Page 21«..10..20212223..3040..»

Archive for the ‘Skin Stem Cells’ Category

In-Vitro Toxicology/Toxicity Testing Market is Expected to Grow at a CAGR of 9% From 2019 to Reach $ – PharmiWeb.com

Meticulous Research a leading global market research company published a research report titled In-Vitro Toxicology/Toxicity Testing Market by Product& Service, Technology (Cell Culture, OMICS), Method (Cell-based Assays, In-Silico), End-point (ADME, Genotoxicity, Organ Toxicity, Dermal Toxicity), End-user, and Geography Global Forecast to 2025.

According to this latest publication from Meticulous Research, the globalin-vitro toxicology testing marketis expected to grow at a CAGR of 9% from 2019 to reach $14.4 billion by 2025.

Download Free Sample Copy Of The Report:: https://www.meticulousresearch.com/download-sample-report/cp_id=5047

Key questions answered in the report-

Which are the high growth market segments in terms of product & service, technology, method, end-point, end-user, and region/countries?

What was the historical market size for in vitro toxicology testing across the globe?

What are the market forecasts and estimates for the period 2019-2025?

What are the major drivers, restraints, opportunities, and challenges in the global in vitro toxicology testing market?

Who are the major players in the global in vitro toxicology testing market?

How is the competitive landscape and who are the market leaders in the global in vitro toxicology testing market?

What are the recent developments in the global in vitro toxicology testing market?

What are the different strategies adopted by the major players in the global in vitro toxicology testing market?

What are the geographical trends and high growth regions/ countries?

Who are the local emerging players in the global in vitro toxicology testing market and how do they compete with the global players?

Have Any Query? Ask Our Expert https://www.meticulousresearch.com/speak-to-analyst/cp_id=5047

The growth of this market is driven by factors, such as ethical issues and pressure from animal activists groups concerning the use of animals for testing, ban on animal testing on cosmetic products, support from regulatory bodies regarding the approval of in-vitro tests, low costs associated with in-vitro toxicology testing, and advancements in in-vitro methodologies. Moreover, synergetic relationships between various stakeholders in the industry and increasing toxicology databases to facilitate the use of in-vitro test methods are expected to offer significant growth opportunities for the players operating in this market.

The global in-vitro toxicology testing market study presents historical market data in terms of value (2018), estimated current data (2019), and forecasts for 2025-by product & service (equipment, assay kits, consumables, software, services), technology (cell culture technologies, high-throughput screening technologies, OMICS technologies), method (cell-based assays, biochemical assays, in-silico, ex-vivo), end-point (ADME; skin irritation, corrosion, sensitization; genotoxicity; cytotoxicity; ocular toxicity; organ toxicity; phototoxicity; and dermal toxicity), end-user (pharmaceutical & biotechnology industries, cosmetics industry, food industry, and chemical industry). The study also evaluates industry competitors and analyzes the market at a regional and country level.

You Can Directly Buy This Report From Here:: https://www.meticulousresearch.com/buy_now.php?pformat=348&vformat=1030

(Get key industry insights spread across 189 pages with 120 market data tables & 30 figures & charts from the report)

On the basis of product, the consumables segment is estimated to dominate the overall in-vitro toxicology testing market in 2019, mainly due to increasing number of in-vitro tests being performed across the globe leading to recurrent purchase of reagents and other labware. However, the software segment is projected to grow at the highest CAGR during the forecast period. The high growth of this segment can be attributed to increasing computer models and algorithms being developed to predict toxicity of test substances.

On the basis of technology, the cell culture technologies segment is estimated to account for the largest share of the in-vitro toxicology testing market in 2019, owing to growing adoption of 3D cell culture and stem cell models for toxicity testing.

On the basis of method, the in-vitro toxicology testing market is sub-segmented into cell-based assays, biochemical assays, in silico testing, and ex vivo testing. Cell-based assays segment is estimated to command the largest share of the in-vitro toxicology testing market in 2019. Advancements in cell-based technologies such as high-content screening and label-free detection are the key factors attributed to the large share of this segment in the overall market.

On the basis of end point, the ADME segment is estimated to account for the largest share of the overall in-vitro toxicology testing market in 2019. This is primarily attributed to the increasing number of early stage in-vitro ADME screening tests to prevent failure at later stage.

On the basis of end user, the in vitro toxicology testing market is segmented into pharmaceutical and biotechnology companies, cosmetics, food industry, and chemical industry. The pharmaceutical and biotechnology companies segment is estimated to account for the largest share of the overall in-vitro toxicology testing market in 2019. This is primarily attributed to increasing drug attrition rates and growing adoption of early in-vitro preclinical safety testing to filter out molecules with a higher potential for toxicity. However, the cosmetics industry segment is expected to grow at a higher rate owing to the ban on use of animals for testing toxicity of cosmetics and its ingredients.

Here are the top Market companies in the world:: https://meticulousblog.org/top-10-companies-in-in-vitro-toxicology-toxicity-testing-market/

Key Players::

In-vitro toxicology testing market is a highly consolidated in nature, wherein 3 major players Thermo Fisher Scientific (US), Merck (Germany), and GE Healthcare (US) accounted for major share of the global in-vitro toxicity testing market. Other key players operating in this market are Bio-Rad Laboratories (US), SGS SA (Switzerland), Laboratory Corporation of America Holdings (U.S.), Qiagen N.V. (Netherlands), and Eurofins Scientific (Luxembourg), among others.

Geographical Analysis::

This research report analyzes major geographies and provides comprehensive analysis of Europe (Germany, U.K., France, Italy, Spain, and RoE), North America (U.S., Canada), Asia-Pacific (China, Japan, India,and RoAPAC), Latin America, and Middle East & Africa. Europe commanded the largest share of the global in-vitro toxicology testing market, followed by North America and Asia Pacific (APAC). The large share of this region is mainly attributed to the factors such as ban on animal testing for cosmetics and its ingredients, and government initiatives to promote the reduction of use of animals for toxicity testing. Asia-Pacific region is expected to grow at the highest CAGR during the forecast period of 2019 to 2025, owing to increasing biotech investments in this region and growing collaborations between local and foreign companies.

Download Free Sample Copy Of The Report:: https://www.meticulousresearch.com/download-sample-report/cp_id=5047

Related Reports::

1Veterinary Immunodiagnostics Market Size by Product (Analysers, Consumables), by technology (ELISA, Radioimmunoassay, Rapid tests, and others), by animal type [Livestock (Cattle, Pigs, Poultry) and Companion (Feline, Canine, Equine)], by application (Infectious diseases, autoimmune disorder, endocrinology & oncology, and bone & mineral diseases), and by End-user Global Forecasts to 2022

2 Cancer Immunotherapy Market By Type (Monoclonal Antibodies, Checkpoint Inhibitors, Immunomodulators, Vaccines, Cell Therapy), Application (Lung, Breast, Multiple Myeloma, Colorectal, Melanoma, Prostate), and End User- Global Forecast to 2024

3 Competent Cells Market by Type (Cloned Competent Cells, Agrobacterium Tumefaciens Competent Cells, and Expression Competent Cells), Treatment (Chemically Competent Cells and Electrocompetent Cells), Application (Cloning, Protein Expression, others), and by End User (Pharmaceutical and Biotechnology Industry, Academic and Research Institutes, and Contract Research Organizations) Global Forecasts to 2023

About Meticulous Research

The name of our company defines our services, strengths, and values. Since the inception, we have only thrived to research, analyze and present the critical market data with great attention to details. Meticulous Research was founded in 2010 and incorporated as Meticulous Market Research Pvt. Ltd. in 2013 as a private limited company under the Companies Act, 1956. Since its incorporation, with the help of its unique research methodologies, the company has become the leading provider of premium market intelligence in North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa regions.

Contact Us:

Meticulous Research

Email-sales@meticulousresearch.com

Contact Sales- +1-646-781-8004

Connect with us on LinkedIn-https://www.linkedin.com/company/meticulous-research

This content has been distributed via WiredRelease press release distribution service. For press release service enquiry, please reach us at contact@wiredrelease.com.

View post:
In-Vitro Toxicology/Toxicity Testing Market is Expected to Grow at a CAGR of 9% From 2019 to Reach $ - PharmiWeb.com

Getting Gray Hair Early Actually Can Mean You Are Stressed The F*ck Out – BroBible

Going gray is a natural part of getting older. It typically starts with a small streak of white in the hair or beard, a sign that a man has reached a certain level of maturity and is now on that steady, inevitable decline to the grave. Hell, it is even conceivable (and highly likely) that some of you might even pluck one of those pale bastards out of your pube patch one night while trying to determine if the source of a vicious case of crotch itch is the crabs or just dry skin. Listen, all were saying is dont be surprised if, within the next few years, you find yourself staring down at your junk, thinking about how that lustrous man bush of yours is starting to resemble Colonel Sanders with a skinless chicken leg dangling out of his mouth. It happens to the best of us.

But hey, getting old isnt always indicative of a silver coiffure. I knew a guy back in high school who had more gray hair on his head than my 73-year-old father does now. So, it seems that age alone isnt always the culprit. In fact, it has been long since believed that stress also plays a critical role in making some men look distinguished beyond their years. Well, come to find out, the concept of stressful events turning us into gray beasts before we are officially deemed DILFs is probably real. Only science says it really comes down to how our fight or flight response is triggered throughout the years that determine when our manes will be deprived of color.

Researchers at Harvards Stem Cell Institute believe they have found a direct correlation between stress and going gray. They recently published a study in the journal Nature, which shows that three kinds of extreme stress mild, short-term pain, psychological stress, and restricted movement has a way of bringing around the gray quicker than what would happen under natural circumstances. At least that is the conclusion reached by lead researcher Dr. Ya-Chieh Hsu and team after putting a legion of mice through the wringer and watching for their response.

The graying process happens as pigment cells called melanocytes start to fade from our hair follicles. Its just that over time, these cells become less prevalent and we begin brandishing that salt and pepper look popularized by legendary screen stars like Brad Pitt and George Clooney.

Eventually, however, all of those cells fade into extinction and our hair just goes completely white, we start receiving AARP benefits and eating apple sauce with every meal. Yet, researchers say that stress can cause these cells to fade out quicker than theyre supposed to long before we start collecting social security and yelling at the neighborhood kids to get off our lawn.

Without getting overly scientific about it, researchers found that high stress seems to produce elevated levels of a chemical in the brain known as noradrenaline. Its one of the kick-ass substances manufactured by the adrenal gland when a persons fight or flight response starts firing on all cylinders. Thats the real culprit to early aging, researchers concluded. They say that once mice were injected with this chemical, they began losing melanocytes and going gray. And the transformation didnt take long either. It turns out that stress can zap our hair color in a matter of days.

When we started to study this, I expected that stress was bad for the body but the detrimental impact of stress that we discovered was beyond what I imagined, Hsu said in a statement. After just a few days, all of the melanocyte stem cells were lost. Once theyre gone, you cant regenerate pigments anymore. The damage is permanent.

While it might be challenging to manage stress in a way that keeps us looking young forever, there is a silver-lining here, boys. Women, presumably the root of all of that premature grayness in the first place, are especially hot for this look. Seriously, a recent survey from Match.com finds that 72 percent of the women on the dating scene find men with gray hair more attractive than those with darker dos. Other studies on the subject have turned out similar results. The only caveat is that women are really only turned on by the gray as long as it doesnt make the man look old. This has something to do with them wanting to feel like a guy can provide some safety and security without having to worry about changing his diapers down the road.

Read the rest here:
Getting Gray Hair Early Actually Can Mean You Are Stressed The F*ck Out - BroBible

Working In Science Was A Brutal Education. Thats Why I Left. – BuzzFeed News

Stephanie Singleton for BuzzFeed News

Do you miss being a scientist? some people ask.

Sometimes.

When people talk about science, they usually mean people in white lab coats doing things, like solving equations on the board or preparing solutions in beakers. What they mean is science as this crude mechanism of discovery by which humans refine over decades and centuries a small kernel of knowing. What they mean is grant dollars. What they mean is wild hair. What they mean is clean, aseptic, analytical. Brainy little robot people. White.

I try to be honest about my time in science about the feeling of satisfaction I had when I plotted all of my confocal data and there was a beautiful curve depicting the drop-off in signal as one moved further down the tissue of the gonad. I think about the calculations we did on scraps of paper to check the ratios of inheritance of the genes we introduced. I think of the little side room where we took our coffee and bagels. I think of the feeling of friendship and family that comes with being in a big lab, where everyone has a place, a role, an expertise, a skill. I remember the surprise I felt when people started to come to me because I knew something, because I could help. And how rare that was for me.

For the better part of several years, I saw my labmates every day. For hours and hours. Every holiday, every break, we stayed. We worked. We supported each other. We fought. We feuded. We gossiped. We threw parties for each other. We celebrated. We said goodbye at graduations and retirements. There were people who supported me and cherished me and looked after me. People who treated me like I mattered. A lab is a family. In a way.

Science was beautiful and it was wild and it was unknowable. Science was spending days and weeks on a single experiment with no way to know if it would work and no real way to tell if it had worked. Science was like trying to find your way to a dark forest only to realize that you had always been inside of the forest and that the forest is inside of another, greater, darker forest. Science was laughing with my labmates about television the night before, about the song of the summer, about tennis, about the unruly nature of mold growing on our plates, about cheap wings at Buffalo Wild Wings. Science was being taught to think. Taught to speak. Science was a finishing school. Science was a brutal education. Science made me ruthless. Science made me understand the vast beauty of the world.

But science was also working 15 hours a day for weeks or months. Science was working weekends and holidays. Science was being called lazy for taking a break. Science was the beat of doubting silence after I answered a question put to me. Science was being told that racism was not racism. Science was being told that I was fortunate that I had running water while growing up and that I was actually privileged because there are some places that do not. Science was being told that I was mistaken for a waiter at a party because I had worn a black sweater. Science was being told that I had to work harder despite working my hardest. Science was being told that I talked too much. Science was being told that I was too loud. Science was being told that I was behind, always behind. Science was being told that I had failed but had been gifted a pass by virtue of who you are. Science was being told that I had never once been to class despite attending every session and office hour because I was mistaken for someone else.

Science was being the only black person in the program for four years. Science was saying nothing because I was tired of being corrected about the particulars of my own experience. Science was being told that I should consider moving to the other side of town where more black people live. Science was someone suggesting that I find a church in order to find community. Science was having my hair stroked and touched. Science was being told that I was articulate. Science was watching peoples eyes widen slightly in surprise when I told them what program I was in. Science was the constant humiliation of wondering if I had justified my presence or if I had made it harder for the next black person to get admitted. Science was having to worry about that in the first place.

Science was a place I ultimately left, not so much because I wanted to, but because I had to. Science is not being able to say that because I reflexively feel the rebuttal waiting on the other end of that sentence: You could have made it work if you wanted it enough. Science is not knowing whether I wanted it enough.

Does science influence your writing?

Oh, sure. I guess.

Do you write science fiction?

No, I write domestic realism.

After the above exchange, people sometimes look at me like Im joking and at any moment will drop the faade to reveal that I do in fact write and love science fiction, after all.

But no, I do not write science fiction. I think that if people knew more scientists and spent significant time in their company, they would understand that the worst possible preparation for a career as a science fiction writer is an intensive science education. My training as a scientist makes it difficult to absent myself in the way I need to in order to write good fiction. I can never turn off the part of my brain that knows about protein folding or microscopy or tissue preparation or stem cells or physics or chemistry. Writing science fiction would be an extended exercise in pedantry.

