University of Tokyo Hospital, said his team had been working to create "a next-generation bio 3D printer", which would build up thin layers of biomaterials to form custom-made parts.

His team combines stem cells - the proto-cells that are able to develop into any body part - and proteins that trigger growth, as well as synthetic substance similar to human collagen.

Using a 3D printer, they are working on "mimicking the structure of organs" - such as the hard surface and spongy inside for bones, Takato said.

In just a few hours, the printer crafts an implant using data from a Computer Tomography (CT) scan. These implants can fit neatly into place in the body, and can quickly become assimilated by real tissue and other organs in the patient, the plastic surgeon said.

"We usually take cartilage or bone from the patient's own body (for regular implants), but these custom-made implants will mean not having to remove source material," Takato said.

The technology could also offer hope for children born with bone or cartilage problems, for whom regular synthetic implants are no good because of the rate of their body's growth. The main hurdle was the heat generated by conventional 3D printers, which damages living cells and protein.

"We haven't fully worked out how to avoid heat denaturation but we already have some models and are exploring which offers the most efficient method," he said.

The artificial protein Takato and his team use was developed by Fujifilm, which has been studying collagen used in photographic films. Since it is modelled on human collagen and does not derive from animals, it can be easily assimilated in human bodies, reducing the risk of infections such as mad-cow disease.

Read the original here:
Japan scientists target 3D-printed body parts

Stem Cells to Repair Broken Chromosomes: Medicine's Next Big Thing?

FRESNO, Calif. (KFSN) --

Our bodies contain 23 pairs of them, 46 total. But if chromosomesare damaged, they can cause birth defects, disabilities, growth problems, even death.

Case Western scientist Anthony Wynshaw-Boris is studying how to repair damaged chromosomes with the help of a recent discovery. He's taking skin cells and reprogramming them to work like embryonic stem cells, which can grow into different cell types.

"You're taking adult or a child's skin cells. You're not causing any loss of an embryo, and you're taking those skin cells to make a stem cell." Anthony Wynshaw-Boris, M.D., PhD, of Case Western Reserve University, School of Medicine told ABC30.

Scientists studied patients with a specific defective chromosome that was shaped like a ring. They took the patients' skin cells andreprogrammed them into embryonic-like cells in the lab. They found this process caused the damaged "ring" chromosomes to be replaced by normal chromosomes.

"It at least raises the possibility that ring chromosomes will be lost in stem cells," said Dr. Wynshaw-Boris.

While this research was only conducted in lab cultures on the rare ring-shaped chromosomes, scientists hope it will work in patients with common abnormalities like Down syndrome.

"What we're hoping happens is we might be able to use, modify, what we did, to rescue cell lines from any patient that has any severe chromosome defect," Dr. Wynshaw-Boris explained.

It's research that could one day repair faulty chromosomes and stop genetic diseases in their tracks.

The reprogramming technique that transforms skin cells to stem cells was so ground-breaking that a Japanese physician won the Nobel Prize in medicine in 2012 for developing it.

Read more:
Stem Cells to Repair Broken Chromosomes: Medicine's Next Big Thing?

Skin cancer: New mechanism involved in tumor initiation, growth and progression

Squamous cell carcinoma (SCC) represents the second most frequent skin cancer with more than half million new patients affected every year in the world. Cancer stem cells (CSCs) are a population of cancer cells that have been described in many different cancers, including skin SCCs and that feed tumor growth, could be resistant to therapy thus being responsible for tumor relapse after therapy. However, still very little is known about the mechanisms that regulate CSCs functions.

In a new study published and making the cover of Cell Stem Cell, researchers led by Pr. Cdric Blanpain, MD/PhD, professor and WELBIO investigator at the IRIBHM, Universit libre de Bruxelles, Belgium, report the mechanisms regulating the different functions of Twist1 controlling skin tumour initiation, cancer stem cell function and tumor progression.

Benjamin Beck and colleagues used state of the art genetic mouse models to dissect, the functional role and molecular mechanisms by which Twist1 controls tumor initiation, cancer stem cell function and tumor progression. In collaboration with Dr Sandrine Rorive and Pr Isabelle Salmon from the department of Pathology at the Erasme Hospital, ULB and the group of Jean-Christophe Marine (VIB, KUL Leuven), they demonstrated that while Twist1 is not expressed in the normal skin, Twist1 deletion prevents skin cancer formation demonstrating the essential role of Twist1 during tumorigenesis. "It was really surprising to observe the essential role of Twist1 at the earliest step of tumor formation, as Twist1 was thought to stimulate tumor progression and metastasis" comments Benjamin Beck, the first author of this study.

The authors demonstrate that different levels of Twist1 are necessary for tumor initiation and progression. Low level of Twist1 is required for the initiation of benign tumors, while higher level of Twist1 is necessary for tumor progression. They also demonstrate that Twist1 is essential for tumor maintenance and the regulation of cancer stem cell function. The researchers also uncovered that the different functions of Twist1 are regulated by different molecular mechanisms, and identified a p53 independent role of Twist1 in regulating cancer stem cell functions.

In conclusion, this work shows that Twist1, a well-known regulator of tumor progression, is necessary for tumor initiation, regulation of cancer stem cell function and malignant progression. "It was really interesting to see that different levels of Twist1 are required to carry out these different tumor functions and that these different Twist1 functions are regulated by different molecular pathways. Given the diversity of cancers expressing Twist1, the identification of the different mechanisms controlled by Twist1 are likely to be relevant for other cancers" comments Cdric Blanpain, the last and corresponding author of this study.

Story Source:

The above story is based on materials provided by Libre de Bruxelles, Universit. Note: Materials may be edited for content and length.

See original here:
Skin cancer: New mechanism involved in tumor initiation, growth and progression

Bacteria could contribute to development of wound-induced skin cancer

Researchers at King's College London have identified a new mechanism by which skin damage triggers the formation of tumours, which could have important therapeutic implications for patients suffering with chronic ulcers or skin blistering diseases.

