Page 9«..891011..20..»

Archive for the ‘Cell Medicine’ Category

Brazilian researchers find human menstrual blood-derived cells ‘feed’ embryonic stem cells

PUBLIC RELEASE DATE:

28-May-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (May 28, 2014) To be suitable for medical transplantation, one idea is that human embryonic stem cells (hESCs) need to remain "undifferentiated" i.e. they are not changing into other cell types. In determining the best way to culture hESCs so that they remain undifferentiated and also grow, proliferate and survive, researchers have used blood cell "feeder-layer" cultures using animal-derived feeder cells, often from mice (mouse embryonic fibroblasts [MEFs]). This approach has, however, been associated with a variety of contamination problems, including pathogen and viral transmission.

To avoid contamination problems, a Brazilian research team has investigated the use of human menstrual blood-derived mesenchymal cells (MBMCs) as feeder layers and found that "MBMCs can replace animal-derived feeder systems in human embryonic stem cell culture systems and support their growth in an undifferentiated stage."

The study will be published in a future issue of Cell Medicine, but is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/cm/pre-prints/content-CM1019silvadosSantos.

"Human embryonic stem cells present a continuous proliferation in an undifferentiated state, resulting in an unlimited amount of cells with the potential to differentiate toward any type of cell in the human body," said study corresponding author Dr. Regina Coeli dos Santos Goldenberg of the Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. "These characteristics make hESCs good candidates for cell based therapies."

Feeder-layers for hESCs comprised of MEFs have been efficiently used for decades but, because of the clinical drawbacks, the authors subsequently experimented with human menstrual blood cells as a potential replacement for animal-derived feeder-layers, not only for negating the contamination issues, but also because human menstrual blood is so accessible. MBMCs are without ethical encumbrances and shortages, nor are they difficult to access - a problem with other human cells, such as umbilical cord blood cells, adult bone marrow cells or placenta cells.

"Menstrual blood is derived from uterine tissues," explained the researchers. "These cells are widely available 12 times a year from women of child-bearing age. The cells are easily obtained, possess the capability of long-term proliferation and are clinically compatible with hESCs-derived cells."

The researchers found that their culture system using MBMCs as a feeder-layer for hESCs are the "closest and more suitable alternative to animal-free conditions for growing hESCs" and a "good candidate for large-expansion of cells for clinical application." They also found no difference in growth factor expression when comparing the use of growth factors in both the standard feeder system using animal cells and the feeder system they tested using hESCs.

Go here to read the rest:
Brazilian researchers find human menstrual blood-derived cells 'feed' embryonic stem cells

Packaged batches of stem cells for regenerative medicine

The Spanish start-up Aglaris Cell is close to launching onto the market the world's first bioreactor that cultures cell in a fully automated way, without using toxic additives. The device has attracted interest from the University of Oxford and the pharmaceutical giant, Merk.

David Horna, a 33-year-old from Madrid and one of the co-founders of Aglaris Cell, whose offices are located in the Madrid Scientific Park (PCM), is in London this week to meet with investors to secure a second round of funding. Horna, alongside his two partners, Miquel Costa and Manuel A. Gonzlez de la Pea, created the company a little over two years ago with the aim of developing a device that would automate stem cell cultures thereby making advances in the production of 'live' medicines.

As David Horna explained, after four years of intensive research and development, the prototype called Aglaris Facer 1.0, patented in 2012 in Spain and in the process of obtaining its international patent, "is practically ready to be sold on the market."

The idea of developing this device came about when the partners, who worked in various fields of biotechnology, noticed that more and more industries were using cells and tissues in their production processes.

Fully automatic

"We saw that the way live medicines from stem cells were being produced was highly manual, and so we came up with the idea of designing and developing a cell culture bioreactor that could automate the entire process. We believe that the stem cell-based therapies sector is going to expand rapidly in the years to come and will become a very promising business," Horna stated.

He noted that there are other bioreactors on the market and some have been able to automate some of the stages in the process, "but ours is the first in the world to perform all the process stages in a fully automated way."

Until now, an additive called trypsin was usually used in this type of culture, however, trypsin is toxic for cells and removes part of the membrane's proteins. "It has been used up to now because there was no other alternative, but our technology does not need to use this product," Horna said.

"Instead, our development uses an iterative method of cell culture which enables us to completely automate and remove the need for human involvement in the cell separation and washing stages, without using any additives that increase the toxicity level. We have achieved this by using smart surfaces that make cell adhesion and de-adhesion possible depending on changes in the environment," the co-founder explained.

He also adds that "we are currently finalising the developments that also make it possible to use the same device to produce genetically-modified cell lines for cellular reprogramming and gene therapies." These advances build on the work Horna undertook for his thesis on smart surfaces at the Spanish National Centre for Cardiovascular Research (CNIC) and the Sarri Institute of Chemistry (IQS) which was published in the 'Advanced Healthcare Materials' journal.