People presume that science and writing are quite different. But they are both ways of knowing. They are ways of understanding the greater mystery of the world. They are systems of knowledge and inquiry. I do not understand something until I have written it, or more accurately put, until I have written my way through it.

Science was being the only black person in the program for four years. Science was saying nothing because I was tired of being corrected about the particulars of my own experience.

I think in many ways, the best preparation for a writer is a period of prolonged and rigorous thought about a difficult and complicated question. You learn to assemble your resources. You learn to fight with yourself. You learn to quarrel on the page with your worst ideas and with the ones you hold dearest. You treat your expectations with suspicion. You demand proof. You demand evidence. You think hard about the alternate hypothesis or other explanations, and you devise strategies to root these out. You learn to live with doubt. You try to prove yourself wrong. You look for places where you have been too soft. Too vague. You eliminate language that contains falsehoods. You eliminate language that can mislead your reader. You ask questions. You pursue answers with all the energy you can muster. You try to put language to what it is you observe. You develop a stamina for iteration. You develop a thick skin. You learn to seek criticism. You treat criticism like kindness. You churn the raw material of life into something that can be understood, and when you fail, you marvel at the mystery of things.

Do you miss science?

Yes. No. Yes. No.

Sometimes, when I dont feel well, I consider the question of how to derive an expression for the degradation of a molecular species in a particular tissue under a given set of circumstances. Old calculus. I turn to YouTube lectures from MIT about thermodynamics. I think of my first winter in Madison, Wisconsin.

The first snowfall was in October. It had been a hot, rainy summer, so much so that the weather seemed to turn all at once with very little warning. I was either in the middle or at the start of my second rotation as a biochemistry graduate student, working in a biophysical chemistry lab and spending most of my day in the windowless instrument facility in the basement. My project was to deduce the effect of protein concentration on the ability of a polymer of DNA to wind itself. I spent a lot of time pipetting various liquids into each other in little cuvettes, slotting them into a machine, and then waiting for the reading. It was the kind of work to which I felt ideally suited, and I could have gone on that way forever. I had recently moved to the Midwest from Alabama to pursue a PhD, and it seemed as likely as anything else that I would go on pipetting and measuring the effect of things like DNA polymer length and protein concentration on DNA winding. It was as removed from the circumstances of my previous life as anything else, and so I didnt have a compelling reason to doubt that this would be the shape my life held.

But I remember sitting down at the desk in the lab and looking out the broad window. There was a large tree at the center of the courtyard that had recently turned yellow. Fall was there in name, but not in temperature. The labs were kept quite cold, and so I wore a sweater indoors and shucked it as soon as I got outside. But that day, I looked out of the window and saw snow drifting down. The flakes were thick and fluffy, and they seemed almost fake. It was the first time I had seen snow in years, and I was totally enamored by it. The other people in the lab were on edge because snow in October portended something dark and awful a hard winter, a long, brutal freeze. Where they saw inconvenient travel and slushy roads, I saw something beautiful if frivolous, a minor novelty. Winter came early that year, and it didnt end until the very beginning of the following summer. When I went to the lake on my birthday in early June, there was still ice in the water.

People presume that science and writing are quite different. But they are both ways of knowing.

When people ask me about my time in science, it is this day which presents itself to me in jewel-like clarity. It is the day something about my life altered irrevocably. Or perhaps it is that the snow has accumulated, the way all such moments do in life, the weight of meaning, of prophecy. Inevitability is an artifact of retrospection. It is because the snow represented a stark deviation from the previous course of events in my life, at the precise moment when my life was changing so wildly, that I remember it. It is not that the snow changed me, but it came at a point when I was starting not to resemble myself. I cannot use the snow to explain to people what my life was like in science. It has the whiff of superstition, folklore. It feels too much like a memory and not enough like an answer. I do not tell them about the snow or how it seemed a benediction at the outset of something I needed desperately to work.

It was only later that I realized this was wishful thinking, and that the snow was just snow.

Do you think youd ever go back to science?

That part of my life is over now.

Ive come to understand that what people want in such a situation is to have their own conceptions of the world confirmed. That is, they want me to say that when you leave science because you have written a novel and a book of stories and have decided to attend an MFA program in creative writing, you are doing something that is antithetical to science. People presume that it is akin to picking up and leaving your home in the middle of the night under great duress, never to return. What they want is the spectacle of the forgotten treasured item, the confirmation that something has been lost, perhaps forever.

I think if people knew what it was that I left, then theyd know better than to ask. It would be like asking someone if they were sad to have left their home with no prospect of returning. It would be like asking someone if they were sad to have left their faith behind. It would be like asking someone if they were sad to have given up some fundamental idea about who they are. It would be like asking someone if they were sad to have watched their life burn to the ground. It would be like asking someone if they were sad to have left their family and friends.

They would mind their own business if they knew.

But they do not know, and so they say things like Science, wow, thats so cool, like, do you miss it?

And I smile because that is what I have learned to do. Because explaining is too hard. Too messy. There is no clean or easy or simple way to make it known to others that I left because I had to, because it was necessary to leave that I do miss it, but I also dont because Im still that person but not that person, that every day I remind myself less of the person I was then. Its sad, like losing a memory of myself, and all those years are lost to me now, all the little tricks and habits of home dropping down and away, as I become this other person known for this other thing, and its too much in the moment to say that I miss it both more and less every day, that I become a person more capable of appreciating what is lost in the grand scheme of things but less a person who knows what it is Ive actually lost, and that there is some painful, brutal, awful misalignment in the scale of those two losses.

When people ask if I miss science, the only answer available to me is an incomplete solution to the problem: Yes. No. Sometimes. Its over now.

Brandon Taylor is the senior editor of Electric Literatures Recommended Reading and a staff writer at Literary Hub. His writing has earned him fellowships from Lambda Literary Foundation, Kimbilio Fiction, and the Tin House Summer Writer's Workshop. He holds graduate degrees from the University of Wisconsin-Madison and the University of Iowa, where he was an Iowa Arts Fellow at the Iowa Writers Workshop in fiction. Learn more about his first novel Real Life here.

Read more from the original source:
Working In Science Was A Brutal Education. Thats Why I Left. - BuzzFeed News

Isolated Extramedullary Relapse in Acute Lymphoblastic Leukemia: What Can We Do Before and After Transplant? – Cancer Network

Santiago Riviello-Goya, MD1; Aldo A. Acosta-Medina, MD2; Sergio I. Inclan-Alarcon, MD3; Sofa Garcia-Miranda, MD2; and Christianne Bourlon, MD, MHSc2

1Department of Medicine, Instituto Nacional de Ciencias Mdicas y Nutricin Salvador Zubirn, Mexico City, Mexico; 2Department of Hematology, Instituto Nacional de Ciencias Mdicas y Nutricin Salvador Zubirn, Mexico City, Mexico; 3Cancer Center, Centro Mdico ABC, Mexico City, Mexico

A 43-year-old male with a history of B-cell acute lymphoblastic leukemia (ALL), who underwent allogeneic hematopoietic stem cell transplantation (HSCT) 5 months prior, presented to the emergency department with a 5-day history of progressive bilateral lower extremity weakness. On physical examination, there were no additional neurologic findings; sensory function and urethral and anal sphincter tone were preserved.

Initial clinical laboratory testing showed peripheral blood cell counts, a peripheral blood smear, and a comprehensive metabolic panel within normal limits. Neuroimaging by computed tomography (CT) and magnetic resonance showed no evidence of acute intracranial processes or lesions suggestive of leukemic relapse. A lumbar puncture for cerebrospinal fluid (CSF) analysis was performed and documented the presence of lymphoid-appearing blasts (Figure 1). Flow cytometry (FC) confirmed central nervous system (CNS) infiltration by B-lineage lymphoid blasts (CD34+, CD45+, CD22+, CD19+, and CD10+) (Figure 2). Bone marrow aspirate and biopsy, including FC evaluation, were negative for systemic relapse. Bone marrow chimerism was 98%.

With a diagnosis of isolated extramedullary leukemic relapse (iEMR), the patient was initiated on weekly intrathecal chemotherapy and was weaned off graft-versus-host disease (GVHD) prophylaxis, achieving CSF clearance after 4 weeks of therapy. Against Hematology service recommendations, the patient declined systemic therapy and received only whole brain radiation therapy (24 Gy in 12 fractions).

The patient experienced remission of neurologic symptoms; however, after 5 months, he developed bilateral testicular tenderness and enlargement. An ultrasound was performed and was suggestive of leukemic infiltration (Figure 3). Chemotherapy with methotrexate and L-asparaginase in addition to radiotherapy to the testes (24 Gy in 12 fractions) was given without complications.

One year after initial CNS iEMR, the patient developed overt bone marrow relapse (BMR), as evidenced by development of bone pain throughout the lumbosacral region, and the appearance of multiple blastic and lytic lesions throughout the appendicular and axial skeleton. A positron emission tomography-CT scan documented abdominal lymphadenopathy (Figure 4). With this rapidly progressive picture, the patient was transitioned to supportive care and died 2 months later.

Is the risk of iEMR following HSCT modified by the choice of conditioning regimen? If so, which of the following approaches would have been the best choice to prevent iEMR in this patient?

A. There is no role of conditioning therapy in preventing iEMRB. Reduced intensity of regimen to favor graft-versus-leukemia (GVL) effectC. Nonmieloablative regimens including fludarabineD. Mieloablative regimens including total body irradiation (TBI)

CORRECT ANSWER: D. Mieloablative regimens including total body irradiation (TBI).

Allogeneic HSCT is an effective treatment for ALL, which can achieve long-term remission and even a potential cure.1 Antineoplastic activity is dependent on both high-dose chemotherapy and graft alloreactivity, with the latter manifested in the GVL effect, and undesirably yet inherently, in GVHD.2 Despite recent advances in allogeneic HSCT strategies, disease relapse is common and remains the most important cause of death in this population. Relapse is reported in 30% to 40% of patients but can increase to 60% in patients who are in a second complete remission (CR) at time of HSCT.2,3

Risk factors for relapse in patients with ALL who have undergone HSCT include disease- and transplant-related features. Reported high-risk disease characteristics include: hyperleukocytosis at diagnosis (white blood cell count >30 x109/L for B-lineage ALL and >100 x109/L for T-lineage ALL); cytogenetics associated with poor outcomes, including chromosome 11 translocations and t(9;22); a short remission timespan; more than a first CR; and a failed or delayed remission after induction therapy.4 In the HSCT population, transplant-related factors should be considered, including alternative donors other than those who are matched related and matched unrelated, the type of conditioning regimen, and the development of GVHD.2

ALL relapse following HSCT most commonly involves the medullary compartment, with a cumulative incidence of 41% at 5 years. Conversely, extramedullary relapse (EMR) is uncommon, with a 5-year cumulative incidence of 11.0% and 5.8% for EMR and iEMR, respectively.5 Due to the rarity of EMR, its prognostic impact remains controversial and the ideal management strategies are a subject of active study.

EMR is associated with poor clinical outcomes; however, the subgroup of patients with iEMR (as presented in this patient case) is gaining attention due to its increasing frequency, its role heralding a systemic relapse, and its clinical behavior showing better survival outcomes compared with BMR and EMR.6-8

Isolated EMR is defined as the presence of clonal blasts in any tissue other than the medullary compartment; bone marrow evaluation must show less than 5% of clonal blasts and a full donor chimerism. Most commonly affected sites include the skin, soft tissues, lymph nodes, and immune sanctuaries including the CNS and testes.1,5,9 Because prevention rather than treatment of relapse is related to improved survival outcomes, it is important to define subgroups of patients who may benefit fromearly intervention with a personalized transplant strategy.

Higher rates of iEMR have been linked to patients of younger age. This is thought to be secondary to: (1) a higher incidence of ALL compared with acute myeloid leukemia (AML) in this age subgroup, the former of which is most associated with EMR; (2) the relative overrepresentation of myelomonocytic/monocytic phenotypes in AML presenting in young individuals; and (3) the higher likelihood of a history of EMR in children compared with adults.1,10

A history of extramedullary (EM) disease, which has consistently been found to impact the development of iEMR, is preexistent in up to half of patients. In 2 out of 3 cases of EMR, disease affects the site of original EM involvement, possibly due to low efficacy of both high-dose chemotherapy and the GVL effect.1,5 An exception to this is CNS involvement, despite being a risk factor for subsequent CNS iEMR, which is commonly reported de novo, reflecting the protective effect of regularly administered prophylaxis to patients at high risk of CNS infiltration.11

The effect of GVHD on risk of iEMR is highly nuanced. Despite its well-known role as a protective factor for BMR, the same effect does not appear to hold true for iEMR.12 Initial reports in this population showed no differences in relapse-free survival regardless of acute or chronic GVHD (cGVHD) or a positive association between extensive cGVHD and iEMR development.10,13 This has led to investigators to postulate that the underlying physiopathology differs among different types of relapse, with decreased expression of human leukocyte antigen (HLA) minor histocompatibility antigens and adhesion molecules and decreased penetration of both immune cells and high-dose chemotherapy to EM sites.14 These mechanisms lead to decreased effectivness of T-cell dependent cytotoxicity of donor lymphocytes as compared with the medullary compartment, with subsequent clone selection and escape, enabling the development of iEMR.6

With the increased use of alternative donors, this has been contested in the haploidentical setting, with a recent report showing significantly increased rates of iEMR in patients who do not develop cGVHD. It is suggested that the role of GVL, coupled with GVHD, in this HLA-mismatched setting could partially explain the added benefit of GVHD in this subgroup. This report also evidenced increased tumor chemosensitivity in patients with EMR compared with BMR, possibly explained by reduced concentrations of conditioning therapy at EM sites.9

Cytogenetics associated with poor outcomes and advanced disease at the time of HSCT were described as risk factors for iEMR in initial cohort studies.1,5,10,15,16 However, recent publications that include alternative-donor HSCT recipients have reported that a haploidentical source could overcome this negative impact.9

The influence of type of conditioning regimen on likelihood of iEMR has been studied only retrospectively, mainly comparing TBI-based versus chemotherapy-based approaches. The landmark paper by Simpson et al showed a significantly elevated rate of iEMR in patients receiving busulfan-based conditioning. This finding has been related to the lack of penetration of drugs into the immune sanctuaries with chemotherapy-only regimens.17

Multiple approaches, including combination and single treatment for iEMR, have been described. Combination therapy including systemic chemotherapy plus local radiotherapy (or in CNS disease, radiation to the craniospinal axis, intrathecal chemotherapy, and systemic chemotherapy) has been associated with higher response rates than single-treatment strategies.9 Nonetheless, the best responses have been observed when combination therapy is followed by a cellular therapy (eg, second allogeneic HSCT, donor leukocyte infusion, and donor stem cell infusion), leading to CR rates of greater than 80%.5,13 Whether this increase in CR rate translates to an increase in survival outcomes remains debatable due to conflicting results in the current literature for iEMR.

Financial Disclosure: The authors have no significant financial interest in or other relationship with the manufacturer of any product or provider of any service mentioned in this article.

Corresponding author:

Christianne Bourlon, MD, MHScVasco de Quiroga No. 15.Belisario Domnguez Seccin XVI

Tlalpan, C.P. 14080, Ciudad de Mxico, Mxico

E-mail: chrisbourlon@hotmail.com

References:

1. Ge L, Ye F, Mao X, et al. Extramedullary relapse of acute leukemia after allogeneic hematopoietic stem cell transplantation: different characteristics between acute myelogenous leukemia and acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2014;20(7):1040-1047. doi: 10.1016/j.bbmt.2014.03.030.