The study, published today in Nature Communications, highlights an innate sensing of bacteria by immune cells in the formation of skin tumours. This molecular process could tip the balance between normal wound repair and tumour formation in some patients, according to researchers.

Although an association between tissue damage, chronic inflammation and cancer is well established, little is known about the underlying cause. Epidermolysis Bullosa (EB), for instance, is one of several rare inherited skin conditions associated with chronic wounding and increased risk of tumours.

However, this study - funded primarily by the Medical Research Council (MRC) and the Wellcome Trust - is the first to demonstrate that bacteria present on the skin can contribute to the development of skin tumours.

Researchers found that when mice with chronic skin inflammation are wounded they develop tumours at the wound site, with cells of the immune system required for this process to take place. They discovered that the underlying signalling mechanism involves a bacterial protein, flagellin, which is recognised by a receptor (Toll-like receptor 5) on the surface of the immune cells.

Although the direct relevance to human tumours is yet to be tested, researchers have shown that a protein called HMGB1 - found to be highly expressed in mice with chronic skin inflammation - is increased in human patients with Epidermolysis Bullosa (EB). The study found a reduction in HMGB1 levels in mice when the TLR-5 receptor was removed from immune cells. This raises the possibility of future treatments aimed at reducing levels of the flagellin bacterial protein on the skin surface, or targeting the TLR-5 receptor.

Professor Fiona Watt, lead author and Director of the Centre for Stem Cells and Regenerative Medicine at King's College London, said: 'These findings have broad implications for various types of cancers and in particular for the treatment of tumours that arise in patients suffering from chronic ulcers or skin blistering diseases.

'In the context of chronic skin inflammation, the activity of a particular receptor in white blood cells, TLR-5, could tip the balance between normal wound repair and tumour formation.'

Professor Watt added: 'Our findings raise the possibility that the use of specific antibiotics targeting bacteria in wound-induced malignancies might present an interesting clinical avenue.'

###

See the original post here:
Bacteria could contribute to development of wound-induced skin cancer

Circadian rhythms regulate skin stem cell metabolism and expansion, UCI study finds

Body clock protects cells from metabolism-generated oxygen radical damage during division

Irvine, Calif., Jan. 6, 2015 -- UC Irvine scientists studying the role of circadian rhythms in skin stem cells found that this clock plays a key role in coordinating daily metabolic cycles and cell division.

Their research, which appears Jan. 6 in Cell Reports, shows for the first time how the body's intrinsic day-night cycles protect and nurture stem cell differentiation. Furthermore, this work offers novel insights into a mechanism whereby an out of synch circadian clock can contribute to accelerated skin aging and cancers.

Bogi Andersen, professor of biological chemistry and medicine, and Enrico Gratton, professor of biomedical engineering, focused their efforts on the epidermis, the outermost protective layer of the skin that is maintained and healed by long-lived stem cells.

While the role of the circadian clock in processes such as sleep, feeding behavior and metabolism linked to feeding and fasting are well known, much less is known about whether the circadian clock also regulates stem cell function.

The researchers used novel two-photon excitation and fluorescence lifetime imaging microscopy in Laboratory of Fluorescence Dynamics in UCI's Department of Biomedical Engineering to make sensitive and quantitative measurements of the metabolic state of single cells within the native microenvironment of living tissue.

They discovered that the circadian clock regulates one form of intermediary metabolism in these stem cells, referred to as oxidative phosphorylation. This type of metabolism creates oxygen radicals that can damage DNA and other components of the cell. In fact, one theory of aging posits that aging is caused by the accumulative damage from metabolism-generated oxygen radicals in stem cells.

The Andersen-Gratton study also revealed that the circadian clock within stem cells shifts the timing of cell division such that the stages of the cell division cycle that are most sensitive to DNA damage are avoided during times of maximum oxidative phosphorylation.

Other studies in animals have linked aging to disruption of circadian rhythms, and Andersen said that accelerated aging could be caused by asynchrony in the metabolism and cell proliferation cycles in stem cells.

"Our studies were conducted in mice, but the greater implication of the work relates to the fact that circadian disruption is very common in modern society, and one consequence of such disruption could be abnormal function of stem cells and accelerated aging," he said.

Read the original here:
Circadian rhythms regulate skin stem cell metabolism and expansion, UCI study finds

Fat cells may actually not be so bad

January 2, 2015

Credit: Thinkstock

Chuck Bednar for redOrbit.com Your Universe Online

Fat cells located beneath a persons skin could help protect them from bacterial infections, according to a new study published Thursday in the journal Science.

In the study, Dr. Richard Gallo, a professor and chief of dermatology at the University of California, San Diego School of Medicine, and his colleagues report that they had discovered a previously unknown function of these dermal fat cells, also known as adipocytes: they produce antimicrobial peptides that help combat bacteria and other types of pathogens.

It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis, explained Gallo. But it takes time to recruit these cells (to the wound site).

We now show that the fat stem cells are responsible for protecting us. That was totally unexpected, he added. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil.

A persons body launches a complex, multi-tiered defense against microbial infection, the authors said. Several different types of cells are involved, and the process ends with the arrival of specialized cells known as neutrophils and monocytes that target and destroy pathogens.

Before any of that can happen, a more immediate response is required one that can counter the ability of pathogens to rapidly increase their numbers, however. That task is typically performed by epithelial cells, mast cells and leukocytes residing in the area of infection.

Previous research conducted in Gallos lab detected Staphylococcus aureus, a common type of bacteria and a major source of skin infection on humans, in the fat layer of the skin. Antibiotic-resistant forms of this bacterial have become a significant health issue throughout the world, so the study authors looked to see what role adipocytes played in preventing skin infections.