View post:
Packaged batches of stem cells for regenerative medicine

Stem cell development: Experts offer insight into basic mechanisms of stem cell differentiation

The world has great expectations that stem cell research one day will revolutionize medicine. But in order to exploit the potential of stem cells, we need to understand how their development is regulated. Now researchers from University of Southern Denmark offer new insight.

Stem cells are cells that are able to develop into different specialized cell types with specific functions in the body. In adult humans these cells play an important role in tissue regeneration. The potential to act as repair cells can be exploited for disease control of e.g. Parkinson's or diabetes, which are diseases caused by the death of specialized cells. By manipulating the stem cells, they can be directed to develop into various specialized cell types. This however, requires knowledge of the processes that regulate their development.

Now Danish researchers from University of Southern Denmark report a new discovery that provides valuable insight into basic mechanisms of stem cell differentiation. The discovery could lead to new ways of making stem cells develop into exactly the type of cells that a physician may need for treating a disease.

"We have discovered that proteins called transcription factors work together in a new and complex way to reprogram the DNA strand when a stem cell develops into a specific cell type. Until now we thought that only a few transcription factors were responsible for this reprogramming, but that is not the case," explain postdoc Rasmus Siersbaek, Professor Susanne Mandrup and ph.d. Atefeh Rabiee from Department of Biochemistry and Molecular Biology at the University of Southern Denmark.

"An incredibly complex and previously unknown interplay between transcription factors takes place at specific locations in the cell's DNA, which we call 'hotspots'. This interplay at 'hotspots' appears to be of great importance for the development of stem cells. In the future it will therefore be very important to explore these 'hotspots' and the interplay between transcription factors in these regions in order to better understand the mechanisms that control the development of stem cells," explains Rasmus Siersbaek.

"When we understand these mechanisms, we have much better tools to make a stem cell develop in the direction we wish," he says.

Siersbaek, Mandrup and their colleagues made the discovery while studying how stem cells develop into fat cells. The Mandrup research group is interested in this differentiation process, because fundamental understanding of this will allow researchers to manipulate fat cell formation.

"We know that there are two types of fat cells; brown and white. The white fat cells store fat, while brown fat cells actually increase combustion of fat. Brown fat cells are found in especially infants, but adults also have varying amounts of these cells.

"If we manage to find ways to make stem cells develop into brown rather than white fat cells, it may be possible to reduce the development of obesity. Our findings open new possibilities to do this by focusing on the specific sites on the DNA where proteins work together," the researchers explain.

Details of the study

Link:
Stem cell development: Experts offer insight into basic mechanisms of stem cell differentiation

New insight into stem cell development

May 22, 2014

The world has great expectations that stem cell research one day will revolutionize medicine. But in order to exploit the potential of stem cells, we need to understand how their development is regulated. Now researchers from University of Southern Denmark offer new insight.

Stem cells are cells that are able to develop into different specialized cell types with specific functions in the body. In adult humans these cells play an important role in tissue regeneration. The potential to act as repair cells can be exploited for disease control of e.g. Parkinson's or diabetes, which are diseases caused by the death of specialized cells. By manipulating the stem cells, they can be directed to develop into various specialized cell types. This however, requires knowledge of the processes that regulate their development.

Now Danish researchers from University of Southern Denmark report a new discovery that provides valuable insight into basic mechanisms of stem cell differentiation. The discovery could lead to new ways of making stem cells develop into exactly the type of cells that a physician may need for treating a disease.

"We have discovered that proteins called transcription factors work together in a new and complex way to reprogram the DNA strand when a stem cell develops into a specific cell type. Until now we thought that only a few transcription factors were responsible for this reprogramming, but that is not the case", explain postdoc Rasmus Siersbaek, Professor Susanne Mandrup and ph.d. Atefeh Rabiee from Department of Biochemistry and Molecular Biology at the University of Southern Denmark.

"An incredibly complex and previously unknown interplay between transcription factors takes place at specific locations in the cell's DNA, which we call 'hotspots'. This interplay at 'hotspots' appears to be of great importance for the development of stem cells. In the future it will therefore be very important to explore these 'hotspots' and the interplay between transcription factors in these regions in order to better understand the mechanisms that control the development of stem cells", explains Rasmus Siersbaek.

"When we understand these mechanisms, we have much better tools to make a stem cell develop in the direction we wish", he says.

Siersbaek, Mandrup and their colleagues made the discovery while studying how stem cells develop into fat cells. The Mandrup research group is interested in this differentiation process, because fundamental understanding of this will allow researchers to manipulate fat cell formation.

"We know that there are two types of fat cells; brown and white. The white fat cells store fat, while brown fat cells actually increase combustion of fat. Brown fat cells are found in especially infants, but adults also have varying amounts of these cells.

"If we manage to find ways to make stem cells develop into brown rather than white fat cells, it may be possible to reduce the development of obesity. Our findings open new possibilities to do this by focusing on the specific sites on the DNA where proteins work together", the researchers explain.

Read this article:
New insight into stem cell development

Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and …

This article was originally distributed via PRWeb. PRWeb, WorldNow and this Site make no warranties or representations in connection therewith.