2. Pavletic SZ, Kumar S, Mohty M, et al. NCI First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biol Blood Marrow Transplant. 2010;16(7):871-890. doi: 10.1016/j.bbmt.2010.04.004.

3. Devillier R, Crocchiolo R, Etienne A, et al. Outcome of relapse after allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma. 2013;54(6):1228-1234. doi: 10.3109/10428194.2012.741230.

4. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C; ESMO Guidelines Committee. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v69-v82. doi: 10.1093/annonc/mdw025.

5. Shem-Tov N, Saraceni F, Danylesko I, et al. Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2017;23(7):1087-1094. doi: 10.1016/j.bbmt.2017.03.023.

6. Lee JH, Choi SJ, Lee JH, et al. Anti-leukemic effect of graft-versus-host disease on bone marrow and extramedullary relapses in acute leukemia. Haematologica. 2005;90(10):1380-1388.

7. Xie N, Zhou J, Zhang Y, Yu F, Song Y. Extramedullary relapse of leukemia after allogeneic hematopoietic stem cell transplantation. Medicine (Baltimore). 2019;98(19):e15584. doi: 10.1097/MD.0000000000015584.

8. Shi JM, Meng XJ, Luo Y, et al. Clinical characteristics and outcome of isolated extramedullary relapse in acute leukemia after allogeneic stem cell transplantation: a single-center analysis. Leuk Res. 2013;37(4):372-377. doi: 10.1016/j.leukres.2012.12.002.

9. Mo XD, Kong J, Zhao T, et al. Extramedullary relapse of acute leukemia after haploidentical hematopoietic stem cell transplantation: incidence, risk factors, treatment, and clinical outcomes. Biol Blood Marrow Transplant. 2014;20(12):2023-2028. doi:10.1016/j.bbmt.2014.08.023.

10. Harris AC, Kitko CL, Couriel DR, et al. Extramedullary relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Haematologica. 2013;98(2):179-184. doi: 10.3324/haematol.2012.073189.

11. Hamdi A, Mawad R, Bassett R, et al. Central nervous system relapse in adults with acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1767-1771. doi: 10.1016/j.bbmt.2014.07.005.

12. Giralt SA, Champlin RE. Leukemia relapse after allogeneic bone marrow transplantation: a review. Blood. 1994;84(11):3603-3612.

13. Solh M, DeFor TE, Weisdorf DJ, Kaufman DS. Extramedullary relapse of acute myelogenous leukemia after allogeneic hematopoietic stem cell transplantation: better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2012;18(1):106-112. doi: 10.1016/j.bbmt.2011.05.023.

14. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008;112(12):4371-4383. doi: 10.1182/blood-2008-03-077974.

15. Lee KH, Lee JH, Choi SJ, et al. Bone marrow vs extramedullary relapse of acute leukemia after allogeneic hematopoietic cell transplantation: risk factors and clinical course. Bone Marrow Transplant. 2003;32(8):835-842. doi: 10.1038/sj.bmt.1704223.

16. Clark WB, Strickland SA, Barrett AJ, Savani BN. Extramedullary relapses after allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome. Haematologica. 2010;95(6):860-863.

17. Simpson DR, Nevill T, Shepherd JD, et al. High incidence of extramedullary relapse of AML after busulfan/cyclophosphamide conditioning and allogeneic stem cell transplantation. Bone Marrow Transplant. 1998;22(3):259-264. doi: 10.1038/sj.bmt.1701319.

Excerpt from:
Isolated Extramedullary Relapse in Acute Lymphoblastic Leukemia: What Can We Do Before and After Transplant? - Cancer Network

Are stem cells really the key to making humans live longer? – Wired.co.uk

To some longevity acolytes, stem cells promise the secret to eternal youth. For a hefty fee, you can pay a startup to extract your own stem cells and cryogenically freeze them, in the hope that they can one day be used in a treatment to help extend your life.

Other firms let you bank stem cells from your babys umbilical cord and placenta after childbirth, if youre convinced the high cost represents an insurance policy against future illness. Or you can follow the example of Sandra Bullock and Cate Blanchett and opt for an anti-ageing cream made with stem cells derived from the severed foreskins of newborn babies in South Korea.

Stem cells are the parent cells which give rise to other cells in our bodies. Since scientists first isolated human embryonic stem cells in a lab and grew them over 20 years ago, they have been mooted as a source of great hope for regenerative medical treatments, including for age-related degenerative conditions such as Parkinsons, Alzheimers, heart disease and stroke.

But apart from a few small-scale examples, the only stem cell-based medical treatment practised in clinics uses haematopoietic stem cells found in the blood and bone marrow which only produce blood cells for transplants in blood cancer patients. These cells are taken from a patients sibling or an unrelated donor, before being infused into a patients blood, or theyre taken from a patients own blood before being reinfused. The procedure has been used to treat blood malignancies for almost half a century, and recently multiple sclerosis too. So how likely is it that the predictions about stem cells' longevity-enhancing powers will become a reality?

In September 2019, Google banned ads for unproven or experimental medical techniques such as most stem cell therapy, citing a rise in bad actors attempting to take advantage of individuals by offering untested, deceptive treatments [that can often] lead to dangerous health outcomes. The decision was welcomed by the International Society for Stem Cell Research, which emphasised that most stem cell interventions remain experimental. Selling treatments before well-regulated clinical trials have been done, the body said, [threatens public] confidence in biomedical research and undermines the development of legitimate new therapies.

Its easy to see how less scrupulous companies can exploit the allure of stem cells, which seem to occupy a place in our collective consciousness as a kind of magical elixir. High hopes for stem cell-based therapies have grown since 2006, when the Japanese biologist Shinya Yamanaka created a new technology to reprogram adult cells, such as skin cells, into a similar state to embryonic stem cells, which are pluripotent, meaning they can develop into any tissue in the body. The Nobel prize-winning breakthrough was hailed as a major step in the study of stem cells without the need for controversial embryo research, and towards the use of these human induced pluripotent stem cells to regenerate damaged or diseased organs or effectively grow new spare parts which could treat the life-limiting and life-shortening illnesses associated with ageing.

Gerontologist Aubrey de Grey, whose Strategies for Engineered Negligible Senescence (SENS) research foundation aims to eliminate ageing-related diseases, thinks the chances well soon have stem cell based therapies are high. For anything that's in clinical trials, you're talking about maybe five years before it's available to the general public, he says, citing stem cell treatments for Parkinsons disease, currently being tested in phase two clinical trials, as one of the developments he thinks is likely to come soonest.

However, given that these trials involve a relatively small number of participants and most clinical trials ultimately fail, his predictions might be overly optimistic. Often described as a maverick, De Grey believes that humans can live forever and there is a 50 per cent chance medical advances of which stem cell therapies will play an important part will make this a reality within the next 17 years. Though living forever, he says, is not the ultimate goal but a rather large side effect of medicine which will successfully prevent or repair the damage that comes with ageing.

For New Jersey-based Robert Hariri, who co-founded Human Longevity Inc, which set its sights more modestly on making 100 the new 60, stem cells derived from placentas present especially exciting opportunities. A biomedical scientist, surgeon and entrepreneur, Hariri says his current venture Celularity which is focused on engineering placental cells, including stem cells, to create drugs for cancer and other conditions is not as concerned about the actual age number, but about preserving human performance as we age and treating the degenerative diseases that rob us of our quality of life.

Many of those working in the field, however, remain cautious in their optimism. Researchers have highlighted the potential risks of giving pluripotent cells to patients, whether they are induced or embryonic, as these cells can develop cancer-causing mutations as they grow.

Davide Danovi, a scientist at Kings College Londons Centre for Stem Cells & Regenerative Medicine, says the path to stem cell-based therapy is very long and full of hurdles. The supply chain involves challenges, he says. On the one hand, allogeneic treatments those with stem cells derived from one individual and expanded into big batches to create cells to treat many individuals have the advantage of being similar to the traditional pharmaceutical business models. The product is clear, its something that comes in a vial and can be scaled up and mass produced, Danovi says. But this treatment can present a greater risk of rejection from the patient, as opposed to the more bespoke autologous option which is more expensive and time-consuming as it involves extracting a patients own stem cells before reprogramming them.

Danovi is most excited by the potential of stem cells to treat age-related macular degeneration. In 2017 Japanese scientist Masayo Takahash led a team that administered transplants of artificially grown retinal cells created from induced pluripotent stem cells taken from donors to five patients with the eye condition, which can cause blindness, and theyre reported to be doing well. The eye, he says seems to be a place where immunity plays less of a role relative to other issues, so you can host cells which come from another individual with fewer problems [of rejection]. But, with other organs such as the liver, he says there are major conceptual problems with creating enough tissue. Its like the clean meat burger - you're talking about a production that is, in many cases, not easy to reach with the current technology.

Hariri believes placentas will solve some of the production challenges crucially, theyre an abundant commodity, with the vast majority thrown out after childbirth. His interest was sparked 20 years ago when his oldest daughter was in the womb: When I saw her first ultrasound in the first trimester, the placenta had already developed into a relatively sizable organ, even though she was just a peanut-sized embryo. Id been taught that the placenta was nothing more than an interface, but [if that was the case], you would expect that it would grow at the same rate as the embryo. His curiosity piqued, he began to see the placenta not as an interface but as a biological factory, where stem cells could be expanded and differentiated to participate in the development of that foetus. That intrigued me and I started to collect placentas and just, you know, basically disassemble them.

Placentas have numerous benefits, he says they dont carry the same ethical controversy as embryonic stem cells, for one thing. Scientists working on embryonic stem cells have to destroy an early embryo, and that option yields them a dozen cells, which have to be culture-expanded in the laboratory into billions of cells. In contrast, the placenta houses, billions and hundreds of billions of cells, which can be expanded as well, but you're starting out with a dramatically larger starting material.

Increasingly, scientists in the anti-ageing sphere are focusing on an approach that seems like the opposite of planting fresh stem cells into our bodies. Experts such as Ilaria Bellantuono at Sheffield Universitys Healthy Lifespan Institute are working towards creating senolytics medication that could kill off our senescent cells, the zombie cells that accumulate in tissues as we age and cause chronic inflammation. I think stem cells are very good for specific disease, where the environment is still young, Bellantuono says, but the data in animal models tells us that senolytics are actually able to delay the onset and reduce the severity of multiple diseases at the same time for example, there is evidence for osteoarthritis, osteoporosis, cardiovascular disease, Alzheimer's, Parkinson's, and diabetes. She explains that while human trials are still in their early stages, senolytics are likely to be more cost-effective than stem cell therapy and the status quo of older patients taking multiple pills for multiple diseases, which can interact with each other. Besides, she adds, they may actually work in tandem with stem-cell based therapies in the future, with senolytics creating a more hospitable environment in tissues to allow stem cells to do their work.

And as for the so-called penis facial? Its far from the only ultra-expensive stem cell skincare making bold anti-ageing claims but youre probably better off saving your money, as you are with the experimental medical treatments on offer. Stem cells are definitely exciting but theyre not the key to eternal youth. At least, not yet.

Robert Harari will be one of the speakers at WIRED Health in London on March 25, 2020. For more details, and to book your ticket, click here

Why do modern tomatoes taste so bad?

How Tesla became the world's most overvalued car company

Marvel at the incredible real-life Iron Man

How Slack ruined work

Follow WIRED on Twitter, Instagram, Facebook and LinkedIn

Get The Email from WIRED, your no-nonsense briefing on all the biggest stories in technology, business and science. In your inbox every weekday at 12pm sharp.

by entering your email address, you agree to our privacy policy

Thank You. You have successfully subscribed to our newsletter. You will hear from us shortly.

Sorry, you have entered an invalid email. Please refresh and try again.

See the article here:
Are stem cells really the key to making humans live longer? - Wired.co.uk

Sensorized skin helps robots understand where the hell they are – The Next Web

Clumsy robots have been offered hope of improving their coordination after MIT researchers found a new way to help them find their bearings.

The systemgives soft robots a greater awareness of their movements by analysing motion and position data through a sensorized skin.

It works by collecting feedback fromsensors on the robots body.A deep learning model then analyses the data to estimate the robots 3D configuration.

[Read:Scientists used stem cells to create a new life-form: Organic robots]

The sensors are comprised of conductive silicone sheets, which the researchers cut into patterns inspired by kirigami a variation of origami that that involvescutting as well as folding paper. These patterns make the material sufficiently flexible and stretchable to be applied to soft robots.

A deep neural network then captures signals from sensorsto predict the best configuration for the robot.

The system aims to overcome the problem of controlling soft robots that can move in countless direction by giving themproprioception an awareness of their position and movements.It could eventually make artificial limbs better at handling objects.

The researchers used the system to teach an elephant trunk-shaped robot to predict its own position as it rotated and extended.

We want to use these soft robotic trunks, for instance, to orient and control themselves automatically, to pick things up and interact with the world, said MIT researcherRyan Truby, who co-wrote a paper describing how the system works. This is a first step toward that type of more sophisticated automated control.

Truby admits that the system can not yet capture subtle or dynamic motion. But it could at least reduce the clumsiness that has embarrassed robotkind for decades.

Youre here because you want to learn more about artificial intelligence. So do we. So this summer, were bringing Neural to TNW Conference 2020, where we will host a vibrant program dedicated exclusively to AI. With keynotes by experts from companies like Spotify, RSA, and Medium, our Neural track will take a deep dive into new innovations, ethical problems, and how AI can transform businesses. Get your early bird ticket and check out the full Neural track.

Published February 13, 2020 17:10 UTC

Follow this link:
Sensorized skin helps robots understand where the hell they are - The Next Web

What makes your hair turn white faster – The Star Online

People usually start gradually greying in their thirties. Once across the age of 50, one will be hard-pressed to successfully disguise ones white hair without paying monthly visits to a hairdresser.

However, medical reports suggest the process of hair colour loss, which scientists call canities or achromotrichia, can be greatly accelerated by persistent acute stress or severe trauma.

Some historians have speculated that the French Queen Marie Antoinettes hair turned white when she heard she was to be guillotined at the height of the French Revolution in 1793.

For the longest time, its been said that stress makes the hair turn white, but until now, there was no scientific basis for this belief.

Our study proved that the phenomenon does indeed occur and we identified the mechanisms involved.

In addition, we discovered a way of interrupting the process of hair colour loss due to stress, said Thiago Mattar Cunha, a researcher affiliated with the Center for Research on Inflammatory Diseases (CRID) a Research, Innovation and Dissemination Center funded by FAPESP and hosted by the University of So Paulos Ribeiro Preto Medical School in Brazil.

The study was conducted in partnership with a group led by Hsu Ya-Chieh, a professor of regenerative biology at Harvard University in the United States.

According to Cunha, the results, published recently in the journal Nature, were partly serendipitous.

We were conducting a study on pain using black C57 mice, a dark-furred laboratory strain, he said.

In this model, we administered a substance called resiniferatoxin to activate a receptor expressed by sensory nerve fibres and induce intense pain.

Some four weeks after systemic injection of the toxin, a PhD student observed that the animals fur had turned completely white.

The experiment was repeated several times until the CRID researchers concluded that the phenomenon was indeed due to the application of resiniferatoxin, a naturally-occurring chemical found in resin spurge (Euphorbia resinifera), a cactus-like plant native to Morocco.