The rest is here:
Fat cells may actually not be so bad

The good role fat cells play in protecting us from disease

When it comes to skin infections, a healthy and robust immune response may depend greatly upon what lies beneath. In a new paper published in the January 2, 2015 issue ofScience, researchers at the University of California, San Diego School of Medicine report the surprising discovery that fat cells below the skin help protect us from bacteria.

Richard Gallo, MD, PhD, professor and chief of dermatology at UC San Diego School of Medicine, and colleagues have uncovered a previously unknown role for dermal fat cells, known as adipocytes: They produce antimicrobial peptides that help fend off invading bacteria and other pathogens.

"It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis," said Gallo, the study's principal investigator.

"But it takes time to recruit these cells (to the wound site). We now show that the fat stem cells are responsible for protecting us. That was totally unexpected. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil."

The human body's defense against microbial infection is complex, multi-tiered and involves numerous cell types, culminating in the arrival of neutrophils and monocytes - specialized cells that literally devour targeted pathogens.

Skin graphic image via Shutterstock.

Read more at EurekAlert.

Go here to see the original:
The good role fat cells play in protecting us from disease

Scientists explain how stem cells and 'bad luck' cause cancer

Why are some types of cancer so much more common than others? Sometimes its due to faulty genes inherited from ones parents and sometimes to behaviors like smoking a pack of cigarettes every day. But in most cases, it comes down to something else stem cells.

This is the intriguing argument made by a pair of researchers from Johns Hopkins University. In a study published Friday in the journal Science, they found a very high correlation between the differences in risk for 31 kinds of cancer and the frequency with which different types of stem cells made copies of themselves.

Just how strong was this link? On a scale that goes from 0 (absolutely no correlation) to 1 (exact correlation), biostatistician Cristian Tomasetti and cancer geneticist Bert Vogelstein calculated that it was at least a 0.8. When it comes to cancer, thats high.

No other environmental or inherited factors are known to be correlated in this way across tumor types, Tomasetti and Vogelstein wrote.

Researchers have long recognized that when cells copy themselves, they sometimes make small errors in the billions of chemical letters that make up their DNA. Many of these mistakes are inconsequential, but others can cause cells to grow out of control. That is the beginning of cancer.

The odds of making a copying mistake are believed to be the same for all cells. But some kinds of cells copy themselves much more often than others. Tomasetti and Vogelstein hypothesized that the more frequently a type of cell made copies of itself, the greater the odds that it would develop cancer.

The pair focused on stem cells because of their outsized influence in the body. Stem cells can grow into many kinds of specialized cells, so if they contain damaged DNA, those mistakes can spread quickly.

The researchers combed through the scientific literature and found studies that described the frequency of stem cell division for 31 different tissue types. Then they used data from the National Cancer Institutes Surveillance, Epidemiology and End Results database to assess the lifetime cancer risk for each of those tissue types. When they plotted the total number of stem cell divisions against the lifetime cancer risk for each tissue, the result was 31 points clustered pretty tightly along a line.

To put this notion in concrete terms, consider the skin. The outermost layer of the skin is the epidermis, and the innermost layer of the epidermis contains a few types of cells. Basal epidermal cells are the ones that copy themselves frequently, with new cells pushing older ones to the skins surface. Melanocytes are charged with making melanin, the pigment that protects the skin from the suns damaging ultraviolet rays.

When sunlight hits bare skin, both basal epidermal cells and melanocytes get the same exposure to UV. But basal cell carcinoma is far more common than melanoma about 2.8 million Americans are diagnosed with basal cell carcinoma each year, compared with roughly 76,000 new cases of melanoma, according to the Skin Cancer Foundation. A major reason for this discrepancy, Tomasetti and Vogelstein wrote, is that epidermal stem cells divide once every 48 days, while melanocytes divide only once every 147 days.

Excerpt from:
Scientists explain how stem cells and 'bad luck' cause cancer

Fat below the skin 'helps protect against bacterial infections and blood poisoning'

Fat cells below the skin, known as adipocytes, can protect against infection They produce molecules called antimicrobial peptides that fend off bacteria Lack of antimicrobial peptides leaves people more prone to infections

By Madlen Davies for MailOnline

Published: 11:11 EST, 2 January 2015 | Updated: 16:58 EST, 2 January 2015

92 shares

21

View comments

Fat has been much maligned for promoting weight gain and raising cholesterol.

However, a new study has found fat is not all bad, helping people fight infections.

U.S. researchers made the surprising discovery that fat cells below the skin help protect against bacteria.

Professor Richard Gallo, of UC San Diego School of Medicine, uncovered the previously unknown role for fat cells known as adipocytes.

Originally posted here:
Fat below the skin 'helps protect against bacterial infections and blood poisoning'

Fat isn't all bad: Skin adipocytes help protect against infections

When it comes to skin infections, a healthy and robust immune response may depend greatly upon what lies beneath. In a new paper published in the January 2, 2015 issue of Science, researchers at the University of California, San Diego School of Medicine report the surprising discovery that fat cells below the skin help protect us from bacteria.

Richard Gallo, MD, PhD, professor and chief of dermatology at UC San Diego School of Medicine, and colleagues have uncovered a previously unknown role for dermal fat cells, known as adipocytes: They produce antimicrobial peptides that help fend off invading bacteria and other pathogens.

"It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis," said Gallo, the study's principal investigator.

"But it takes time to recruit these cells (to the wound site). We now show that the fat stem cells are responsible for protecting us. That was totally unexpected. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil."

The human body's defense against microbial infection is complex, multi-tiered and involves numerous cell types, culminating in the arrival of neutrophils and monocytes - specialized cells that literally devour targeted pathogens.

But before these circulating white blood cells arrive at the scene, the body requires a more immediate response to counter the ability of many microbes to rapidly increase in number. That work is typically done by epithelial cells, mast cells and leukocytes residing in the area of infection.

Staphylococcus aureus is a common bacterium and major cause of skin and soft tissue infections in humans. The emergence of antibiotic-resistant forms of S. aureus is a significant problem worldwide in clinical medicine.