SOURCE:

Xcelthera Inc and its joint research partner San Diego Regenerative Medicine Institute are granted U.S. Patent No. 8,716,017 entitled, Technologies, Methods, and Products of Small Molecule-Directed Tissue and Organ Regeneration from Human Pluripotent Stem Cells.

San Diego, CA (PRWEB) May 08, 2014

Xcelthera Inc, a major innovator in the stem cell research market and one of the first U.S. companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs, and its joint research partner San Diego Regenerative Medicine Institute announced today that the U.S. Patent and Trademark Office (USPTO) has granted Patent No. 8,716,017 entitled, Technologies, Methods, and Products of Small Molecule-Directed Tissue and Organ Regeneration from Human Pluripotent Stem Cells. This newly-issued patent is the first among a portfolio of intellectual property of Xcelthera Inc covering PluriXcel human stem cell technology platform for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products.

Neurodegenerative and heart diseases are major health problems and cost the worldwide healthcare system more than $500 billion annually. The limited capacity of these two cell systems -- neurons and cardiomyocytes -- for self-repair makes them suitable for stem cell-based neuronal and heart therapies. Nevertheless, to date, the existing markets lack a clinically-suitable human neuronal cell source or cardiomyocyte source with adequate regenerative potential, which has been the major setback in developing safe and effective cell-based therapies for neurodegenerative and heart diseases. Xcelthera proprietary PluriXcel technology allows efficient derivation of clinical-grade human ES cell lines and direct conversion of such pluripotent human ES cells by small molecule induction into a large commercial scale of high quality human neuronal or heart muscle cells, which constitutes clinically representative progress in both human neuronal and cardiac therapeutic products for treating neurodegenerative and heart diseases.

PluriXcel technology of Xcelthera Inc is milestone advancement in stem cell research, offering currently the only available human cell therapy products with the pharmacological capacity to regenerate human neurons and contractile heart muscles that allow restitution of function of the central nervous system (CNS) and heart in the clinic. Through technology license agreement with San Diego Regenerative Medicine Institute, Xcelthera Inc has become the first in the world to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart cell therapy products for commercial and therapeutic uses.

As neurodegenerative and heart diseases incur exorbitant costs on the healthcare system worldwide, there is a strong focus on providing newer and more efficient solutions for these therapeutic needs. Millions of people are pinning their hopes on stem cell research. PluriXcel technology platform of Xcelthera Inc is incomparable, providing life scientists and clinicians with novel and effective resources to address major health concerns. Such breakthrough stem cell technology has presented human ES cell therapy derivatives as a powerful pharmacologic agent of cellular entity for a wide range of incurable or hitherto untreatable neurodegenerative and heart diseases. Introduction of medical innovations and new business opportunities based on PluriXcel technology will shape the future of medicine by providing pluripotent human ES cell-based technology for human tissue and function restoration, and bringing new therapeutics into the market.

About Xcelthera Inc.

Xcelthera INC (http://www.xcelthera.com) is a new biopharmaceutical company moving towards clinical development stage of novel and most advanced stem cell therapy for a wide range of neurological and cardiovascular diseases with leading technology and ground-breaking medical innovation in cell-based regenerative medicine. The Company was recently incorporated in the state of California to commercialize the technologies and products developed, in part, with supports by government grants to the founder, by San Diego Regenerative Medicine Institute (SDRMI), an non-profit 501C3 tax-exempt status independent biomedical research institute that is interested in licensing its PATENT RIGHTS in a manner that will benefit the public by facilitating the distribution of useful products and the utilization of new processes, but is without capacity to commercially develop, manufacture, and distribute any such products or processes. Xcelthera is a major innovator in the stem cell research market and one of the first companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs. The Company is the first to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products for commercial and therapeutic uses. The Company owns or has exclusive rights in a portfolio of intellectual property or license rights related to its novel PluriXcel human stem cell technology platforms and Xcel prototypes of human stem cell therapy products. The inception of Xcelthera is driven by the urgent need for clinical translation of human ES cell research discoveries and innovations to address unmet medical challenges in major health problems. Xcelthera breakthrough developments in human ES cell research dramatically increase the overall turnover of investments in biomedical sciences to optimal treatment options for a wide range of human diseases. The overall strategy of the Company is to use cutting-edge human stem cell technology to develop clinical-grade functional human neural and cardiac cell therapy products from pluripotent human ES cells as cellular medicine or cellular drugs to provide the next generation of cell-based therapeutic solutions for unmet medical needs in world-wide major health problems. The Company is currently offering Series A Convertible Preferred Stock to accredited investors through equity crowdfunding to raise fund for its pre-IPO business operation and filing confidential IPO as an emerging growth company according to the JOBS Act to create a public market for its common stock and to facilitate its future access to the public equity market and growth of the Company.

Originally posted here:
Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and ...

Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …

Beverly Hills, California (PRWEB) May 12, 2014

The top Beverly Hills pain management doctors at BZ Pain are now offering stem cell procedures for those with joint arthritis and pain. The outpatient regenerative medicine procedures are typically able to relieve pain and help patients avoid the need for joint replacement surgery of the shoulder, hip, knee and ankle. Call (310) 626-1526 for more information and scheduling.