We set out to check the hypothesis that the loss of fur colour resulted from pain-induced stress, Cunha said.

We designed a very simple experiment to see if the phenomenon was dependent on activation of sympathetic nerve fibres.

He explained that the sympathetic nervous system is directly affected by stress.

This division of the autonomic nervous system consists of nerves that branch from the spine and run throughout the body.

It controls the organisms fight or flight response to imminent danger, triggering the release of adrenaline and cortisol to make the heart beat faster, blood pressure rise, respiration accelerate and the pupils dilate, among other systemic effects.

After injecting resiniferatoxin into the mice, we treated them with guanethidine, an anti-hypertensive capable of inhibiting neurotransmission via sympathetic fibres.

We observed that the process of fur colour loss was blocked by the treatment, Cunha said.

In another experiment, neurotransmission was interrupted by the surgical removal of sympathetic fibres.

In this case too, fur colour was not lost in the weeks following pain induction.

These and other experiments conducted by our group demonstrated the participation of sympathetic innervation in achromotrichia and confirmed that pain is a powerful stressor in this model.

But it remained to detail the mechanisms involved, he explained.

Maturing too quickly

Cunha spent a period at Harvard as a visiting professor in 2018-19 with a scholarship from the joint programme Harvard holds with CAPES, the Brazilian Education Ministrys Office for Faculty Development.

In conversations with colleagues, he heard that a Harvard group had made similar discoveries to those of his group at So Paulo, and that their findings were also partly accidental.

Professor Hsu Ya-Chieh invited me to join a project in which the phenomenon was being investigated in more detail.

Shes a leading researcher on processes that control skin stem cell differentiation, Cunha said.

His group already knew by then that pain-related stress was somehow making the melanocyte stem cells in the hair follicle bulb mature too soon.

These cells are responsible for yielding melanin-producing cells. Melanin is the pigment primarily responsible for skin and hair colour.

In a young individual, the cells are undifferentiated like all stem cells, but with ageing, they gradually differentiate.

Once the process is complete, they stop producing the melanocytes that produce melanin, Cunha explained.

We used various methodologies to show that intense sympathetic activity speeds up differentiation significantly.

In our model therefore, pain accelerated the ageing of melanocyte stem cells.

When we started to study this, I expected that stress was bad for the body but the detrimental impact of stress that we discovered was beyond what I imagined, Prof Hsu said.

After just a few days, all of the pigment-regenerating stem cells were lost. Once theyre gone, you cant regenerate pigment anymore. The damage is permanent.

Study lead author and postdoctoral fellow Zhang Bing added: Acute stress, particularly the fight-or-flight response, has been traditionally viewed to be beneficial for an animals survival.

But in this case, acute stress causes permanent depletion of stem cells.

Other systems in the organism are probably affected by intense stress in a similar manner to the hair follicle bulb.

We dont know for sure what the implications are, Cunha said.

Im currently working with other researchers on an investigation of the effects of sympathetic activity in other stem cell subpopulations.

Altered gene expression

RNA (ribonucleic acid) sequencing was one of the methodologies used to explore the mechanisms that promote melanocyte stem cell differentiation.

The researchers used this technology to compare the gene expression profiles of mice that received the injection of resiniferatoxin developing pain, stress and fur colour loss with those of mice injected with a placebo.

We looked for genes whose expression was most altered after stress induction, and one caught our attention: the gene that encodes a protein called CDK (cyclin-dependent kinase).

This is an enzyme that participates in cell cycle regulation, Cunha said.

When the researchers repeated the pain induction procedure and treated the mice with a CDK inhibitor, they found that melanocyte stem cell differentiation was prevented, as was fur colour loss.

This finding shows that CDK participates in the process and could, therefore, be a therapeutic target, he said.

Its too soon to know whether it will actually become a target someday in clinical practice, but its worth exploring further.

In another experiment, the researchers demonstrated that when the sympathetic system is robustly activated, the fibres that innervate hair follicle bulbs release noradrenaline very near the melanocyte stem cells.

We showed that melanocyte stem cells express the protein ADRB2 (beta-2 adrenergic receptor), which is activated by noradrenaline, and we discovered that the stem cells differentiate when this receptor is activated by noradrenaline, Cunha said.

To confirm the finding, the researchers repeated the experiment using mice that had been genetically modified so as not to express ADRB2.

As suspected, their fur did not turn white after they were injected with resiniferatoxin.

In another test, we injected noradrenaline directly into the skin of the mouse.

As a result, the fur around the site of the injection turned white, Cunha said.

Finally, the group treated a primary culture of human melanocytes (melanin-producing cells obtained directly from the skin of a volunteer) with noradrenaline, which as noted earlier, is released by the sympathetic nerve fibres in hair follicles.

The result was an increase in expression of CDK similar to that observed in mice.

According to Cunha, the researchers do not yet know if there will be future aesthetic applications for their findings, such as the development of a drug that prevents the hair colour loss associated with ageing.

It would be necessary to see if a CDK inhibitor has side effects, and if so, whether they would be outweighed by the aesthetic benefit, he said. Agncia FAPESP

Originally posted here:
What makes your hair turn white faster - The Star Online

The ghost behind grey – THE WEEK

Marie Antoinette, the last queen of France, is best remembered for her reckless extravagance and her tragic death. French revolutionaries executed her with a guillotine in 1793 for treason. Popular belief is that her hair turned grey the night before her death.

There are other stories and anecdotes like this which suggest that stressful experiences are correlated with the phenomenon of hair greying. Now, for the first time, Harvard University scientists have found the real mechanism behind it.

Published in the journal Nature, the study was initiated with the aim of analysing the effect of stress on various tissues. Hair and skin are the tissues that are visible from outside. So, the researchers started with effects of stress on hair colour.

Their initial hypothesis was that stress initiates an immune attack on pigment-producing cells in the hair follicles. However, when they tested it on mouse, they found those lacking immune cells (nude mouse) also exhibited hair greying. Then, their attention turned to a hormone called cortisol. It is responsible for regulating a wide range of processes through the body, including metabolism and the immune response. In response to stress, extra cortisol is released to help the body to respond appropriately. Surprisingly, when the researchers removed the adrenal gland from the miceto prevent production of cortisol-like hormone aldosteroneand triggered stress, their hair still turned grey.

Finally, the researchers tested the sympathetic nerves that branch out to each hair follicle. The sympathetic nerve system is responsible for the bodys fight-or-flight response. They found that in a stressful condition, the sympathetic nerves release a chemical called norepinephrine, which is taken up by certain stem cells in the hair follicle. Stem cells act as a reservoir for pigment-producing cells. During hair regeneration, some of these stem cells are converted into pigment-producing cells to give colour to new hair strands.

When these stem cells take norepinephrine, they are activated excessively and all of them get converted into pigment-producing cells. This would prematurely deplete the reservoir for pigment-producing cells. Once all of them are consumed, pigment regeneration would stop, resulting in permanent damage. The fight-or-flight response has been traditionally viewed as beneficial. But now it is proved that it has its own detrimental effects, too.

The study established how neurons interact at the cellular and molecular level to link stress with hair greying. The findings are expected to put light on the broader effects of stress on various body parts. The scientists will initiate new studies that seek to modify or block the damaging effects of stress.

Read the original here:
The ghost behind grey - THE WEEK

Fountain of Youth within reach without surgery – KIIITV.com

CORPUS CHRISTI, Texas In today's world, millions are spent on cosmetic surgery to keep that healthy glow everywhere we go. However, if you don't have thousands of dollars to pay for it, there are other, more safe alternatives that are non-surgical.

A few years ago I started noticing that no matter how much sleep I got, I just didn't look as fresh as I did when I was younger. I thought maybe it was time to talk to a professional about how I could get back that youthful appearance.

Stress, the daily rigor of life, and gravity all take their toll on the face, and there's nothing wrong with admitting you need a little help to look and feel a little better.

I visited with Dr. Vijay Bingdingdavale, a local cosmetic surgeon, to address my concerns and explore some options. The first thing he suggested was injections to relax my forehead area.

"That'll lift the eyebrows as well. What happens is when we inject these two areas, your eyebrows come a little bit higher, and giving you more of a refreshed look," Dr. Bingdingdavale said.

Then adding fullness to the upper cheeks would bring some balance to my face.

"You see how when you have a little bit more cheek fullness it harmonizes the face? It lifts this and fill this in as well," Dr. Bingdingdavale said.

Using fat transfer as opposed to artificial fillers has an additional benefit.

"We see this a lot, because there are stem cells in the fat, it makes the overlying skin more refreshed and more young-looking," Dr. Bingdingdavale said.

In the end, that's what we all want -- a more refreshed appearance even if we don't get our eight hours every night.

You can catch Dr. Vijay Bingdingdavale on First Edition on Sundays discussing skin care and healthy living.

More from 3News on KIIITV.com:

See the rest here:
Fountain of Youth within reach without surgery - KIIITV.com

Defense presents witnesses on day 3 of trial | News, Sports, Jobs – Williamsport Sun-Gazette

The defense for Joseph Sentore Coleman Jr. rested their case Wednesday with witnesses who contradicted previous statements by the prosecutions witnesses.

Both sides of the aisle are expected to make their closing statements today, before the jury is let out to deliberate the verdict in the case against Coleman, 38.

Coleman, who allegedly robbed and murdered Christopher Wilkins on Aug. 30, 2016, at 505 Park Ave., is already serving two life sentences for a double homicide on Halloween 2016.

Previously unknown to the jury, Louis Martin, frequent visitor of the Park Avenue residence, was called by Jeana Longo, Colemans attorney.

As Coleman and James Rooks allegedly entered the Park Avenue home with the intention of robbing the known drug dealers, Wilkins and Savoy Jennings, Martin said he was just waking up in Jeff Greenes adjacent bedroom from a long night of doing drugs and watching movies.

I was sitting in a chair, just closing my eyes, said Martin, when he heard shouts from the second bedroom.

I aint got nothing, I aint got nothing,' he said a voice shouted.

Then a pop it was a gunshot, said Martin.

Peering out from inside the room, he said two masked people came out of the room and looked at the body of Wilkins before running out.

One was short, slim and was built, he said. One was taller with really dark skin neither of them had dreadlocks.

Martin said he was familiar with Coleman from passing him in the street, but was not a friend of his.

However, Martin said he was familiar enough with Coleman that if his face were covered in a mask that he would know.

When they left, I waited two to three seconds. I see Chris on the floor, he said. I shook him, but Wilkins didnt move.

Martin said he alerted Jeff Greene before he left. The situation had traumatized him.

Ill be honest, I needed a drink to calm down, so I went to the bar, he said.

Later that day in initial police interviews, Martin told police that he drank about a six-pack of beer.

Martin gave a description of the men he thought murdered Wilkins for sketches to be made of their faces after police insisted, he said.

You cant make out their features, but I know what I saw, he said.

The defense also called John Greene, brother of Jeff Greene, and who lived in the second floor apartment of 505 Park Ave.

He too said he doubted Coleman committed the crime.

(Coleman) had been there plenty of times, he said, and didnt need help figuring out the layout of the home.

John Greene testified that he had seen Brown a native of New York wearing a hat similar to the one found at the scene. Namely, a Brooklyn Dodgers baseball hat.

Although Wilkins killer is still legally unproven, Dr. Barbara Bollinger, the forensic pathologist who conducted the autopsy on Wilkins, said she knew the man died immediately from the gunshot.

The projectile entered Wilkins brain near his left earlobe, passed through his cerebellum and brain stem, which collectively control balance, coordinating movement and breathing.

I think this would have incapacitated him within the span of seconds, she said.

Additionally, the gunshot caused stippling, she said, or abrasions from unburned gunpowder or debris, which typically indicates the gun was 12 inches to three feet away.

Colemans DNA was found on both the hat and a cut-off pant leg, which were used as disguises in the crime and discarded at the scene, said Regina Kuzero and Brittney Lenig, forensic scientists with the Pennsylvania State police, and Jennifer Bracamontes, a data analyst.

Though up to five peoples DNA was found on the two articles, Bracamontes said using a supercomputer to allow her to identify Coleman as the major contributor. This method does not allow anyone to learn when or how the DNA, which is typically obtained through skin cells, was rubbed into the masks.

The trial resumes at 10 a.m. today in courtroom three before Judge Marc F. Lovecchio.

Williamsport Bureau of Fire remains without a chief as of Friday, as former chief Todd Heckman has decided to go ...

The average daily inmate population decreased from 331.52 in December 2019 to 319.51 in January, according to ...

HARRISBURG The first Democratic presidential candidates are filing voter signatures to get on Pennsylvanias ...

CLARION State Rep. Cris Dush (R-66) announced he is seeking the nod from constituents of Senate District 25 ...

Read more here:
Defense presents witnesses on day 3 of trial | News, Sports, Jobs - Williamsport Sun-Gazette

Global Stem Cells Types, Technologies And Therapeutics Market Is Estimated To Expand At a Healthy CAGR in Upcoming year 2020-2026 – Jewish Life News

The research report presents a detailed competitive analysis of the Non-Melanoma Skin Cancer Market 2019 market Share, Size, and Future scope 2026. This research report classifies the market by manufacturers, region, type, and applications.

The data presented in the graphical format gives a thorough understanding of the major players of Non-Melanoma Skin Cancer . The restraints and growth, industry plans, innovations, mergers, and acquisitions are covered in this report. The market is segmented based on key industry verticals like the product type, applications, and geographical regions.

Get a Sample Copy of the Report @ https://www.reportspedia.com/report/life-sciences/global-non-melanoma-skin-cancer-market-report-2019,-competitive-landscape,-trends-and-opportunities/28562 #request_sample

Key Players of Non-Melanoma Skin Cancer Report are:

OncothyreonVarian Medical SystemsLEO PharmaAqua PharmaceuticalsMedaIRX TherapeuticsMoberg PharmaEli Lilly and Co.Cannabis ScienceMylan PharmaceuticalMerck & Co.Boehringer IngelheimCellceutix Corp.Bristol Myers Squibb Co.BiofronteraElektaICADValeant PharmaceuticalsSun Pharma IndustriesGaldermaAlmirallGENEXTRAF. Hoffmann-la RocheNovartis International

Short Description of Non-Melanoma Skin Cancer Market 2019-2026:

The Non-Melanoma Skin Cancer market was valued t XX Million US$ in 2019 and is projected to reach XX Million US$ by 2026, at a CAGR of XX% during 2019-2026. The research report gives historic report from 2013-2018.

The market is segmented into below points:

Market by Type/Products:

Type 1Type 2Type 3

Market by Application/End-Use:

Application 1Application 2Application 3

Enquire or share your questions if any before the purchasing this report @ https://www.reportspedia.com/report/life-sciences/global-non-melanoma-skin-cancer-market-report-2019,-competitive-landscape,-trends-and-opportunities/28562 #inquiry_before_buying

Outline of the data covered in this study:

The market study covers the forecast Non-Melanoma Skin Cancer information from 2019-2026 and key questions answered by this report include:

In this study, the years considered to estimate the market size of Non-Melanoma Skin Cancer are as follows:

Historic Period: 2015-2019.

Base Year: 2019.

Estimated Year: 2020.

Forecast Year 2020 to 2026.