Prior published work out of the Gallo lab had observed S. aureus in the fat layer of the skin, so researchers looked to see if the subcutaneous fat played a role in preventing skin infections.

Ling Zhang, PhD, the first author of the paper, exposed mice to S. aureus and within hours detected a major increase in both the number and size of fat cells at the site of infection. More importantly, these fat cells produced high levels of an antimicrobial peptide (AMP) called cathelicidin antimicrobial peptide or CAMP. AMPs are molecules used by the innate immune response to directly kill invasive bacteria, viruses, fungi and other pathogens.

"AMPs are our natural first line defense against infection. They are evolutionarily ancient and used by all living organisms to protect themselves," said Gallo.

Read the original:
Fat isn't all bad: Skin adipocytes help protect against infections

Most cancer is bad luck, study finds

Cancers due to bad luck, left, and cancers due to a combination of bad luck, environmental factors, and inherited factors. Elizabeth Cook]

Cancers due to bad luck, left, and cancers due to a combination of bad luck, environmental factors, and inherited factors. / Elizabeth Cook]

Nearly two-thirds of all cancers are caused by random mutations of the body's stem cells, not by hereditary or environmental effects, according to a study released Jan. 1 by Johns Hopkins scientists.

Tissues with the most divisions of regenerative cells and hence the most chances for mutations tend to have the greatest rates of cancer, the study found.

This explains why skin cancers, for example, are far more common than bone cancers. Skin cells die constantly, so they must be replenished far more often than those that make bone, introducing more chances for errors that lead to cancer.

In effect, most cancers come down to "bad luck", the researchers say in the study.

The findings introduce new dimensions to the struggle against cancer, said two researchers who did not take part in the study.

The study was published Thursday in the journal Science. Cristian Tomasetti of the Johns Hopkins Kimmel Cancer Center at Johns Hopkins Medicine in Baltimore is first author. The study's senior author is Bert Vogelstein, also of the center, part of Johns Hopkins University.

Healthy diet and protection against carcinogens are still important, said Tomasetti, because the one-third variability is still substantial. And the proportion of randomness in each type of cancer varies. Some cancers tend to be greatly increased by environmental factors, such as lung cancer in smokers. The two-third average is a summary of the risk of cancer from all tissue types.

Strong relationship

Originally posted here:
Most cancer is bad luck, study finds

Stem cell study leads to potential new dementia treatment

The research involved creating human cells in a laboratory dish instead of relying on tests on mice. Photograph: corfield / Alamy/Alamy

Cells used to study dementia in a dish have led scientists to a potential new treatment strategy for an inherited form of the brain disease.

Defective stem cells grown in the lab revealed a signalling pathway linked to frontotemporal dementia (FTD), which accounts for about half of dementia cases before the age of 60.

Treatment with a drug that suppressed the pathway, known as Wnt, restored the ability of neurons affected by the disease to develop normally.

Prof Philip Van Damme, from the Leuven Research Institute for Neuroscience and Disease in Belgium, said: Our findings suggest that signalling events required for neurodevelopment may also play major roles in neurodegeneration.

Targeting such pathways, as for instance the Wnt pathway presented in this study, may result in the creation of novel therapeutic approaches for frontotemporal dementia.

Mutations in the progranulin (GRN) gene are commonly associated with FTD, which results in damage to the frontal and temporal lobes of the brain.

The fact that GRN mutations produced in mice do not display all the features of the human disorder has limited progress towards effective treatments for FTD.

Instead of relying on animal tests, the new research involved creating human cells in a laboratory dish.

The scientists reprogrammed skin cells from three dementia patients into induced pluripotent stem cells (iPSCs), immature cells that mimic stem cells taken from early-stage embryos.

View post:
Stem cell study leads to potential new dementia treatment

Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy

IMAGE:Induced pluripotent stem cells (iPSCs) derived from patients with frontotemporal dementia were genetically corrected and converted to cortical neurons. The green staining indicates the cortical marker CTIP2, the red stain... view more

Credit: Susanna Raitano/Stem Cell Reports 2014

Belgian researchers have identified a new strategy for treating an inherited form of dementia after attempting to turn stem cells derived from patients into the neurons most affected by the disease. In patient-derived stem cells carrying a mutation predisposing them to frontotemporal dementia, which accounts for about half of dementia cases before the age of 60, the scientists found a targetable defect that prevents normal neurodevelopment. These stem cells partially return to normal when the defect is corrected.

The study appears in the December 31st issue of Stem Cell Reports, the official journal of the International Society of Stem Cell Research published by Cell Press.

"Use of induced pluripotent stem cell (iPSC) technology"--which involves taking skin cells from patients and reprogramming them into embryonic-like stem cells capable of turning into other specific cell types relevant for studying a particular disease--"makes it possible to model dementias that affect people later in life," says senior study author Catherine Verfaillie of KU Leuven.

Frontotemporal disorders are the result of damage to neurons in parts of the brain called the frontal and temporal lobes, gradually leading to behavioral symptoms or language and emotional disorders. Mutations in a gene called progranulin (GRN) are commonly associated with frontotemporal dementia, but GRN mutations in mice do not mimic all the features of the human disorder, which has limited progress in the development of effective treatments.

"iPSC models can now be used to better understand dementia, and in particular frontotemporal dementia, and might lead to the development of drugs that can curtail or slow down the degeneration of cortical neurons," Verfaillie says.

Verfaillie and Philip Van Damme of the Leuven Research Institute for Neuroscience and Disease explore this approach in the Stem Cell Reports study by creating iPSCs from three patients carrying a GRN mutation. These immature cells were impaired at turning into mature, specialized cells called cortical neurons--the most affected cell type in frontotemporal dementia.

One of the top defective pathways in the iPSCs was the Wnt signaling pathway, which plays an important role in neuronal development. However, genetic correction or treatment with a compound that inhibits the Wnt signaling pathway restored the ability of the iPSCs to turn into cortical neurons. Taken together, the findings demonstrate that the GRN mutation causes the defect in cortical neuron formation by altering the Wnt signaling pathway.