Over a million joint replacement procedures are performed each year in America. These procedures should be considered an absolute last resort, since the implants are not meant to last forever. There are potential complications with joint replacement.

Therefore, stem cell procedures are an excellent option. They often help repair and regenerate damaged tissue, which is very different than what occurs with steroid injections. The stem cell procedures include options derived from amniotic fluid, fat tissue, or one's bone marrow.

Initial studies are showing the benefits of stem cell procedures for degenerative arthritis. With exceptionally low risk, there is a significant upside with the stem cell pain management therapies.

Dr. Zarrini at BZ Pain is a Double Board Certified Los Angeles pain management doctor, and is able to provide both medical and interventional therapies. The procedures do not involve any fetal tissue or embryonic stem cells. The procedures may help degenerative disease symptoms in the shoulder, hip, knee and ankle to name a few joints.

For those interested in stem cell therapy Los Angeles and Beverly Hills trusts, call BZ Pain today at (310) 626-1526.

Excerpt from:
Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain ...

Production of synthetic SIRT1 as a dietary supplement may help prolong life, states Chemist Direct

(PRWEB UK) 9 May 2014

Over the course of the human life span the body ages and becomes less able to repair itself, allowing it to become more prone to disease and illness. In the ever developing field of scientific discovery researchers have become intrigued with the concept of finding a way to slow down age-related diseases and prolonging life through the use of medicine. Since the Japanese scientist Shinya Yamanaka (http://bit.ly/1kWb20u) first discovered iPS cells in adult tissue and pioneered mature cell regeneration, this field in medicine has become one of the most rapidly developing fields in biomedicine.

A research team at the National Institute on Ageing at the National Institutes of Health in the US has discovered a promising strategy to arrest ageing by looking at a chemical called SRT1720 which activates a particular protein called Sirtuin 1 (SIRT1). Previous research has demonstrated that activating SIRT1 can have health benefits in various organisms, and it has been proposed as an anti-ageing protein. This study, published in the March edition of Research Journal: Cell (http://bit.ly/1od2gS5) focused on comparing the lifespan, health and diseases of mice fed the same diet, but with or without the addition of a SRT1720.

Overall they found mice fed a normal diet but with the supplement had a longer natural lifespan on average (about five weeks longer). During their lifetime, additional tests also suggested they had improved muscle function and coordination, improved metabolism, improved glucose tolerance, decreased body fat and cholesterol. All in all this suggests that giving the mice this supplement could protect them from the equivalent of metabolic syndrome, a series of risk factors associated with conditions such as heart disease and type 2 diabetes.

A study published today in the journal Stem Cell Reports (http://bit.ly/1hBSDF6) and carried out by the Spanish National Cancer Research Centre's Telomeres and Telomerase Group, reveals that the SIRT1 protein is needed to lengthen and maintain telomeres during cell reprogramming. SIRT1 also guarantees the integrity of the genome of stem cells that come out of the cell reprogramming process; these cells are known as iPS cells (induced Pluripotent Stem cells).

The nature of iPS cells, however, is causing intense debate. The latest research shows that chromosome aberrations and DNA damage can accumulate in these cells. "The problem is that we don't know if these cells are really safe," says Mara Luigia De Bonis, a postdoctoral researcher who has done a large part of the work. http://bit.ly/1m5gRgb

Researchers did not look at whether SIRT1 may cause side effects or complications so it is currently unclear whether SIRT1 would be safe in humans, let alone effective, but this interesting research has opened doors to pharmaceutical companies to develop dietary supplements that can help provide anti-aging pills, especially those who suffer hereditary degenerative diseases. These ongoing scientific studies will help shed light on how cell reprogramming guarantees the healthy functioning of stem cells. This knowledge will help to overcome barriers that come out of the use of iPS cells so they may be used in regenerative medicine.

Continue reading here:
Production of synthetic SIRT1 as a dietary supplement may help prolong life, states Chemist Direct

$4 Million from Eli and Edythe Broad Foundation Will Support UCLA Research

Contact Information

Available for logged-in reporters only

Newswise Two new gifts from The Eli and Edythe Broad Foundation to UCLA totaling $4 million will fund research in stem cell science and digestive diseases and support the recruitment of key faculty at two renowned research centers.

The gifts bring to $30 million The Broad Foundation's total support of faculty recruitment and basic and translational research at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and at the Center for Inflammatory Bowel Diseases at UCLA's Division of Digestive Diseases.

A $2 million gift to the Broad Stem Cell Research Center adds to The Broad Foundation's original 2007 gift of $20 million, which has supported faculty and research and launched the Innovation Award program, which furthers cutting-edge research at the center by giving UCLA stem cell scientists "seed funding" for their research projects. The new gift will enable the continuation of the award program, which has yielded a 10-to-1 return on investment with grantees securing additional funding from other agencies, including the National Institutes of Health and more than $200 million in total grants from the California Institute for Regenerative Medicine, the state's stem cell agency.