Significant Features that are under Offering and Key Highlights of the Reports:

Table of contents:

For More TOC Content Continued,

Get A Sample Pdf Copy Of Table Of Content Describing Current Value And Volume Of The Market With All Other Essential Information @ https://www.reportspedia.com/report/life-sciences/global-non-melanoma-skin-cancer-market-report-2019,-competitive-landscape,-trends-and-opportunities/28562 #table_of_contents

Thanks A Million For Reading! You Can Also Request Custom Information Like Chapter-Wise Or Specific Region-Wise Study As Per The Given Specifications.

Read more from the original source:
Global Stem Cells Types, Technologies And Therapeutics Market Is Estimated To Expand At a Healthy CAGR in Upcoming year 2020-2026 - Jewish Life News

Penn State receives grant to study bioprinting tissue for facial reconstructions – The Daily Collegian Online

Penn State researchers have received a $2.8 million grant to investigate 3D bioprinting tissue for facial reconstructions, according to a Penn State news release.

The grant, from the National Institutes of Healths National Institute of Dental and Craniofacial Research, funds five years of research exploring methods for bioprinting face, mouth and skull tissue directly into patients during surgery, with the ultimate goal of developing a bioprinting technology, according to the release.

Craniomaxillofacial reconstruction currently presents challenges for doctors because it requires precisely stacking several different types of tissue. Penn States researchers hope to solve this problem by bioprinting the tissue directly into the subject, according to the release. Researchers will also be investigating the use of stem cells, biomaterials and differentiation factors in this process.

The team of researchers that received the grant includes professors of plastic surgery, biomedical engineering, and orthopedics and rehabilitation.

The researchers plan to investigate printing each type of tissue necessary for craniomaxillofacial reconstruction bone, fat and skin tissue individually, then study composite tissues that include all three of these layers. They hope that this will help them better understand how vascularization occurs in each type of tissue.

Ultimately, researchers hope to learn how different types of tissue interact and how bioprinting tissue directly into subjects will affect the facial reconstruction process.

If you're interested in submitting a Letter to the Editor, click here.

Read this article:
Penn State receives grant to study bioprinting tissue for facial reconstructions - The Daily Collegian Online

University City Science Center partnership with CSL Behring accelerates the search for new biotherapies at the University of Pittsburgh and the…

PHILADELPHIA, Feb. 13, 2020 /PRNewswire/ --Researchers at the University of Pittsburgh and the University of Delaware have been awarded funding and support to accelerate their search for new medicines through an ongoing partnership between global biotechnology leader CSL Behring and the University City Science Center.

CSL Behring awarded Cecelia Yates, Ph.D., from the University of Pittsburgh, and Eleftherios (Terry) Papoutsakis, Ph.D., from the University of Delaware, $250,000 each and an opportunity to work alongside the plasma-based biotech's own experts in an effort to help transform their ideas into groundbreaking therapies to improve patients' health.

CSL Behring, a global leader in treating rare and serious diseases which has its global operational headquarters in King of Prussia, PA, identified the medical researchers utilizing the Science Center's, sourcing innovation framework for technology commercialization, support and infrastructure to efficiently evaluate technologies from multiple institutions.

"Congratulations Drs. Yates and Papoutsakis on being the first recipients of the CSL Behring-Science Center Research Acceleration Initiative," said Bill Mezzanotte, MD, Executive Vice President, Head of Research and Development for CSL Behring. "This initiative is another example of the strength of our partnership with the Philadelphia-based University City Science Center as we look in our 'backyard' for innovative scientific advancements that have the potential to help rare disease patients lead full lives. Our growing R&D organization looks forward to working with Dr. Yates and Dr. Papoutsakis in the years ahead to advance their scientific research."

"The Science Center couldn't be more excited about facilitating the introduction between these talented investigators and CSL Behring," says John Younger, MD, Vice President of Science & Technology at the Science Center. "Our network of universities, biotech, and pharmaceutical companies was built exactly for making these connections not just possible but easy. Supporting the development of new biologics, and new drug and gene delivery systems like those developed by Drs. Papoutsakis and Yates will continue to be an important focus of our team."

The investigators and technologies selected in this inaugural round of the program include:

Cecelia Yates, Ph.D., University of Pittsburgh, for the use of FibroKine biomimetic peptides as potential targeted therapeutic treatment of pulmonary fibrosis.

Fibrotic diseases constitute a significant health problem in the US with the ability to impact any organ that is scarred from chronic disease, including the heart, lung, liver, arteries, and skin. In some cases, progressive and life-threatening diseases follow, but effective therapies don't yet exist. In response, Dr. Yates has developed FibroKine, a chemokine-based class of biomimetic peptides that are potential therapeutic agents for the targeted treatment of tissue fibrosis. Support from CSL Behring will allow the Yates group to test FibroKine peptide ability to effectively treat and halt the progression of pulmonary fibrosis.

Eleftherios (Terry) Papoutsakis, Ph.D., University of Delaware, for exploring the use of cell derived micro-particles and vesicles (MkMPs) for the treatment of thrombocytopenias and in stem-cell targeted gene therapies

Gene delivery to or editing of Hematopoietic (blood) Stem and Progenitor Cells (HSPCs) can provide therapeutic benefit to patients for a variety of genetic hematological disorders, ranging from low platelet count diseases to primary immune deficiencies like Wiskott-Aldrich syndrome. With the support of CSL Behring, Dr. Papoutsakis will investigate the use of human MkMPs: 1) to promote in vivo platelet biogenesis as a potential treatment for thrombocytopenias, and 2) for the in vivo delivery of DNA, RNA, and proteins to HSPCs in gene therapy applications.

In October 2018, the Science Center and CSL Behring joined forces to identify promising technologies and support the commercialization pathways of potential new discoveries. Researchers at academic and research institutions throughout the region were invited to submit proposals for projects with a focus on therapeutics that fit within CSL Behring's five therapeutic areas of expertise: immunology and neurology; hematology and thrombosis; respiratory; cardiovascular and metabolic; and transplant.

Following the success of the initial pilot, the CSL Behring Science Center Research Initiative has expanded and is currently accepting applicationsfrom researchers at 28 institutions across six states with awardees to receive up to $400,000 each.

About CSL BehringCSL Behringis a global biotherapeutics leader driven by its promise to save lives. Focused on serving patients' needs by using the latest technologies, we develop and deliver innovative therapies that are used to treat coagulation disorders, primary immune deficiencies, hereditary angioedema, inherited respiratory disease, and neurological disorders. The company's products are also used in cardiac surgery, burn treatment and to prevent hemolytic disease of the newborn. CSL Behring operates one of the world's largest plasma collection networks, CSL Plasma. The parent company, CSL Limited(ASX: CSL; USOTC: CSLLY), headquartered in Melbourne, Australia, employs more than 25,000 people, and delivers its life-saving therapies to people in more than 70 countries. For inspiring stories about the promise of biotechnology, visit Vita CSLBehring.com/vitaand follow us on Twitter.com/CSLBehring.

About the Science CenterLocated in the heart ofuCitySquare, the Science Center is a mission-driven nonprofit that commercializes promising technology, cultivates talent and convenes people to inspire action. For over 50 years, the Science Center has supported startups, research, and economic development across the emerging technology sectors. As a result, Science Center-supported companies account for one out of every 100 jobs in the Greater Philadelphia region and drive $13 billion in economic activity in the region annually. By providing the right help at the right time, the Science Center is turning bright ideas into businesses and nurturing a workforce to support our 21st century economy. For more information about the Science Center, go towww.sciencecenter.org

SOURCE CSL Behring

http://www.cslbehring.com

Go here to see the original:
University City Science Center partnership with CSL Behring accelerates the search for new biotherapies at the University of Pittsburgh and the...

Makeup artist shares her FOUR favorite eye creams that you CANNOT buy in a store – WISHTV.com

With so many options on the market, how do you know you are making the right decision when choosing an eye cream?

As a makeup artist, Brandie Price says she relies heavily on the tools she has in her kit to create the best possible outcome for clients whether that be a television show, photo shoot, or speaking engagement. Each set of eyes is different, and each persons goals are different, so a variety of tools are needed to achieve a variety of goals on hand. Here are Brandies TOP 4 favorite eye creams:

Arbonne-RE9 Advanced Lifting and Contouring Eye CreamThe RE9 eye cream uses cassava, which initiates the appearance of a nearly instant eye lift. Additional ingredients like Peony to deepen the conditioning and Algae to support the extracellular matrix help to tone and contour your delicate eye area. I use this this eye cream on clients that have a touch of droopiness above the eye area. A few minutes of waiting gives a more smooth canvas for eye shadow application. This eye cream can be used all 360 degrees around the eye.

Artistry-Supreme LX Eye CreamThe Supreme LX line by Artistry uses 2 of the most expensive ingredients to resynchronize our skins 24 hour biorhythms. If you dont get 8 hours of sleep, you decrease the possibility of proper cellular structure regeneration. The Cardiolipin, 24K gold, and gardenia grand flora stem cell extracts encourage your skins natural biorhythms to increase that cellular generation regardless of the time you spend sleeping. This eye cream has an instant reduction in creepiness and droopiness and long term effects similar to that of Blepharoplasty. I use this eye cream with clients that have signs of crepiness or crepiness that runs in their family, and long term clients that want to see lasting benefits without surgery.

Monat-30 Second MiracleThe Monat 30 Second Miracle is just that. Within 30 seconds of application you literally feel and start to see all of the puffiness and discoloration disappear. This effect is no trick pony, the results last up to 12 hours. I use this for on the spot reductions of puffiness for on camera clients, photo shoots, and speaking engagements. This is a great addition to your daily eye cream and skin care regimen. It does not lead to a lasting result, think of it more as a booster. Its versatile in that it can also be used in creases along the forehead, laugh lines, and any other location you have developed a fine line.

Rodan & Fields-Redefine Multifunction Eye CreamThe R&F Redefine Eye Cream uses Glycerine to penetrate the skins surface and restore a healthy and hydrated moisture table in the delicate skin around the eye. A proprietary blend of peptides help to reduce fine lines and wrinkles over time. Hydration helps your skin cells look more plump like grapes and less shriveled like a raisin. I use this eye cream to instantly boost hydration. Many of my clients suffer from dehydration while traveling and are coming right into a photo shoot or television segment with tired, dry eyes and this is a wonderful solution.

Visit http://www.brandiepriceimage.com for Giveaway details. There will be 4 lucky winners, who will each win one of the featured eye creams in Brandies list of favorites!

Brandie Price is an Award-Winning Makeup Artist and Celebrity Personal Brand Expert. You can find her at http://www.brandiepriceimage.com or on Social: Instagram @brandiepriceimage or Brandie Price on Facebook.

See original here:
Makeup artist shares her FOUR favorite eye creams that you CANNOT buy in a store - WISHTV.com

Winter skincare routine: products to protect your face from cold weather – T3

In the rush to get ready for work or kick back in front of Netflix at night, its easy to forget to look after your skin. But as winter bites, its time to step up your skincare routine, or risk developing dry, flaky and uncomfortable skin.

Of course, everyones skin is different and one mans rich moisturiser is anothers potential acne, but from vitamin-infused face washes, to SPF and face oil, weve got something to keep everyones skin looking its best.

(Image credit: Mr Porter)

The best mist to keep your skin juicy

+Great for freshening up+Contains hyaluronic acid

If you work in a highly heated or air-conditioned office and you have dry or dehydrated skin, youll need a little something to keep you skin happy. Face mists are brilliant because you can spritz and go without any mess or a mirror. Dr Barbara Sturms hydrating face mist is infused with hyaluronic acid which is great for hydrating dry and dehydrated skin, as well as purslane extract to nourish skin while protecting cells from free radicals. If thats not enough, its also packed with detoxifying extracts such as lemon, aloe vera and broccoli to minimise the effects of pollution and stress.

(Image credit: Mr Porter)

The best SPF to block harmful rays

+SPF 50+Great price

Whether youre whooshing down ski slopes or going for a wintery walk, an SPF is essential to block harmful rays and to keep you looking younger for longer. Jaxon Lanes Rain or Shine moisturising sunscreen is designed to shield your skin from UVA and UBV rays and offers SPF 50+ protection. Lightweight and non-greasy, it's infused with vitamin E, hyaluronic acid, green tea, liquorice root and ginseng so it not only protects but moisturises and enlivens your skin too.

(Image credit: Mr Porter)

Best deep-cleaning cleanser

+Great price point+Deep cleaning power of charcoal+Suitable for all face types

Washing your face in the winter isnt always the most pleasurable experience if your bathroom is cold. But a nice face wash can help. Clinque for Mens charcoal face wash harnesses the deep-cleaning power of charcoal, which is great for all skin types, especially those with slightly greasy complexions. The detoxifying gel formula is designed to work into a foam and draw out dirt, oil and impurities but isnt drying. Like all Clinque products its non-scented, which makes it a winner for sensitive skin too.

(Image credit: Mr Porter)

Best for the winter sports

+Hydrating, soothing solution+Designed to protect

Gliding down ski slopes and playing in powdery snow may fun, but a dry, red face blasted by the wind and sun isnt, so you definitely dont want to go off-piste with your skincare. If youre going skiing or are spending lots of time in the great but freezing outdoors, try Dr Barbara Sturms aptly-named Ski Cream. Its definitely not cheap, but it does promise a lot, acting as a protective shield against wind and extreme climates. Suitable for all skin types, the cream contains balloon vine, blackcurrant oil and purslane to soothe skin and reduce redness, while shea butter and jojoba oil lock in moisture.

(Image credit: Mr Porter)

The best moisturising serum

+Natural ingredients+Lighter than creams+Beautiful packaging

-Empty List

Aesop may be a favourite on Instagram thanks to its seriously stylish packaging, but the skincare brands parsley seed range packs a botanical punch. The anti-oxidant serum is a lighter alternative to creams and can be used daily after cleaning. The aloe-vera based formula contains other botanical extracts, such as parsley and grape seed oils to soften and moisturise. Plus, its designed to give skin strength and flight of environmental aggressors, which is ideal for winter months and city living alike. Its a stylish skincare solution that wont break the bank.

(Image credit: Mr Porter)

Best for brightening the complexion

+Exfoliates and brightens in one+Can help with pigmentation problems+A good multitasker

You remember to eat your five a day, but vitamin-infused skincare is great for keeping your face looking good too. 111SKINs vitamin C brightening cleanser is a great multitasker, tackling lots of issues in the time it takes to wash your face. A great addition to your morning routine during the winter months, its packed with radiance-boosting vitamin C to help reduce hyper-pigmentation, age spots and uneven skin tone. The exfoliating formula promises leaves your complexion looking clear, even and illuminated, which isnt bad for a quick scrub. Its not cheap, but it might just work miracles.

(Image credit: Mr Porter)

The best anti-ageing moisturiser

+High tech formula+Free from parabens, sulphates and gluten+For all skin types

Not all moisturisers are created equal. Sure, some are a couple of quid and do a little to keep your skin soft, but others, like MALIN + GOETZ advanced renewal moisturiser do much more. Of course, all this comes at a cost and the stylish brands high-tech daily moisturiser is pretty expensive. But its blended with antioxidant-rich meadowfoam seed oil and a combination of sugar molecules, barley and sodium hyaluronate to reduce the appearance of fine lines and wrinkles. Meanwhile, linseed extract, which is rich in Omega-3 fatty acids, trap water molecules to make your skin look healthier and plumper, and apple stem cell protects against harsh environments, which is ideal in winter.