"Our findings suggest that signaling events required for neurodevelopment may also play major roles in neurodegeneration," Van Damme says. "Targeting such pathways, as for instance the Wnt pathway presented in this study, may result in the creation of novel therapeutic approaches for frontotemporal dementia."

Read the original:
Patient stem cells used to make dementia-in-a-dish; help identify new treatment strategy

Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

A UCSF spinout is growing neuronal stemcells to transplant into the brain, for potential use in treating epilepsy, spinal cord injury, Parkinsons and Alzheimers disease and investors are listening. Because one thing thatdifferentiatesNeurona Therapeutics is that its stem cells turn exclusively intointerneuron cells which are less likely to be tumorigenic than other IPS cells.

The companyhasraised $7.6 million of a proposed $24.3 million round, according to a regulatory filing. But the companys staying a touch under the radar it lacks a website, and tis the season for calls to the company to remain unanswered.

But funding for the six-year-old company comes from 11 investors. Listed on the documents contact pages areTim Kutzkeyand David Goeddel, both partners at early stage healthcare venture firm The Column Group giving some insight into who the startupsinvestors are.

Also listed is Leo Guthart, a managing partner at New York private equity firm TopSpin Partner, and Arnold Kriegstein, director of the UCSF developmental and stem cell biology program.

Kriegsteinand his UCSF colleagues filed a patentfor the in vitro production of medial ganglionic eminence (MGE) precursor cells which are, in essence, immature cells that morphinto nerve cells. The work that led to the patent was funded bythe California Institute of Regenerative Medicine, the NIH and the Osher Foundation.

We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,Kriegstein said in a UCSF statement last year.

Neurona Therapeutics scientific backers collaborated on a paper on these MGE cells inCell Stem Cell,finding that mouse models closely mimicked human cells inneural cell development and that human cells can successfully be transplanted into mouse brains. UCSF writes:

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types and that may potentially be less controllable as a consequence most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

Get our daily newsletter or follow us.

Go here to read the rest:
Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

Skin cells are being used to create artificial sperm and eggs

Scientists are now creating primordial germ cells (precursors to egg and sperm) with human stem cells and even skin cells. This new work,published inCelltoday, takes us beyond what was previously just done using stem cells.

One of the first events in the early development of both mice and men is the creation of primordial germ cells (PGCs). After an egg is fertilized by sperm, embryonic stem cells begin to differentiate into various basic cell types that make up the fetus. A small number of these stem cellsdevelop into primordial germ cells, which will go on to become egg or sperm. Germ cells are immortal in the sense that they provide an enduring link between all generations, carrying genetic information from one generation to the next,Cambridges Azim Suranisays in auniversity statement.

Researchers have now figured out how to reprogram cells to act like embryonic stem cells. These induced pluripotent stem (iPS) cells have been used to develop humanretinasandintestines, for example, according to IFLScience. Researchers have also created iPS cells that could differentiate into primordial germ cells, but its only been successful in rodents.

Now, a team of researchers from the U.K. and Israel traced the genetic chain of events that directs a human stem cell to develop into a primordial germ cell. This stage in our development is called specification,and once PGCs become specified,they continue developing toward precursor sperm cells or ova pretty much on autopilot,Jacob Hanna from the Weizmann Institute of Sciencesays in anews release.

A master gene called SOX17 works to direct stem cells which in previous studies was found to direct stem cells into becoming lung, gut and pancreas cells. But the gene working as part of primordial germ cell specification is a new development.

The international team followed their discovery by actually making primordial germ cells in the lab. Using both embryonic stem cells and iPS cells (reprogrammed adult skin cells) from both males and females, the researchersmade sex cell precursors with up to 40 percent efficiency. When they compared the protein markers of their new, lab-grown PGCs with real PGCs collected from aborted fetuses,Nature reports, they were found to be very similar.

Get our daily newsletter or follow us.

Please enter your email below:

Read more from the original source:
Skin cells are being used to create artificial sperm and eggs

Botanical Stem Cells in Skin Care | BareFacedTruth.com

First it was stem cells from rare apples touted as a revolution in anti-aging skin care. Then every other plant (seller) decided to get into the game. So is it true, or is it a con? Can stem cells from plants benefit your skin, and if so how? Is stem cell just a buzz word that unscrupulous marketers use to dupe you into thinking they are scientifically on the leading edge?

Plant Stem Cell Basics

A fertilized ovum (egg) is the ultimate stem cell. Every animal and plant that reproduces sexually begins as a fertilized ovum, with half of its genetic material contributed by the male parent and half from the female parent. In the case of flowering plants, structures within the flower play both roles. Pollen from the stamen is the equivalent of animal sperm and the pistol is the female receptive organ. A stem cell with the ability to repeatedly sub-divide and eventually differentiate into all types of cells found within an individual animal or plant is termed totipotential.

In the animal kingdom, a fertilized ovum divides, creating daughter totipotential stem cells, for only about four days. Daughter cells subsequently differentiate into pluripotential stem cells, which can differentiate into different various types of cells, but not all types. Plants, on the other hand, have totipotential stem cells throughout their life. These cells can develop into a complete adult plant.

Totipotential plant stem cells exist in very small numbers and are found in highly specialized tissues, structures called meristems. Meristems exist in root and shoot sprouts and are the cells from which all other plant cells and structures originate. Every root and stem shoot tip contains a very small number of these extraordinarily important cells. Meristems in shoot sprouts are called apical meristems, and those on the tips of roots are called root meristems. Remove the meristem and all growth in that part of the plant ceases.

Meristem stem cells are under external control and respond to local humoral factors from adjacent cells (quiescent cells) as well as more systemic plant hormones called cytokinin and auxin. Apical and root meristems have different specific, but complementary, controlling mechanisms. Generally speaking, hormonal influences that make an apical meristem grow may be inhibitory to root meristems, and vice versa. It is an intricately coordinated process in which stem cell activity is very tightly controlled and the number of totipotential stem cells is maintained at a very sparse population in comparison to the total plant cellular number.