"The Broads' generous support has been essential to the development of new therapies that are currently in, or very near, clinical trials for treating blindness, sickle cell disease and cancer," said Dr. Owen Witte, director of the Broad Stem Cell Research Center. "The Broad Stem Cell Research Center's work, supported by critical philanthropic and other resources, is quickly being translated from basic scientific discoveries into new cellular therapies that will change the practice of medicine and offer future treatment options for diseases thought to be incurable, such as muscular dystrophy, autism and AIDS."

The $2 million gift to the Division of Digestive Diseases builds on nearly $6 million in previous commitments from The Broad Foundation since 2003.

The gifts have enabled the division to develop a comprehensive research and clinical enterprise focused on inflammatory bowel disease, one of only a few such centers in the world. Earning a multifold return for The Broad Foundation's initial investments, these grants have enabled investigators to secure $11 million in funding from pharmaceutical companies, the National Institutes of Health and nonprofit foundations.

In addition, The Broad Foundation's Broad Medical Research Program has provided more than $600,000 in grants to UCLA researchers over the past decade for the study of inflammatory bowel disease.

The new gift will support the Center for Inflammatory Bowel Diseases and research led by Dr. Charalabos "Harry" Pothoulakis, the center's director. Pothoulakis' team conducts research aimed at identifying the molecular mechanisms involved in the development of this group of chronic debilitating diseases, for which there is no cure.

Read the rest here:
$4 Million from Eli and Edythe Broad Foundation Will Support UCLA Research

One step closer to cell reprogramming

13 hours ago Cells with activated Wnt can no longer be reprogrammed (in green) are located on the periphery; cells that can be reprogrammed are aggregated anad can be seen in the center of the image (in red) Credit: CRG

In 2012, John B. Gurdon and Shinya Yamakana were awarded the Nobel Prize in medicine for discovering that adult cells can be reprogrammed into pluripotent ones (iPS); the cells obtained are capable of behaving in a similar way to embryonic stem cells, and hence have enormous potential for regenerative medicine.

However, although there are many research groups around the world studying this process, it is still not completely understood, it is not totally efficient, and it is not safe enough to be used as the basis for a new cell therapy.

Now, researchers at the Centre for Genomic Regulation (CRG) in Barcelona have taken a very important step towards understanding cell reprogramming and its efficiency: they have discovered the key role of the Wnt signalling pathway in transforming adult cells into iPS cells.

"Generally, transcription factors are used to try to increase or decrease the cell reprogramming process. We have discovered that we can increase the efficiency of the process by inhibiting the Wnt route", explains Francesco Aulicino, a PhD student in the Reprogramming and Regeneration group, led by Maria Pia Cosma and co-author of the study that has just been published in Stem Cell Reports.

The Wnt signaling pathway is a series of biochemical reactions that are produced in cells. In frogs or lizards, for example, these reactions are those that allow their extremities to regenerate if the animal suffers an injury. Although in general, humans and mammals have lost this regenerative capacity, the Wnt pathway is involved in numerous processes during embryonic development and cell fusion.

As it is in reprogramming. The researchers have studied how the Wnt route behaves throughout the entire process of transforming cells into iPS cells, which usually lasts two weeks. It is a very dynamic process that produces oscillations from the pathway, which is not active all the time. "We have seen that there are two phases and that in each one of them, Wnt fulfils a different function. And we have shown that by inhibiting it at the beginning of the process and activating it at the end we can increase the efficiency of reprogramming and obtain a larger number of pluripotent cells", indicates Ilda Theka, also a PhD student in Pia Cosma's group and a co-author of the article.

To artificially control the pathway, the group has employed a chemical molecule, Iwp2, which is a Wnt secretion inhibitor that does not permanently alter the cells, something which other research into reprogramming using different factors has still has not been able to acheive.

They have also seen that the exact moment when the Wnt pathway is activated is crucial. Doing it too early, makes the the cells begin to differentiate, for example into neurones or endodermal cells, and they are not reprogrammed.

"It is a very important and an innovative advance in the field of cell reprogramming, because until now this was a very inefficient process. There are many groups trying to understand the mechanism by which adult cells become pluripotent, and what blocks that process and makes only a small percentage of cells end up being reprogrammed. We are providing information on why it happens", says Theka.

The rest is here:
One step closer to cell reprogramming

Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping …

Scottsdale, Arizona (PRWEB) May 05, 2014

Top Phoenix and Scottsdale foot and ankle doctors at Valley Foot Surgeons are now offering stem cell procedures for the nonoperative treatment of Achilles tendonitis and tears. The regenerative medicine procedures are typically able to provide exceptional pain relief while allowing patients the ability to avoid surgery. Call (480) 420-3499 for more information and scheduling about the foot and ankle stem cell procedures.

To date, the lead foot and ankle doctor at Valley Foot Surgeons, Dr. Richard Jacoby, has performed close to 100 regenerative medicine procedures. Typically, these are administered for a variety of conditions such as diabetic ulcers, foot and ankle arthritis, plantar fasciitis, and Achilles injuries.