(Image credit: Mr Porter)

Best moisturiser for dry and sensitive skin

+Hypoallergenic and gentle+Good for everyday use+Also has some anti-ageing benefits

Everyones skin needs a little extra TLC in the colder months, but those with dry and sensitive complexions can really suffer as chilly winds and harsh heating take their toll. But, PERRICONE MDs hypoallergenic nourishing moisturiser can help. Designed for specifically for dry and sensitive skin, its hypoallergenic and paraben-free, and harnesses the antioxidant properties of vitamin E along with with nourishing olive polyphenols. Gentle enough for everyday use, the brand also claims its good for keeping fine lines and wrinkles at bay.

(Image credit: Mr Porter)

Best lip balm for outdoors

+SPF 30+Water-resistant+Contains natural oils

If youre hitting the slopes or spend a lot of time outside, its important to protect your lips from the elements to avoid them becoming chapped, or sunburnt if theres snow around. Shiseidos Suncare UV Lip Color Splash SPF30 may be a bit of a mouthful, but it will protect your lips admirably. The balm is infused with natural oils to lock in moisture, as well as that all-important SPF protection. It costs considerably more than the likes of Carmex, but its water resistant, you wont need to apply it too often.

(Image credit: Mr Porter)

Best scrub for exfoliating

+Soothing and brightening+Uses sand for exfoliation

-Empty List

Regular exfoliation helps keeps skin healthy and clear, and when done before shaving can reduce bumps and irritation. While its important all year round, its great for preventing patches of dry skin building up and blocking pores in the winter and can make your complexion look brighter. Anthonys facial scrub is formulated with boro boro sand to remove dead cells, as well as soothing aloe vera, algae and chamomile. Antioxidant-rich Vitamin C is also included to protect from environmental stressors and brighten the complexion. The scrub is a handy multitasker and offers a lot of bang for its buck.

(Image credit: Mr Porter)

The best luxury hand cream

+Trendy fragrance+Easily absorbed formula+Luxe packaging

Its not just your face you need to look after in the cold and a hand cream is essential. Byredos Tulipmania hand cream is one of the trendiest options out there. Named after the infamous "tulip mania" period during the Dutch Golden Age when the flowers were in high demand, the cream is lightly fragranced with notes of Freesia and Blond Woods. Byredos hand cream is formulated with moisturising ingredients and has a gel-like consistency that's quick-drying and absorbent, which is a big selling point for busy men and women alike.

Liked this?

Read more:
Winter skincare routine: products to protect your face from cold weather - T3

Spa Awards 2020: Best Specialised Solutions Tackle Every Skin Concern – Harper’s Bazaar Singapore

Photo: Yulia Gorbachenko

BEST ACNE-REDUCING FACIALRejuran Healer+ Laser Peel$737 for 60 minutes, Priv ClinicAt the heart of this facial is polynucleotide, a biopolymer molecule highly compatible with the human body. Delivered into the skin via a series of micro injections, it reportedly helps repair damaged skin cells, boost collagen synthesis, reduce sebum production and even out the skins moisture-oil balance. The miniscule punctures in the skin also trigger its natural wound-healing response, boosting cellular turnover. Some light swelling may appear post-treatment, but it goes away within 24 hours. Meanwhile, skin is visibly suppler, and looks smoother and healthier.

BEST ANTI-AGEING FACIALInstant Youth ProgrammeFrom $260 for 75 minutes, EstheClinicBehold the ultimate helping hand to counter the signs of mature skin. Each treatment is uniquely tailored to your specific skin type and needs, with subsequent sessions building on and enhancing the effects of prior treatments to maximise collagen production for firmer skin. By using the latest in aesthetic technology alongside EstheClinics specially selected cosmeceutical products, the signs of ageing are thus tackled from the inside out, with effects continuing to last up to four months after completing the programme.

BEST ANTI-BLEMISH FACIALTetra+ $398 per session, The Aesthetics Medical ClinicThis four-in-one treatment features a symphony of lasers with varying wavelengths to tackle multiple issues in just one sitting. A pigment wavelength breaks down melanin clusters to improve discoloration; a custom fractional laser refines texture; a superficial wavelength zaps clogged pores clean; and a long-pulse wavelength stimulates collagen production. Expect minimal to no downtimeand a smoother complexion in no time at all.

BEST BRIGHTENING FACIALRejuvenation Laser and Stem Cell Infusion$1,888 for five sessions, The Aesthetics Medical ClinicCombining two laser machinesQ Switch and yellow laserthat work in tandem to give you radiant, glowy skin, this also removes dirt, dead skin cells, oil and superficial hair, so skin is not only brightened, but also clearer and cleaner. The laser also helps to regulate oil production and reduce pigmentation, while the potent 80percent stem cell-derived serum delivers proteins, growth factors and cytokines intoskin to help boost regeneration and repair.

BEST CLEANSING FACIALJet Set$129 for 30 minutes, EPIONIdeal as a maintenance facial for time-strapped individuals, this express purifying solution rejuvenates weary skin in 30 minutes. A highpressure aqua jet peel gently sweeps away any build-up of dry and dead skin, before an ultrasonic deep cleanse purges pores of dirt, sebum and impurities. Jet technology is then used to infuse skin with potent actives with intense hydrating and brightening benefits.

Related article:BAZAAR Spa Awards 2020: Best Face Therapies To Transform And Pamper Your Skin

BEST DETOXIFYING FACIALVitamin C Infusion$288 for 45 minutes, Simply AestheticsBid adieu to skin woes such as open pores, blemishes, pigmentation and dullness with a super-potent dose of medical-grade vitamin C, which smooths and revitalises the skin. Besides getting rid of pore-clogging impurities that can make the skin appear dull or lacklustre, the facial also stimulates the dermal cells to actively produce collagen in order to regain that plump, fresh-faced radiance.

BEST EXPRESS FACIALIDS Electro Infusion (IEI)$280 for 45 minutes, IDS AestheticsGreat as a lunchtime facial, this uses a combination of electronic-magnetic pulses and LED light to brighten and firm skin. Designed to tackle various skin conditionspigmentation, fine lines, wrinkles, dryness, dullnessthis quickie facial is deemed a universal beauty enhancer and works its magic in less than an hour.

BEST EYE LIFT TREATMENTSygmaLift Eyes$670 for 60 minutes, Clifford AestheticsWhether its eyebags or dark circles that no concealer can hide, the root causes of your undereye issues are sussed out with a consultation in order to tailor an effective treatment. SygmaLift therapy, which utilises high-intensity focused ultrasound technology, is then applied to the under-eye area to contract the connective tissues deep within to tighten and smooth skin. The end resulta marked improvement in the appearance of under-eye bags, sagginess, discoloration and linestakes years off your face!

BEST HYDRATING FACIALHydraFacial$250 for 35 minutes, Dr Kevin Chua Medical & AestheticsThis all-in-one treatment starts off with a deep cleanse, and an exfoliating cocktail of salicylic and glycolic acids to break up pore-clogging impurities, allowing the HydraPeel Tip to essentially vacuum out sebum, product build-up, blackheads and dirt, before infusing skin with intensive serums to replenish hydration levels and provide antioxidant protection.

BEST LIFTING & FIRMING FACIALThermage FLX$5,350 for 90 minutes, Priv ClinicWant to reduce the look of fine lines, wrinkles, sagging skin and other signs of ageing, or simply delay their dreaded appearance? Promising just that is the Thermage FLX, which uses radio frequency to stimulate cell regeneration and collagen production. This newgen treatment is optimised for improved comfort and more controlled delivery, and the results from one session is said to last for months.

BEST PORE-REFINING FACIAL3D Deep Pore Cleansing Facial$588 for 90 minutes, Aesthetics Central ClinicFlawless skin can now be had with this signature treatment that utilises a patented device called 50 Micron Jet Technology, where high-pressure micro-jets of water gently push out the sebum and impurities trapped in pores. As the pores are being cleaned out, the machine delivers a serum, designed to lift and tighten skin while encouraging microcirculation, deep into the skin.

BEST REJUVENATING FACIALPicoWay RESOLVE $650 for 30 minutes, Dr Kevin Chua Medical & AestheticsSo named for the technology where laser pulses are delivered in picosecondsa unit of measurement that refers to one trillionth of a seconda PicoWay facial sends small bursts of intense laser energy deep into the skin to stimulate its natural healing abilities. The short pulsations mean that less heat is emitted during the procedure, so you neednt worry about post-treatment burns. Benefits of the treatment, which is suitable for most skin types, include plumper, suppler skin with improved tone and texture.

Related article:Spa Awards 2020 Best Rejuvenating Facial: PicoWay RESOLVE

BEST RESURFACING FACIALPico Fractional Laser Treatment$300 for 60 minutes, Calvin Chan Aesthetic & Laser ClinicVia short but intense pulses of laser energy delivered deep into the dermis, the skin is transformed from the inside out as new collagen and elastin is produced to significantly improve the appearance of pitted acne scars, pigmentation and wrinkles. And if youre worried about downtime, dont. The surface of the skin is left intact while the deep tissue heals, which means theres no recovery time involved.

BEST SHAPING & TIGHTENING FACIALBiologique Recherche Remodeling Face $380 for 90 minutes, Freia AestheticsThis kicks off with a 60-minute booster customised to your skins needs, followed by a proprietary massage that promotes blood flow and stimulates the lymph nodes for a detoxifying effect. The Remodelling Face machine then uses a bespoke blend of electric, galvanic and high-frequency currents to enhance the benefits of the preceding steps, and deliver product actives deeper and more efficiently into skin for a supreme lifting, tightening and plumping effect.

BEST SOOTHING FACIALSeriously Soothing $209 for 90 minutes, EPIONLiving up to its name, this hydrates and calms thirsty skin with a side of sensitivity. Ultrasonic energy is first used to give skin a deep cleanse. This is followed by a dose of much-needed hyaluronic acid and the application of a soothing face mask. The final step: LED red light therapy to help stimulate collagen production and reduce redness or inflammation.

Related article:Cindy Crawford Shows How She Stays Fabulous At Every Age In Our February Issue

Read this article:
Spa Awards 2020: Best Specialised Solutions Tackle Every Skin Concern - Harper's Bazaar Singapore

What is liposuction? How the procedure works and how painful it is – Insider – INSIDER

Liposuction is a surgical procedure to remove extra fat from your body. It started in the 1980s and has become one of the most popular plastic surgeries in the US. An estimated 258,000 Americans got it in 2018.

Today, you can expect to pay around $3,500 for liposuction and most health insurance plans won't cover the cost. But if you're willing to pay the price, liposuction is a relatively safe and quick procedure that can help you shed fat that diet and exercise can't.

Here's what you need to know about how liposuction works and why it's not a weight-loss tool.

Liposuction is a 1-to2-hour-long procedure where fat cells are permanently removed from your body, usually for cosmetic reasons. People who get liposuction don't do it to lose large amounts of weight but rather to help sculpt the shape of their body.

Some of the most common places to have fat removed are the belly, thighs, buttocks, arms, back, the upper neck just under the chin, and jawline/jowls.

Depending on where you're getting the procedure, doctors will either provide a local anesthetic to numb the area of operation or they will give you a general anesthetic so you're unconscious during the procedure.

Then, surgeons will often inject into the area of operation a solution containing a mix of saline solution, a numbing medicine, and medicine the decreases bleeding. This is to help the skin and fat separate from important structures like muscles and blood vessels so they aren't damaged during the suctioning process.

After that, the surgeon inserts a long metal instrument called a cannula under your skin. The cannula then vacuums out your fat. During this process, surgeons may also use a smaller microcannula to remove fat in nearby areas to achieve a more natural, smoother contour.

Once the fat is removed through liposuction it can be discarded or it can be injected back into your body to enhance features like breasts, buttocks, or face. Or, more recently, in the last decade or so, liposuction has also been used to retrieve stem cells a type of cell that can form other specialized cells in the body for laboratory research.

After liposuction, your surgeon will likely recommend you wear a temporary band or brace over the area of operation to help the skin heal. The band or brace also helps prevent fluid from building up in the area of operation where the fat was removed, between the skin and deeper structures like muscles and blood vessels.

Whether you are awake or asleep during liposuction, you shouldn't feel any pain during the procedure, says Marco A. Pelosi II, MD, a cosmetic surgeon with experience performing liposuction procedures. The recovery, also, should be a relatively mild process.

After getting liposuction, you will feel soreness similar to a muscle ache. "The level of this soreness is typically a 2 or 3 out of 10 for a few weeks," says Pelosi, adding that you should be able to go back to work in 2 to 3 days.

Ongoing pain near the area where the cannula was inserted is a risk of liposuction, and if the pain grows or pain killers don't help, you should tell your surgeon.

According to the Cleveland Clinic, you should not use liposuction as a weight loss alternative. It recommends that if you want to lose weight, you should first try diet and exercise, then use liposuction to take care of more stubborn areas like the chin or belly fat.

Moreover, research shows that people who keep up other weight loss practices like a healthy diet and exercise will see better results after liposuction and keep fat from returning to a particular area.

This is because while liposuction permanently removes fat cells from your body, there is nothing to stop the remaining fat cells from getting bigger if you gain more weight.

There are some important safety tips to look for when choosing a liposuction provider.

First, look for a facility that meets national safety requirements. You can verify if a facility is accredited on the American Society of Plastic Surgeons' website here.

Pelosi says that doctors should also do blood work testing and medical clearances before a liposuction procedure to ensure your safety. These tests are to make sure you can safely undergo general anesthesia without complication. If, for example, you have an infection or are pregnant, you may not qualify for the surgery.

Last, but not least, is to look for a surgeon who is board-certified in performing these types of procedures and also has extensive experience with liposuction procedures so you know that they are well versed in the technique. To find out more about a practitioner's experience with liposuction, you can check the American Society of Plastic Surgeons' website.

See more here:
What is liposuction? How the procedure works and how painful it is - Insider - INSIDER

Stem Cell Therapy Market Statistics, Trends, Size, Growth Opportunities, Share Demand and Forecast to 2025 – Jewish Life News

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

To know Untapped Opportunities in the MarketCLICK HERE NOW

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Get Discount on Latest Report @CLICK HERE NOW

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Continue reading here:
Stem Cell Therapy Market Statistics, Trends, Size, Growth Opportunities, Share Demand and Forecast to 2025 - Jewish Life News

COSMETIC SKIN CARE MARKET ENHANCEMENT AND ITS GROWTH PROSPECTS FORECAST 2019 TO 2026 – Reporting 99

The market analysis and insights included in the Cosmetic Skin Care market report presents key statistics on the market status of global and regional manufacturers and is an essential source of guidance which provides right direction to the companies and individuals interested in the industry. To prosper in this competitive market place, businesses are highly benefited if they adopt innovative solutions such as this Cosmetic Skin Care market research report. This wide-ranging market research report acts as a backbone for the success of business in any sector. The market drivers and restraints have been explained in the report with the use of SWOT analysis.

Global cosmetic skin care marketis set to witness a substantial CAGR of 5.5% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Increasing self-consciousness among population and rising demand for anti- aging skin care products are the factor for the market growth.

Global Cosmetic Skin Care Market By Product (Anti-Aging Cosmetic Products, Skin Whitening Cosmetic Products, Sensitive Skin Care Products, Anti-Acne Products, Dry Skin Care Products, Warts Removal Products, Infant Skin Care Products, Anti-Scars Solution Products, Mole Removal Products, Multi Utility Products), Application (Flakiness Reduction, Stem Cells Protection against UV, Rehydrate the skins surface, Minimize wrinkles, Increase the viscosity of Aqueous, Others), Gender (Men, Women), Distribution Channel (Online, Departmental Stores and Convenience Stores, Pharmacies, Supermarket, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026 ;

Complete report on Global Cosmetic Skin Care Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures

Market Definition: Global Cosmetic Skin Care Market

Cosmetic skin care is a variety of products which are used to improve the skins appearance and alleviate skin conditions. It consists different products such as anti- aging cosmetic products, sensitive skin care products, anti- scar solution products, warts removal products, infant skin care products and other. They contain various ingredients which are beneficial for the skin such as phytochemicals, vitamins, essential oils, and other. Their main function is to make the skin healthy and repair the skin damages.