Of paramount interest for this discussion is the fact that both apical and root meristems have control systems that act upon them, which are controlled by the needs of the entire plant. Without these outside influences, the cells in the meristem do not divide to produce daughter cells. While indispensable for plant growth, meristem stem cells are incapable of function without external influences dictating their response. These cells are followers, not leaders.

The photos show the relative size of structures within the meristem regions of a growing plant.

In the first photo (at right), the stem cells within the root meristem and adjacent quiescent cells are colored blue. The root meristem is also extremely tiny, consisting of only a few, albeit very important cells.

Link:
Botanical Stem Cells in Skin Care | BareFacedTruth.com

Scientists create artificial human eggs and sperm

A group of scientists has created artificial human sperm and eggs using human embryonic stem cells and skin cells. While researchers have already previously accomplished this using rodents, this is the first time they were able to replicate the process with human cells.

Their final products were not actually working sperm and eggs, but rather germ cells that potentially could mature and become viable for fertility. The study's findings were published Wednesday in the journal Cell.

"Germ cells are 'immortal' in the sense that they provide an enduring link between all generations, carrying genetic information from one generation to the next," Azim Surani, PhD, professor of physiology and reproduction at the University of Cambridge, said in a press release.

16 Photos

Sperm wear hard hats and live for days? It's true, and that's just the beginning...

When an egg is fertilized by a sperm, it begins to divide into a group of cells called a blastocyst, which is the stage right before the embryo is formed. Some of the cells inside this blastocyst cluster will develop into a fetus, while others eventually become the placenta.

Some cells are set up to become stem cells, which will then have the potential to develop into any type of cell in the body. And some cells in the fetus become primordial germ cells and eventually evolve into the cells of either sperm or eggs, which will allow this offspring to pass their genes on to a future generation.

In the study, the researchers identified a single gene known as SOX17, which is directly responsible for ordering human stem cells to become the cells that will turn into sperm and eggs. The scientists say this discovery on its own is surprising, because this gene is not involved in the creation of primordial cells in rodents. In humans, the SOX17 gene is also involved in helping to develop cells of the lungs, gut and pancreas.

The scientists harvested these cells by culturing human embryonic stem cells for five days. They then showed that the same process could be replicated using adult skin cells.

This doesn't mean men and women will soon be donating skin cells rather than sperm and egg at fertility clinics. Eventually, however, the findings could open the door to more intensive research on human genetics and certain cancers, and could impact fertility treatments sometime in the future.

See the article here:
Scientists create artificial human eggs and sperm

Immune system may hold key to curing baldness

December 26, 2014

Credit: Thinkstock

Brett Smith for redOrbit.com Your Universe Online

Somewhat by accident, researchers at Spanish National Cancer Research Centre (CNIO) have discovered a connection between the bodys immune system and hair loss a discovery that could eventually lead to a molecular treatment for baldness.

According to a new study in the journal PLOS Biology, immune system cells called macrophages, which gobble up and destroy invading pathogens, have a stimulating effect on skin stem cells and hair growth.

The restorative capability of stem cells permits skin re-growth, but various factors can cut their restorative properties or activate the uncontrolled growth seen in cancerous tissues. The new study may have further ramifications beyond potential hair loss treatment, potentially in the field of cancer research.

The connection between macrophages and hair follicles began the research on anti-inflammatory drugs. CINO scientists found that an anti-inflammatory treatment also reactivated hair growth and this accidental discovery led them to examine interactions between stem cells and cells that cause inflammation as part of an immune response.

The CINO team eventually found that when stem cells are inactive, some macrophages die as a result of process known as apoptosis. The process stimulates the release a number of factors that activate stem cells, causing hair to grow again.

The study team investigated a particular class of proteins released by macrophages called Wnt by treating macrophages with a Wnt-inhibitor substance contained within liposomes. The team saw that after they used this drug, the triggering of hair growth was delayed. Even though this study was performed in mice, the scientists believe their discovery may help in the progression of novel care treatments for hair growth in humans.

The potential for attacking one kind of cell to affect a different one might have broader uses beyond simply growing hair, the researchers said. They added that the use of liposomes for drug delivery is also a promising method of experimentation, which may have ramifications for the study of other pathologies.

Read the original here:
Immune system may hold key to curing baldness

Precursors To Human Sperms And Eggs Created, For The First Time, With Skin Cells

British scientists have been successful in creating primitive forms of artificial sperms and eggs from human skin cells, marking an achievement that could not only transform the understanding of age- and sex-related diseases but also come as a boon for infertile couples, according to media reports. The breakthrough comes two years after scientists in Japan successfully demonstrated the technique by creating baby mice from stem cells.

The scientists from the Gurdon Institute in Cambridge, working in collaboration with the Weizmann Institute in Israel, initially created the primordial germ cells normally found within testes and ovaries using human embryonic stem cells cultured in carefully controlled conditions. After initial success, the researchers reportedly replicated the procedure using adult cells extracted from human skin.

This is the first step in demonstrating that we can make primordial germ cells without putting them into patients to verify they are genuine, Azim Surani of the University of Cambridge, reportedly said. Its not impossible that we could take these cells on towards making gametes (fully developed male and female sex cells), but whether we could ever use them is another question for another time.

Although the development of these primordial germ cells could have important implications for infertile couples looking to have kids through In Vitro Fertilization (IVF), scientists also hope to study these cells for clues to age-related diseases.

With age, people not only accumulate genetic mutations, but other changes known as epigenetic changes, which do not affect the underlying DNA sequence. These changes can be caused by smoking, exposure to certain chemicals in the environment, or diet and other lifestyle factors. The development of artificial primordial germ cells, which are stripped clean of the chemicals surrounding the DNA, could offer a better understanding of these epigenetic changes that contribute to ageing and diseases like cancer.