Conditions with the Achilles tendon may include pain due to chronic tendonitis or tears from degeneration. This may occur during a sporting activity, traumatic event, or simply as part of an individual's tendon weakening after taking quinolone antibiotics.

The stem cell procedures are performed as an outpatient, with the injections consisting of amniotic derived stem cells. The material is harvested from consenting donors after scheduled c-section procedures, with no fetal tissue at all being used.

The material is exceptionally rich in stem cells, growth factors, hyaluronic acid, and more. This can dramatically improve pain relief and healing, which is very different from how steroid medications work.

All too often, traditional treatments for Achilles tendonitis and tears fail to provide relief. This may lead to potentially risky surgery, where complications may lead to continued disability.

With the stem cells for Achilles tears and tendonitis, patients go through an outpatient procedure that is low risk and offers the potential for avoiding the risks of surgery while speeding up recovery.

Dr. Jacoby at Valley Foot Surgeons has been a four time Phoenix Top Doc Winner and sees patients out of two offices in the Valley. For the top stem cell treatment for achilles conditions, diabetic wounds, foot and ankle arthritis and more, call (480) 420-3499.

Here is the original post:
Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping ...

Legislature could boost U stem cell research

The future of the University of Minnesotas regenerative medicine research program is looking brighter than ever.

State and federal leaders in the past have denied funding for the Universitys Office of Regenerative Medicine, which includes the Stem Cell Institute, because some had ethical disagreements with stem cell research.

But this legislative session, with a DFL majority and an overall shift in public opinion, researchers and legislators are confident funding will come through this year.

The current House bill sets aside $450,000 for the Office of Regenerative Medicine, while the Senate version outlines a $5 million increase each year from 2015-17. The bills texts dont specify how funds should be used and how they would be divided between the University and the Mayo Clinic, its research partner.

The Senates bill mandates that anadvisory task force comprised of members from the University, the Mayo Clinic and private industry, as well as two other regenerative medicine experts, recommend how to spend the state funding.

Dayton didnt include funds for the research in his original budget proposal this year, but Sen. Terri Bonoff, DFL-Minnetonka, said there seems to be a general consensus among legislators to work together and decide on a funding amount.

I have not heard many naysayers, she said.

Changing perceptions

The state plays a major role in moving the institutes research forward.

These days, legislators are more open to it than they were in the past, said Dr. Andre Terzic, director of the Mayo Clinic Center for Regenerative Medicine.

See the original post here:
Legislature could boost U stem cell research

Conference to shed light on latest stem cell applications

The King Abdullah International Medical Research Center (KAIMRC) recently joined a conference on stem cell research and its application science and medicine, the Saudi Press Agency reported. The conference, which was organized by the Health Affairs at the National Guard, unveiled the latest discoveries and findings made by researchers at the stem cell and regenerative medicine unit at KAIMRC, the agency said. The conference was attended by several experts on stem cell research representing Saudi Arabia, the United States, Britain, France, Sweden, Italy, Australia and New Zealand. Ahmed Al-Askar, CEO of KAIMRC, said stem cell research is a broad topic that sheds light on how to best exploit human cells to treat diseases for certain organs, such as the liver, kidney or nerves. He said the current use of stem cells is centered on plantation for the treatment of certain types of leukemia, cancer and genetic diseases. Since its inception three years ago, the center has transplanted 200 cells following the creation of a program for transplanting stem cells in children and adults, he said. Saudi Arabia has the sole stem cell donation registry in Arab countries, compared with 60 cells donation registries globally, he said. The Saudi stem cell donation center is meant to attract potential donors from Arab countries, he said. We have had 5,000 donors so far. He said some 400 scientists and experts are working at the center, while another 40 physicians have been dispatched on scholarships to acquire training and specialization. Al-Askar expressed optimism over the future of stem cell use and its contribution to the treatment of a variety of diseases, such as diabetes, cancer, pulmonary and hepatic fibrosis and neurological and cardiovascular disorders.

Follow this link:
Conference to shed light on latest stem cell applications

Saudi- Conference to shed light on latest stem cell applications

(MENAFN - Arab News) The king abdullah international medical research center (kaimrc) recently joined a conference on stem cell research and its application science and medicine the saudi press agency reported.

the conference which was organized by the health affairs at the national guard unveiled the latest discoveries and findings made by researchers at the stem cell and regenerative medicine unit at kaimrc the agency said.

the conference was attended by several experts on stem cell research representing saudi arabia the united states britain france sweden italy australia and new zealand.

ahmed al-askar ceo of kaimrc said stem cell research is a broad topic that sheds light on how to best exploit human cells to treat diseases for certain organs such as the liver kidney or nerves.

he said the current use of stem cells is centered on plantation for the treatment of certain types of leukemia cancer and genetic diseases.

since its inception three years ago the center has transplanted 200 cells following the creation of a program for transplanting stem cells in children and adults he said.

saudi arabia has the sole stem cell donation registry in arab countries compared with 60 cells donation registries globally he said.