Key Questions Answered in Global Cosmetic Skin Care Market Report:-

Our Report offers:-

Top Key Players:

Market Drivers:

Market Restraints:

Key Developments in the Market:

Customize report of Global Cosmetic Skin Care Market as per customers requirement also available.

Market Segmentations:

Global Cosmetic Skin Care Market is segmented on the basis of

Market Segmentations in Details:

By Product

By Application

By Gender

By Distribution Channel

By Geography

North America

Europe

Asia-Pacific

South America

Middle East & Africa

Competitive Analysis: Global Cosmetic Skin Care Market

Global cosmetic skin care market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of cosmetic skin care market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

About Data Bridge Market Research:

Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

Tel: +1-888-387-2818

Email:corporatesales@databridgemarketresearch.com

Continued here:
COSMETIC SKIN CARE MARKET ENHANCEMENT AND ITS GROWTH PROSPECTS FORECAST 2019 TO 2026 - Reporting 99

Merck’s KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for…

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the pivotal Phase 3 KEYNOTE-355 trial investigating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy met one of its dual primary endpoints of progression-free survival (PFS) in patients with metastatic triple-negative breast cancer (mTNBC) whose tumors expressed PD-L1 (Combined Positive Score [CPS] 10). Based on an interim analysis conducted by an independent Data Monitoring Committee (DMC), first-line treatment with KEYTRUDA in combination with chemotherapy (nab-paclitaxel, paclitaxel or gemcitabine/carboplatin) demonstrated a statistically significant and clinically meaningful improvement in PFS compared to chemotherapy alone in these patients. Based on the recommendation of the DMC, the trial will continue without changes to evaluate the other dual primary endpoint of overall survival (OS). The safety profile of KEYTRUDA in this trial was consistent with that observed in previously reported studies; no new safety signals were identified.

Triple-negative breast cancer is an aggressive malignancy. It is very encouraging that KEYTRUDA in combination with chemotherapy has now demonstrated positive results as both a first-line treatment in the metastatic setting with this trial, and as neoadjuvant therapy in the KEYNOTE-522 trial, said Dr. Roger M. Perlmutter, president, Merck Research Laboratories. We look forward to sharing these findings with the medical community at an upcoming congress and discussing them with the FDA and other regulatory authorities.

The KEYTRUDA breast cancer clinical development program encompasses several internal and external collaborative studies. In addition to KEYNOTE-355, in TNBC these include the ongoing registration-enabling studies KEYNOTE-242 and KEYNOTE-522.

About KEYNOTE-355

KEYNOTE-355 is a randomized, two-part, Phase 3 trial (ClinicalTrials.gov, NCT02819518) evaluating KEYTRUDA in combination with one of three different chemotherapies (investigators choice of either nab-paclitaxel, paclitaxel or gemcitabine/carboplatin) compared with placebo plus one of the three chemotherapy regimens for the treatment of locally recurrent inoperable or mTNBC that has not been previously treated with chemotherapy in the metastatic setting. Part 1 of the study was open-label and evaluated the safety and tolerability of KEYTRUDA in combination with either nab-paclitaxel, paclitaxel or gemcitabine/carboplatin in 30 patients. Part 2 of KEYNOTE-355 was double-blinded, with dual primary endpoints of OS and PFS in all participants and in participants whose tumors expressed PD-L1 (CPS 1 and CPS 10). The secondary endpoints include objective response rate (ORR), duration of response (DOR), disease control rate (DCR) and safety.

Part 2 of KEYNOTE-355 enrolled 847 patients who were randomized to receive KEYTRUDA (200 mg intravenously [IV] on day 1 of each 21-day cycle) plus nab-paclitaxel (100 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle), paclitaxel (90 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle) or gemcitabine/carboplatin (1,000 mg/m2 [gemcitabine] and Area Under the Curve [AUC] 2 [carboplatin] on days 1 and 8 of each 21-day cycle); or placebo (normal saline on day 1 of each 21-day cycle) plus nab-paclitaxel (100 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle), paclitaxel (90 mg/m2 IV on days 1, 8 and 15 of each 28-day cycle) or gemcitabine/carboplatin (1,000 mg/m2 [gemcitabine] and AUC 2 [carboplatin] on days 1 and 8 of each 21-day cycle).

About Triple-Negative Breast Cancer (TNBC)

TNBC is an aggressive type of breast cancer that characteristically has a high recurrence rate within the first five years after diagnosis. While some breast cancers may test positive for estrogen receptor, progesterone receptor or human epidermal growth factor receptor 2 (HER2), TNBC tests negative for all three. As a result, TNBC does not respond to therapies targeting these markers, making it more difficult to treat. Approximately 15-20% of patients with breast cancer are diagnosed with TNBC.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Read more from the original source:
Merck's KEYTRUDA (pembrolizumab) in Combination with Chemotherapy Met Primary Endpoint of Progression-Free Survival (PFS) as First-Line Treatment for...

Human Skin Cells: The Next Anti-Aging Frontier?

Call us biased, but the skincare industry, in particular, is one of our favorites to watch when it comes to technological advancements. From laser zapping to weird-looking at-home devices, the anti-aging sphere is constantly evolving, with new treatments and procedures being launched on the daily. Just 10 years ago, Blackberries (the phone, not the fruit Gisele Bndchen says she avoids) were still the epitome of cool, and no one except makeup artists ever used the word contouring. Ten years from today, will wrinkles, dark spots, and sagging be a thing of the past? Its a slightly exhilarating (and also completely terrifying) thought.

As beauty editors, its our job to stay on top of all thats new in the quest for younger, tauter skin. Right now, were intrigued by a new ingredient trend thats very unexpected (yes, even compared to salmon sperm): human stem cells. Yeah, well let that sink in for a minute. If applying a strangers stem cells on your face sounds creepy or the start of a very niche horror movie, youll want to keep readingthe information ahead might just change your mind. We asked Dr. Hal Simeroth, founder of Stemology skincare and possessor of a Ph.D. in Bioethics, to tell us if human stem cells (and their extracts) are the key to eternal youthor, at the very least, a more prolonged youth. Ready to get really scientific?

Keep scrolling to school yourself on this anti-aging trend.

Everyone likely has a vague notion of what stem cells are, but its probably best to let an expert explain. The term stem cells refers to a rather broad category of cells that participate in tissue generation, regeneration, and renewal, Hal says. In other words, they are the cells that help you, your dog, and the tomatoes in your vegetable garden heal; humans, animals, and plants all have these types of cells. And this is what makes stem cells special: theyre undifferentiated and have the invaluable properties of self-renewal and differentiation, according to Hal. In laymans terms, this means they have the much-coveted ability to divide to make more stem cells, and more stem cells you get the idea. Human stem cells are divided into three primary categories: embryonic, which are the initial stem cells after birth that control the development into a human baby; adult mesenchymel stem cells, which exist in our bodies and are responsible for the repair and renewal of structural tissues; and tissue-specific stem cells, which only repair and rejuvenate specific tissues such as your skin. Remember these, because well touch on them again later.

Before we dive headfirst into human stem cells, lets first talk about plant stem cells. In the skincare industry, theyre the popular crowd: Theyve largely been accepted and welcomed with open arms, touted for their skin-regenerating abilities. The idea is that if this stem cell helps a flower flourish in the freezing temps in some far-off exotic locale, then it must be able to keep your skin dewy and glowing too. But does that logic really make sense? According to Hal, not really. Its false at a primary level, but true at a secondary level, he says. Um, what? The directing of repair and renewal by plant stem cells within the plant is orchestrated by cellular signals that would not be recognized by human cells, he says. Plant stem cell material cannot mimic the activity of our stem cells in the human body in a primary way. There are genetic boundaries that cannot be crossed. So, just because rose stem cells can help a rose grow and flourish doesnt mean it can do the same for your skin. However, Hal does say that some plant stem cells do provide nutrients and metabolites that have been shown to stimulate human epidermal stem cell productionthus, the secondary way he mentions. Either way, he says to always check to see if a plant stem cell material in your skincare product that promises to plump your skin is backed up by scientific research and clinical testing (a quick Google search should yield results).

Now that weve covered plant stem cells, lets dive right into the nitty-gritty and talk human stem cells. Hal mentions adult mesenchymal stem cells (MSC) specifically, citing many research studies and scientific papers published over the last two decades about their ability to be the natural healers of all our bodys structuresmuscle, bone, skin, neural tissue and more. Because of their potent ability to rejuvenate and repair, and also because they do not carry the negative ethical stigma of embryonic stem cells harvested from human embryos, they have been embraced by many for use in potential clinical protocols, Hal explains. Right now, these human stem cells have already been in practice in Europe with success and are currently in FDA-approved testing programs in the U.S. Without getting too technical, heres how these MSCs work. Like a master coordinator, MSCs respond to biochemically transmitted needs from any areas of traumafor example, if you get a cut, scrape, or a more severe injury. Sensing the need, the MSCs begin to multiply and release different biochemical signals to bring on other anti-inflammatory and immune cells, like a commander rallying his troops to fight a battle. Thus, it would be logical to assume that this healing, regenerating ability that works with wound-healing can also apply to overall skin renewal. We can conclude from a large body of scientific evidence that MSCs do their work by releasing messengers and helpers such as growth factors, peptides, and matrix proteins that provide rejuvenating instructions and assistance to the targeted body cells, Hal says. As we age, these "messenger" proteins the MSCs attract might just be the key to helping our skin renew (read: stay wrinkle-free).

Stemologys hero product (and the product that inspired this story) is their Cell Revive Serum Complete ($189), which lists human stem cell-derived conditioned media as the number two ingredient after aloe. Notice how it's a human stem cell-derived mediaand not an actual human stem cell. So, what's the difference? Actual human stem cells can actually be grown outside of the body by stimulating human body conditions, and can create a massive number of cells since theyre self-renewing; a single original MSC can generate large numbers of offspring cultures that grow naturally and are encouraged to secrete the helpers and messengers we mentioned earlier. Those growth factors, cytokinal peptides, matrix proteins, and helper molecules are the human stem cell-derived conditioned media. Under controlled conditions, the MSCs are completely removed, so that there are no actual cellular components, and the harvested small secreted proteins are retained in this conditioned medium, Hal says. This conditioned medium contains all the important, renewing and healing components originally drawn to the human stem cell, which can be integrated into a skincare formula and penetrate the skin. Whewyou still with us?

So, the catch is that as of now, there are no actual human stem cells used in products in the U.S. In fact, Hal says actual human stem cells are not suitable for topical skin care applications since they are fragile and easily destroyed, as well as too large to be absorbed. Instead, brands like Stemology will extract one human stem cell to grow hundreds more, which in turn generates the helper ingredients that plump your skin. The result? More youthful skinat least according to science. Hal cites one published study that confirms the application of topical growth factors from MSC stimulate the repair of facial photo-aging resulting in new collagen synthesis, epidermal thickening, and the clinical appearance of smoother skin with less visible wrinkles.

So, no actual human stem cells are being used in topical skincare (yet). But what about all those self-generating powers and benefits we mentioned earlier? Human stem cell extracts sound great, but what about the real dealthe genuine original? Dr. Christopher Calapai, D.O. and stem cell expert says that actual human stem cells can disrupt the skincare industry, but only under three conditions: theyll need to be from a human who is preferably the one seeking the treatment, alive, and delivered directly to the skin (most likely with an injection). Otherwise, the stem cells are simply too large to penetrate the skins surface, and will just sit there instead of absorbing and encouraging other cells to regenerate (which they'll slowly do less and less of with time).

Until the FDA approves those things, well be giving products with human skincare extracts our attention. And, who knowsthe time when injecting your own stem cells back into your skin might be sooner than you think (a fact we cant decide whether thrills or frightens us).

StemologyCell Revive Serum Complex$189

Read more from the original source:
Human Skin Cells: The Next Anti-Aging Frontier?

Researchers Explore Hydrogels That Are Promising Materials For Delivering Therapeutic Cells – Texas A&M University

Electron micrograph showing ridges and grooves on MAP hydrogel microbeads caused by developing stem cells.

Courtsey of Daniel Alge

Baby diapers, contact lenses and gelatin dessert. While seemingly unrelated, these items have one thing in common theyre made of highly absorbent substances called hydrogels that have versatile applications. Recently, a type of biodegradable hydrogel, dubbed microporous annealed particle (MAP) hydrogel, has gained much attention for its potential to deliver stem cells for body tissue repair. But it is currently unclear how these jelly-like materials affect the growth of their precious cellular cargo, thereby limiting its use in regenerative medicine.

In a new study published in the November issue of Acta Biomaterialia, researchers at Texas A&M University have shown that MAP hydrogels, programmed to biodegrade at an optimum pace, create a fertile environment for bone stem cells to thrive and proliferate vigorously. They found the space created by the withering of MAP hydrogels creates room for the stem cells to grow, spread and form intricate cellular networks.

Our research now shows that stem cells flourish on degrading MAP hydrogels; they also remodel their local environment to better suit their needs, said Daniel Alge, assistant professor in the Department of Biomedical Engineering. These results have important implications for developing MAP hydrogel-based delivery systems, particularly for regenerative medicine where we want to deliver cells that will replace damaged tissues with new and healthy ones.

MAP hydrogels are a newer breed of injectable hydrogels. These soft materials are interconnected chains of extremely small beads made of polyethylene glycol, a synthetic polymer. Although the microbeads cannot themselves cling to cells, they can be engineered to present cell-binding proteins that can then attach to receptor molecules on the stem cells surface.

Once fastened onto the microbeads, the stem cells use the space between the spheres to grow and transform into specialized cells, like bone or skin cells. And so, when there is an injury, MAP hydrogels can be used to deliver these new cells to help tissues regenerate.

However, the health and behavior of stem cells within the MAP hydrogel environment has never been fully studied.

MAP hydrogels have superior mechanical and biocompatible properties, so in principle, they are a great platform to grow and maintain stem cells, Alge said. But people in the field really dont have a good understanding of how stem cells behave in these materials.

To address this question, the researchers studied the growth, spread and function of bone stem cells in MAP hydrogels. Alge and his team used three samples of MAP hydrogels that differed only in the speed at which they degraded, that is, either slow, fast or not at all.

First, for the stem cells to attach onto the MAP hydrogels, the researchers decorated the MAP hydrogels with a type of cell-binding protein. They then tracked the stem cells as they grew using a high-resolution, fluorescent microscope. The researchers also repeated the same experiment using another cell-binding protein to investigate if cell-binding proteins also affected stem cell development within the hydrogels.

To their surprise, Alges team found that for both types of cell-binding proteins, the MAP hydrogels that degraded the fastest had the largest population of stem cells. Furthermore, the cells were changing the shape of the MAP hydrogel as they spread and claimed more territory.

In the intact MAP hydrogel, we could still see the spherical microbeads and the material was quite undamaged, Alge said. By contrast, the cells were making ridges and grooves in the degrading MAP hydrogels, dynamically remodeling their environment.