Its not just about making sperm and eggs for infertility, which would be good, but it also has implications for germ-cell tumors as well as the understanding of epigenetic reprogramming, which is quite unique, Suranireportedly said. This is really the foundation for future work.

See the article here:
Precursors To Human Sperms And Eggs Created, For The First Time, With Skin Cells

Scientists use skin cells to make artificial primitive sperm and eggs

Cambridge researchers turned stem cells into precursors of egg and sperm Scientists believe the precursors could then grow into mature sex cells It means genetically-identical sex cells could be used in future IVF therapy

By Steph Cockroft for MailOnline

Published: 16:10 EST, 24 December 2014 | Updated: 10:51 EST, 25 December 2014

131 shares

137

View comments

Researchers have used skin cells to make primitive artificial sperm and eggs in a move that could transform fertility treatment.

Scientists in Cambridge made the sex cells by culturing human embryonic stem cells for five days under carefully-controlled conditions.

They then showed that the same process can convert adults' skin tissue into early-stage sperm and eggs.

Scientists have made primitive artificial sperm and eggs which could transform fertility treatment. Pictured: A single sperm being injected directly into an egg during IVF (file picture)

More here:
Scientists use skin cells to make artificial primitive sperm and eggs

Rudimentary egg and sperm cells made from stem cells

Southern Illinois University/Science photo Library

Some hope that sperm cells could one day be derived from the skin cells of a man who is otherwise sterile and that a similar process cold produce viable egg cells from a sterile woman's body.

Israeli and UK researchers have created human sperm and egg precursor cells in a dish, starting from a person's skin cells. The achievement is a small step towards a treatment for infertility, although one that could face significant controversy and regulatory hurdles.

The experiment, reported online in Cell on 24 December1, recreates in humans parts of a procedure first developed in mice, in which cells called induced pluripotent stem (iPS) cells reprogrammed cells that can differentiate into almost any cell type are used to create sperm or eggs that are subsequently manipulated to produce live births by in vitro fertilization.

In 2012, stem-cell biologist Mitinori Saitou of Kyoto University in Japan and his collaborators created the first artificial primordial germ cells (PGCs)2. These are specialized cells that emerge during embryonic development and later give rise to sperm or eggs. Saitou made them in a dish, starting with skin cells reprogrammed to an embryonic-like state through iPS-cell technology (see 'Stem cells: Egg engineers'). They also were able to achieve the same result starting with embryonic stem cells.

Although his cells could not develop beyond this precursor stage in the dish, Saito found that if he placed them in mouse testes, they would mature into sperm, and if he placed them in ovaries, they would mature into functional eggs. Both sperm and eggs could be used for in vitro fertilization.

Efforts to engineer similarly functional gametes in humans have produced PGC-like cells, but with such a low efficiency success rate of turning stem cells into gametes that it was difficult for others to expand on the work.. Previous efforts also required the introduction of genes that would render the cells unusable in the clinic.

Ewen Callaway reports on the ethical challenges of using lab-made sperm and egg cells in fertility treatments.

You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.

Now a team led by Azim Surani of the University of Cambridge, UK, and Jacob Hanna of the Weizmann Institute of Science in Rehovot, Israel, has replicated the in vitro portion the first half, says Hanna of Saitous efforts in humans.

View post:
Rudimentary egg and sperm cells made from stem cells

Scientists Use Skin Cells to Create Artificial Sperm and Eggs

TIME Science fertility Scientists Use Skin Cells to Create Artificial Sperm and Eggs Getty Images The feat could help patients with fertility problems

British scientists from Cambridge have succeeded in using skin cells to create primitive forms of artificial sperm and eggs.

The feat could transform fertility treatment and our understanding of age-related diseases, the Guardian reports.

Scientists created the early sex cells by culturing human embryonic stem cells for five days in controlled conditions.

They then showed that by following the same procedure they could convert adult skin tissue into early-stage sperm and eggs, raising the likelihood of using sex cells that genetically match a patient undergoing IVF treatment.

The scientists believe these cells have the potential could grow into mature sperm and eggs, something that has never been done in a lab before.

[The Guardian]

See original here:
Scientists Use Skin Cells to Create Artificial Sperm and Eggs

Activating hair growth with a little help from the skin

Restoring hair loss is a task undertaken not only by beauty practitioners. Previous studies have identified signals from the skin that help prompt new phases of hair growth. However, how different types of cells that reside in the skin communicate to activate hair growth has continued to puzzle biologists. An exciting study publishing on December 23 in the open access journal PLOS Biology reveals a new way to spur hair growth.

A group from the Spanish National Cancer Research Centre (CNIO) has discovered an unexpected connection?a link between the body?s defense system and skin regeneration. It turns out that macrophages are involved. These are cells from the immune system that are in charge of devouring invading pathogens, a process called phagocytosis. The authors report that macrophages induce hair growth by surrounding and activating cells in the skin that have regenerative capacity, called stem cells. The discovery that macrophages activate skin stem cells could influence technologies with potential applications in tissue regeneration, aging, and cancer.

The authors of the study are Mirna Perez-Moreno and Donatello Castellana, from the Epithelial Cell Biology Group of the BBVA Foundation-CNIO Cancer Cell Biology Programme, along with Ralf Paus, a hair immunobiology expert from the University of Manchester and Mnster. ?We have discovered that macrophages, cells whose main function is traditionally attributed to fight infections and wound repair, are also involved in the activation of hair follicle stem cells in non-inflamed skin,? says Perez-Moreno.

These findings emerged from an observation by Perez-Moreno while she was working on another research project. Intriguingly, the mice she was working with at that time started to regrow hair when they were given anti-inflammatory drugs. Curious as to whether close communication between stem cells and immune cells could explain this observation, the Perez-Moreno lab began to test different types of cells involved in the bodys defense system for a role in hair growth. They observed that when skin cells are dormant, a fraction of macrophages die naturally due to a normal process called apoptosis. Surprisingly, the dying and surviving cells activated nearby stem cells and hair began to grow again.