'the saudi stem cell donation center is meant to attract potential donors from arab countries" he said. 'we have had 5000 donors so far."

he said some 400 scientists and experts are working at the center while another 40 physicians have been dispatched on scholarships to acquire training and specialization.

al-askar expressed optimism over the future of stem cell use and its contribution to the treatment of a variety of diseases such as diabetes cancer pulmonary and hepatic fibrosis and neurological and cardiovascular disorders.

See more here:
Saudi- Conference to shed light on latest stem cell applications

Center for Joint Regeneration in Phoenix Now Offering Stem Cell Procedures for Nonoperative Rotator Cuff Tendon Repair

Phoenix, Arizona (PRWEB) April 28, 2014

Center for Joint Regeneration is now offering stem cell procedures for nonoperative rotator cuff repair with Board Certified orthopedic doctors. The regenerative medicine procedures are performed as an outpatient and involve either bone marrow derived or amniotic derived stem cell material. Call (480) 466-0980 for more information and scheduling.

Millions of Americans are affected by shoulder pain due to a rotator cuff bursitis or tendon tear. The pain may persist for months and may end up needing surgery if traditional treatments fail. These may include steroid injections, physical therapy and pain medication.

Treatment with regenerative medicine has now become available with stem cell material. The Board Certified orthopedic doctors at Center for Joint Regeneration offer stem cell procedures for rotator cuff injuries with either bone marrow or amniotic derived stem cells.

The bone marrow stem cells involve harvesting the material in a short procedure from the patient, with immediate processing to concentrate the stem cells and growth factors for injection into the shoulder. The amniotic material is obtained from consenting donors after a scheduled c-section procedure. There is no fetal tissue used at all, alleviating any ethical concerns.

Small studies to date have shown stem cell procedures to work well for pain relief and restoration of function with musculoskeletal conditions such as knee arthritis, ligament injury and tendonitis. The stem cell material includes growth factors, stem cells, hyaluronic acid and anti-inflammatory medicine as well.

Center for Joint Regeneration also offers stem cell procedures for joint arthritis, ligament injuries and tendonitis of other areas of the body as well. This helps patients avoid surgery as well as helping athletes return to sporting activities.

For more information and scheduling to discuss regenerative medicine stem cell procedure options, call (480) 466-0980.

See the original post:
Center for Joint Regeneration in Phoenix Now Offering Stem Cell Procedures for Nonoperative Rotator Cuff Tendon Repair

Stress Could Activate “Crosstalking” Cell Signals That Turn Bodys Natural Wound Healing Process Against It

Durham, NC (PRWEB) April 23, 2014

Stress could activate "crosstalking" cell signals that decrease the bodys natural healing process after a wound occurs, according to a new study released today in STEM CELLS Translational Medicine. The finding helps explain how stress impairs healing and, conversely, could lead to a way to overcome chronic wounds resulting from serious burns and other skin injuries.

Chronic wounds are a major global health problem, with annual costs in the United States alone of more than $23 billion, said Roslyn Isseroff, M.D., of the University of California Davis and the Northern California Health Care Systems Department of Veterans Affairs. She was a lead investigator in the study along with Mohan R. Dasu, Ph.D.

The precise process that prevents their healing is unclear except for two constants: a prolonged inflammatory response and the bacterial colonization of the wound bed. These two interrelated factors are thought to contribute to the wounds chronic state.

Previous studies had demonstrated an increase in epinephrine (adrenaline), as occurs during stress, produces an increase in the activity of TLR2 (Toll-like receptor 2), a protein that appears to stimulate the early inflammatory process needed to set the steps of healing in motion. Together they alter the ability of stem cells and keratinocytes, the barrier-forming cells that make up 90 percent of skin, to repair wound damage by slowing down the stem cells migration to the area and by promoting inflammation.

To compound the potential for damage, bacteria in the wound can activate the TLR2 system, and crosstalk to the epinephrine signaling system, creating a cycle of escalating damaging signals.

The Isseroff and Dasu team, which included colleagues at UC-Daviss Institute for Regenerative Cures and California State University, decided to look at how increased epinephrine and TLR2 stimulation affected stem cells taken from bone marrow and keratinocytes by analyzing the "crosstalk" between their signaling pathways. The researchers tested their theory in cultured cells and in mice. In both instances they found that the crosstalk led to impaired healing, with elevated levels of TLR2 as well as MyD88 and IL-6, both of which regulate the activation of numerous pro-inflammatory genes, in the wounds.

Thus, our data describe a recipe for decreasing cell migration and exacerbating inflammation via novel crosstalk between the adrenergic and Toll-like receptor pathways in wounds, Dr. Dasu said.

"These findings have implications for understanding the mechanisms controlling the differing susceptibility to infections and immune/inflammatory-related conditions in wounds," said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.

The full article, Crosstalk Between Adrenergic and Toll-Like Receptors in Human Mesenchymal Stem Cells and Keratinocytes: A Recipe for Impaired Wound Healing, can be accessed at http://www.stemcellstm.com.