The researchers also found that as the stem cells grew, the quantity of bone proteins produced by the growing stem cells depended on which cell-binding protein was initially used in the MAP hydrogel.

Alge noted that the insight gained through their study will greatly inform further research and development in MAP hydrogels for stem-cell therapies.

Although MAP hydrogel degradability profoundly affects the growth of the stem cells, we found that the interplay between the cell-binding proteins and the degradation is also important, he said. As we, as a field, make strides toward developing new MAP hydrogels for tissue engineering, we must look at the effects of both degradability and cell-binding proteins to best utilize these materials for regenerative medicine.

Other contributors to the research include Shangjing Xin from the Department of Biomedical Engineering at Texas A&M and Carl A. Gregory from the Institute for Regenerative Medicine at the Texas A&M Health Science Center.

This research was supported by funds from theNational Institute of Arthritis and Musculoskeletal and Skin Diseasesof the National Institutes of Health.

More here:
Researchers Explore Hydrogels That Are Promising Materials For Delivering Therapeutic Cells - Texas A&M University

Aesthetic treatments can help you maintain your youthful glow – The Business Times

AESTHETICS medicine encompasses non-invasive treatments that do not involve surgery and aim to improve or correct the appearance of patients. Less intensive than cosmetic surgery, aesthetics medicine procedures are carried out by doctors to give natural and reversible results. Depending on your areas of concern, different techniques may be employed in combination to produce the best results - there is no "cookie-cutter" approach to your skincare needs.

Our skin has three layers:

The epidermis, the outermost layer of skin, provides a waterproof barrier to protect our body from germs and harmful UV rays. Its bottom-most layer makes new skin cells, and these skin cells travel up to the top layer and flake off, about a month after they form. It also gives you your skin colour, due to the presence of special cells called melanocytes, which produce the pigment melanin.

The dermis, the middle layer, contains tough connective tissue, blood vessels, hair follicles, and sweat glands.

The hypodermis, the innermost layer, is made of fat and connective tissue.

Ageing happens in every layer of the skin. Changes within the skin's layers show themselves on the surface as signs of ageing.

In the epidermis, a slower cell turnover and reduction in lipid production on the skin's surface means rough and dry skin as we age. Our skin is less efficient at repairing itself from harmful infections and UV rays. This causes pigmentation problems, like sunspots.

In the dermis, from the age of 25, there is a 1 per cent annual decrease in collagen, one of the "building blocks" of the skin. Elastin also decreases as we age. Hence, the structure of the skin is compromised, and wrinkles and saggy skin start to appear.

In the deeper layers, the hypodermis, the changes to the size and number of fat cells leads to deep wrinkles and hollow cheeks.

Skin ageing manifests by:

Fine lines and wrinkles: The first noticeable sign of ageing from 25 onwards are fine lines and wrinkles, especially around your eyes. Your dermis, the second layer of your skin, contains the collagen and elastic fibres that keep young skin plump, taut and wrinkle-free. The amount of collagen and elastic fibres in your dermis dwindles as the years roll on. As a result, your skin becomes less elastic, sags and you start to see the tell-tale signs of wrinkles.

Open pores and sagging skin: Ageing causes your skin to lose its elasticity, which stretches your pores and make them look larger. The accumulation of excess oil, dead skin cells and dirt trapped inside your pores also enhances their appearance. Hormonal changes such as pregnancy, menstruation and puberty can also enlarge your pores.

Dry and dull skin: Your epidermis forms the outer layer of your skin - a physical barrier from the external environment. On average, your body will produce an entirely new epidermis about every 60 days. Cells on the surface of your skin rub and flake off, continuously being replaced with new ones from below.

As you get older, it takes longer for your epidermis to renew itself, hence, more dead skin cells accumulate on the top layer of our skin. This diffuses light away and produces a dull skin tone. In addition, as we age, oil production slows down and this makes our skin dry - we soon lose that "Korean glass-skin effect".

Hyperpigmentation

Melanocytes located in the epidermis produce pigment called melanin. Hyperpigmentation is caused by an overproduction of melanin in patches of the skin.

This overproduction is triggered by a variety of factors, including sun exposure, genetic factors, age, hormonal influences, and skin injuries or inflammation.

Common types of hyperpigmentation encountered in our population are:

Melasma: Melasma is a common skin problem among Asians. Women are far more likely than men to get melasma, especially during pregnancy. They present as brown to gray-brown patches, usually on the face. Most people get it on their cheeks, nose bridge, forehead, chin, and above their upper lip. It also can appear on other parts of the body that are exposed to sunlight, such as the forearms and neck.

Solar lentigo: Solar lentigo, also known as age spots, are non-cancerous lesions that occur on the sun-exposed areas of the body. These flat lesions usually have well-defined borders, are dark in colour, and have an irregular shape. The backs of hands and face are common areas.

The lesions tend to increase in number with age, making them common among the middle age and older population. Age spots occur in 50 per cent of women and 20 per cent of men over the age of 50, due to stimulation from UV rays.

Post-inflammatory hyperpigmentation (PIH): It is temporary pigmentation that follows injury, for example, a cut to the skin, or inflammation of the skin, for example, acne or eczema. PIH can occur in anyone, but is more common in darker-skinned individuals, in whom the colour tends to be more intense and persist for a longer period than in lighter skin.

Freckles: Freckles are common, especially among fairer-skinned individuals. They start early on in life, even in childhood, and are due to your genetic makeup and sun exposure.

Dull skin, enlarged pores, pigmentation - How can they be corrected?

Avoid sun exposure: Sun exposure is the main cause of ageing. Choose a sunscreen with "broad spectrum" protection, meaning that it protects against both UVA and UVB rays. UVA rays also contribute to skin cancer and premature aging, UVB rays are the main cause of sunburn and skin cancers.

Ensure your sunscreen has a SPF30 or higher. Physical sunscreen, those that contain zinc oxide or titanium dioxide, provide better sun protection compared to chemical sunscreens, and are less likely to clog pores and cause pimples.

Protect your eyes with sunglasses and cover up with a wide-brimmed hat or an umbrella. Limit your direct exposure to the sun, especially between 10am and 4pm, when UV rays are strongest. Avoid tanning beds, which can cause serious long-term skin damage and contribute to skin cancer.

Lightening creams: Abnormal accumulation of melanin results in hyperpigmentation. Lightening creams contain ingredients to reduce the production of melanin. Powerful lightening creams are available through a prescription from a doctor, while milder ingredients do not require a prescription.

Hydroquinone is a major ingredient in lightening creams. However, frequent adverse reactions experienced by patients, such as skin irritation and inflammation, have prompted research into other agents. Several alternatives such as tranexamic acid, and 4-n-butyl resorcinol, arbutin and kojic acid have been developed.

Lasers: There are many different lasers in the market, for many different types of indications. The property of the laser, which determines what it is used for, is the specific wavelength it emits. Different structures in the skin will absorb light energy at different wavelengths. Therefore, in pigmentation treatments, we can deliver light energy at the correct wavelength to heat up the pigmentation, while sparing the other nearby structures that absorb different wavelengths.

The pigmentation absorbs the light energy and is broken up into small fragments and eventually is cleared from the skin.

My personal favourite protocol is to use two very effective lasers for pigmentation treatment, via a Rejuvenation Laser protocol.

The Nd:YAG laser emits wavelengths of 1064nm and 532nm. It is a gentle cleansing machine that helps to remove surface dirt and oil, cleanse your skin, dry up pimples, build collagen and is very effective to break up pigmentation into small fragments.

The yellow laser, made in Germany, emits a wavelength of 577nm. It helps with improving radiance, giving you radiant skin, reducing redness and effectively vaporising pigmentation.

The Rejuvenation Laser is non-ablative, gentle and has no downtime.

Combined with a potent post-procedure serum, it synergistically enhances the anti-ageing effect of the laser protocol. The serum employs proteins secreted by umbilical cord-lining stem cells to produce collagen, restore healthy skin function and treat symptoms of ageing.

This series is produced in collaboration with The Aesthetics Medical Clinic

See the article here:
Aesthetic treatments can help you maintain your youthful glow - The Business Times

17 Brand-New Skincare Products Our Editors Are Using to the Very Last Drop This Month – POPSUGAR

Contrary to what you've probably (definitely) read on the internet, there is at least one benefit to the month with an average national contiguous temperature of 32 degrees. It is that you are automatically granted the excuse to send that "raincheck? lol" text any chilly evening you so choose, and instead snuggle up with your ugliest jogger sweatpants, a glass of Rioja, and brand-new skincare products. (It's called self-care, look it up.)

With the plethora of face creams, cleansers, serums, treatments, and oils hitting the market this February, however, it can be hard to decide which formulas are truly deserving of your Friday night. That's why we've asked our beauty editors to share their favorite at-home spa-day indulgences ahead, so you can stock up on the skincare products worth canceling all your plans for this month. (Well, at least until your friends start responding with the eye roll emoji.)

The rest is here:
17 Brand-New Skincare Products Our Editors Are Using to the Very Last Drop This Month - POPSUGAR

The Vegan Diet and Healthy Skin: Everything You Need to Know – LIVEKINDLY

Its no secret that loading your plate with fruits and vegetables and eschewing processed meat products is good for your insides. But is a vegan diet good for healthy skin, too?

Many celebrities say that it is; Natalie Portman and Billie Eilish have noticed significant improvements in their skin since going vegan and cutting out dairy.

Portman told the Cut a few years ago, Im vegan and I found my skin is much, much better than when I was a vegetarian. I cut out dairy and eggs, and I never had a breakout after. Eilishwho went vegan for ethical reasonssaid in a Tumblr post in 2018, Im lactose intolerant and dairy is horrible for your skin and my skin is VERY aware of that.

But its not just celebrities who think veganism is good for your skin, experts agree that theyre onto something. Blade Tiessena medical aestheticianwho owns the Ontario-based Anti-Aging Clinic and has worked in skincare for 33 yearsbelieves that ditching animal products for a healthy vegan diet can have a dramatic effect.I say this from both personal and professional experience. I suffered from acne since my early teens until months after going vegan at 35, being in the industry I had every treatment and product at my disposal over the years, he told LIVEKINDLY. Some helped to keep breakouts under control but nothing solved the issue permanently until shortly after becoming vegan.

Multiple studies say that ditching dairy could help acne-sufferers. Acne is the most common skin condition in the United States; it affects around 50 million Americans every year.

There are a few different theories on why dairy can cause an acne flare-up; some studies suggest that hormones in cows milk are the culprit. These hormones are intended to stimulate growth in calves. When humans ingest them, they release insulin, which can trigger breakouts.

According to a medically-reviewed article on Healthline, sometimes the hormones in milk can also interact with our own hormones, confusing our bodys endocrine system and signaling breakouts.

Nonprofit PlantPure Communities (PPC) recently launched a social media campaign called Ditch Dairy for Clearer Skin. The campaign aims to educate the public about the link between acne and dairy consumption.

In a supporting article, pediatrician Dr. Jackie Busse, MD, FAAP, says, removing dairy is the first and most important dietary change you should make to prevent and treat acne.

A vegan diet could also help people who suffer from eczemaa condition where patches of skin become inflamed, itchy, and cracked. According to Healthline, a handful have studies have shown that a raw, vegan diet, in particular, can be very beneficial, although there isnt conclusive evidence.

Plant-based foods have also been linked with easing psoriasis, an immune-mediated disease. Similar to eczema, it causes raised red flaky patches to appear on the skin.

Eating a whole food plant-based diet can help psoriasis sufferers because it is naturally low in inflammatory foods, says dietician Deirdre Earls, RD, LD. She was once hospitalized with psoriasis as a child, but switching to a plant-based diet helped her manage the condition effectively.

She told Everyday Health,I drastically changed my diet. I took all of the diet coke, all of the ultra-processed stuff out, and then I replaced it with simple, whole, mostly plant-based foods. Within six months, my skin had cleared.She added,psoriasis is an inflammatory condition, so anything you can do to cut down on inflammation should help.

Reality TV personality and entrepreneur Kim Kardashian-West has suffered from psoriasis for more than a decade and was recently diagnosed with psoriatic arthritis. She opened up on sister Kourtney Kardashians website Poosh about her battle with the disease, and how switching to a plant-based diet has helped her.

I love a healthy life and try to eat as plant-based as possible and drink sea moss smoothies,she said, adding that she also tries to keep her stress levels to a minimum.I hope my story can help anyone else with an autoimmune disease feel confident that there is light at the end of the tunnel.

Eating vegan foods can help with painful conditions, but they can also just make your skin glow too.

According to Tiessen, patients who follow a vegan diet achieve superior skin results to those who do not. They also have more energy and they sleep better. He says, eating a healthy vegan diet free of inflammatory foods along with drinking lots of water, sleeping well, exercising, reducing levels of stress, taking care of and protecting your skin will help ensure beautiful glowing skin that will last a lifetime.

He also recommends using cruelty-free vegan skincare products. Skincare should be looked at as nutrition and protection for the skin, he added. Supplying the skin with nutrients from organic plants can offer benefits that are unavailable from chemicals and or animal-based ingredients.

If you want to opt for cosmetic intervention, Tiessens clinicsin Orillia Ontario and Port Severn Ontariooffer many cruelty-free and vegan treatments, including microneedling. The chain is also an ambassador for vegan medical skincare brand ElaSpa.

If you prefer to stick to just consuming whole foods, here are seven of the best plant-based foods to eat to keep your skin looking glowing and healthy.

Eating spinach regularly can benefit your skin. Its rich in vitamins and minerals, including vitamin A, vitamin C, and vitamin E, which are particularly good for your skin. Its also a great source of iron, as well as folate and magnesium.

Blueberries are packed with skin-beautifying antioxidants. Stephanie Clarkeco-owner of C&J Nutritiontold Self, that deep blue/purple color that makes blueberries so gorgeous translates to helping your skin look young too. This color is a result of compounds called anthocyanins, powerful antioxidants that shield the skin against harmful free radicals that can damage the collagen that keeps your skin firm.

Eating avocados is good for your skin, as theyre rich in vitamins C and E. You can also apply them directly to your face and feel their benefits that way. Registered dietician Maureen Eyerman told Elle, the hydrating properties may reduce fine lines and wrinkles, help keep skin smooth, and boost skins immunity against stress and other environmental factors.

Sweet potatoes are rich in vitamin E and vitamin C, which helps to boost collagen. Theyre also rich in anthocyanins, which can help to prevent blemishes and dark spots. Sweet potatoes are also a source of fiber, iron, calcium, and selenium.

Walnuts contain omega-3 fats, which, according to Clarke,strengthen the membranes of your skin cells.They also contain nourishing fats which attract soothing moisture from the air and reduce inflammation, helping to avoid breakouts.

Carrots are associated with good eye health, but theyre good for the skin, too. According to Healthline, vitamin C-rich carrots can help skin recover from conditions like psoriasis and rashes. They can also help you heal faster from cuts and other wounds.

Kiwis have more vitamin C than oranges, and theyre packed with vitamin E. You can also place them over the top of your eyes, which can help to reduce the appearance of dark circles.

Summary

Article Name

The Vegan Diet and Healthy Skin: Everything You Need to Know

Description

Is the vegan diet the best defense against skin conditions? Here's everything you need to know about eating plant-based and healthy skin.

Author

Charlotte Pointing

Publisher Name

LIVEKINDLY

Publisher Logo

Read more from the original source:
The Vegan Diet and Healthy Skin: Everything You Need to Know - LIVEKINDLY

Archives