Macrophages secrete a number of factors including a class of signaling molecules called Wnts. Importantly, when the researchers treated macrophages with a Wnt inhibitor drug, the activation of hair growth was delayed?demonstrating a role for Wnt from macrophages in promoting hair growth. Although this study was carried out in mice, the researchers believe their discovery ?may facilitate the development of novel treatment strategies? for hair growth in humans.

The researchers used tiny droplets, or liposomes, to carry the drug used in the study. The future use of liposomes as a way to deliver a drug to specific cells is promising and may have additional implications for the study of several pathologies, says Donatello Castellana.

From a more fundamental perspective, this research is an effort to understand how modifying the environment that surrounds adult skin stem cells can regulate their regenerative capabilities. ?One of the current challenges in the stem cell field is to regulate the activation of endogenous stem cell pools in adult tissues?to promote regeneration without the need of transplantation,? says Perez-Moreno.

Because of this study, it is now known that macrophages play a key role in the environment surrounding stem cells. ?Our study underlines the importance of macrophages as modulators in skin regenerative processes, going beyond their primary function as phagocytic immune cells,? say the authors in PLOS Biology.

###

Please mention PLOS Biology as the source for this article and include the links below in your coverage to take readers to the online, open access articles

Read more:
Activating hair growth with a little help from the skin

CNIO researchers activate hair growth by modifying immune cells

IMAGE:This is a skin whole mount section showing hair follicles (blue) surrounded by clusters of skin resident macrophages (red). The molecular communication between macrophages and hair follicle stem cells regulates... view more

Credit: Donatello Castellana, CNIO

How to restore hair loss is a task not undertaken exclusively by beauty practitioners. The discovery, now published by a group from the Spanish National Cancer Research Centre (CNIO), reveals a novel angle to spur hair follicle growth. This also adds new knowledge to a broader problem: how to regenerate tissues in an adult organism, especially the skin.

The group has discovered an unexpected connection--a link between the body's defense system and skin regeneration. According to the authors of the study published today in PLOS Biology, cells from the immune system called macrophages-- those in charge of devouring invading pathogens, for example--are also responsible for activating skin stem cells and induce hair growth.

The regenerative ability of stem cells allows skin replenishment during a lifetime. But different factors can reduce their regenerative properties or promote their uncontrolled growth. When things go wrong, this can lead to aging and disease, including skin carcinomas. The discovery that macrophages activate skin stem cells may also have further implications beyond the possibility to develop therapeutic approaches for hair loss, but may also be relevant for cancer research.

The authors of the study are Mirna Perez-Moreno and Donatello Castellana, from the Epithelial Cell Biology Group of the BBVA Foundation-CNIO Cancer Cell Biology Programme, along with Ralf Paus, a hair immunobiology expert from the University of Manchester and Mnster.

"We have discovered that macrophages, cells whose main function is traditionally attributed to fight infections and wound repair, are also involved in the activation of hair follicle stem cells in non inflamed skin," says Perez-Moreno.

FIRST PROOF

The researchers did not investigate the relationship between macrophages and hair for fun. This work emerged more than four years ago from an observation made by Perez-Moreno while working on another research project. The mice she had been working with at that time received anti-inflammatory drugs, a treatment that also reactivated hair growth. Convinced that the explanation could reside in the existence of close communication between stem cells and immune cells --the Perez-Moreno's lab began to experiment with the different types of cells involved in the bodys defense system.

After years of investigation, they discovered that when stem cells are dormant, a fraction of macrophages die, due to a process known as apoptosis. This stimulated the secretion of factors from dying and living macrophages, which in turn activated stem cells, and that is when hairs began to grow again.

See the rest here:
CNIO researchers activate hair growth by modifying immune cells

Hylunia Head of Research and Development Gives Traveling Lectures on Plant Stem Cells

Henderson, NV (PRWEB) December 23, 2014

After a successful educational outreach trip to Florida the weekend before Thanksgiving, Hylunia's Head of Research and Development Dr. Link will visit Arizona from Dec. 11-13 giving talks to students and industry professionals.

Dr. Link will be at the Southwest Institute of Natural Aesthetics in Tempe, Arizona this Thursday and Friday. On Saturday, skin care industry professionals are invited to sit in on his third lecture.

This series of lectures follows his successful talk to 60 students at the Florida College of Natural Health in Fort Lauderdale, FL.

The best way to give back to our partners is to host seminars and get them familiar with our ingredients," said Dr. Link. "Its a great way to tell them the reasons behind why were updating formulas and using the ingredients weve chosen so that our partners can tell their customers about why the ingredients are important to their skin care needs.

The lectures explore the benefits, ingredients, philosophy and technology behind Hylunia products. For example, the Dr. Link discusses the science behind cutting-edge ingredients like tomato and grape stem cells, which are major components of Hylunia's Ultimate Antioxidant Cream.

Plant stem cells currently feature in six Hylunia products, including the Ultimate Antioxidant Cream. Tomato and grape stem cells are the newest addition to its lineup, with others on the way.

Grape stem cells protect the skin from free radicals caused by the sun and other environmental stressors like pollution and food. They're also shown to prevent skin aging. Tomato stem cells contain compounds like Lypocene, which protect against the heavy metals found in pollution and other environmental stressors. Dr. Link's lectures aim to explain these benefits to the company's partners who then communicate them to the public.

Hylunia launched its own spa earlier this year, and Dr. Link decided it was the right time to go back on the road and continue his educational outreach to students and industry professionals across the country.

"These speeches give us a chance to spread our philosophy to those who arent familiar with Hylunia," said said Dr. Link.

Read the original post:
Hylunia Head of Research and Development Gives Traveling Lectures on Plant Stem Cells

Archives