See the original post here:
Stress Could Activate "Crosstalking" Cell Signals That Turn Bodys Natural Wound Healing Process Against It

Single Cell Type Found To Cause Most Invasive Bladder Cancers: Study

Lawrence LeBlond for redOrbit.com Your Universe Online

Invasive bladder cancer (IBC), a malignant disease that currently affects more than 375,000 people worldwide, has been found to be caused by a single type of cell in the lining of the bladder, according to researchers with the Stanford University School of Medicine.

The researchers say this is the first study to pinpoint the normal cell type that can give rise to IBC. It is also the first study to show that most bladder cancers and their precancerous lesions arise from just one cell, which could also explain why many bladder cancers recur after therapy.

Weve learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining, Philip Beachy, PhD, professor of biochemistry and of developmental biology, said in a statement. All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression.

Beachy and colleagues found that while cancer stem cells and the precancerous lesions they form express an important signaling protein known as sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

This could be a game changer in terms of therapeutic and diagnostic approaches, said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. Until now, its not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if its due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring.

Bladder cancer is the fourth most common cancer in men and the ninth in women. There are two main types of bladder cancer: one that invades the muscle around the bladder and then metastasizes to other organs, and another that remains confined to the bladder lining. Unlike noninvasive cancers, most invasive bladder cancers are untreatable. Those that can be treated are expensive and difficult to cure, and with a high likelihood of recurrences, ongoing monitoring is required.

To determine what genes or cell types are at play in the formation of bladder cancer, the study team used a mouse model that closely mimicked what happens in humans. Usually, researchers rely on prior knowledge or guesses as to what genes are involved and often genetically alter cell types in animals to induce overexpression of a gene known to be involved in tumorigenesis or to block the expression of a gene that inhibits cancer development.

LINK TO SMOKING

Previous work by Beachy and his colleagues suggested that basal cells play a role in bladder cancer. However, the new study offered an unbiased approach.

See the rest here:
Single Cell Type Found To Cause Most Invasive Bladder Cancers: Study

Stanford scientists identify source of most cases of invasive bladder cancer

PUBLIC RELEASE DATE:

20-Apr-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center

STANFORD, Calif. A single type of cell in the lining of the bladder is responsible for most cases of invasive bladder cancer, according to researchers at the Stanford University School of Medicine.

Their study, conducted in mice, is the first to pinpoint the normal cell type that can give rise to invasive bladder cancers. It's also the first to show that most bladder cancers and their associated precancerous lesions arise from just one cell, and explains why many human bladder cancers recur after therapy.

"We've learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining," said Philip Beachy, PhD, professor of biochemistry and of developmental biology. "All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression."

Although the cancer stem cells, and the precancerous lesions they form in the bladder lining, universally express an important signaling protein called sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

"This could be a game changer in terms of therapeutic and diagnostic approaches," said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. "Until now, it's not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if it's due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring."

Beachy is the senior author of the study, which will be published online April 20 in Nature Cell Biology. He is the Ernest and Amelia Gallo Professor in the School of Medicine and a member of the Stanford Cancer Institute and the Stanford Institute for Stem Cell Biology and Regenerative Medicine. He is also a Howard Hughes Medical Institute investigator. Kunyoo Shin, PhD, an instructor at the institute, is the lead author.

Bladder cancer is the fourth most common cancer in men and the ninth most common in women. Smoking is a significant risk factor. There are two main types of the disease: one that invades the muscle around the bladder and metastasizes to other organs, and another that remains confined to the bladder lining. Unlike the more-treatable, noninvasive cancer which comprises about 70 percent of bladder cancers the invasive form is largely incurable. It is expensive and difficult to treat, and the high likelihood of recurrence requires ongoing monitoring after treatment.

Follow this link:
Stanford scientists identify source of most cases of invasive bladder cancer

Top stem cell scientist joins Stemedica

Stem cell scientist Mahendra Rao, former director of the now-defunct Center For Regenerative Medicine at the National Institutes of Health. Photo taken in December, 2013 during a speech by Rao at the World Stem Cell Summit in San Diego.

One of the nation's top stem cell scientists has become an adviser to San Diego's Stemedica, a developer of stem cell-based therapies.

Dr. Mahendra Rao joined Stemedica's scientific and medical advisory board, and will help guide the company's strategy, said Maynard Howe, chief executive of the privately held company. Rao's career as a scientist who has also worked for companies and federal agencies makes him particularly useful, Howe said.

Rao is a medical doctor with a PhD in developmental neurobiology from CalTech. He headed the neurosciences division of the National Institute on Aging. He also led the stem cell division of Carlsbad-based Life Technologies, now a unit of Thermo Fisher Scientific. The two companies are on good terms: Life Technologies sells two kinds of stem cells made by Stemedica, used for research purposes, Howe said.

Rao was most recently founding director of the Center for Regenerative Medicine at the National Institutes of Health, which has been shut down. Rao, who resigned at the end of March, said he was disappointed at the slow pace of funding studies with artificial embryonic stem cells, called induced pluripotent stem cells. Stemedica announced his appointment April 8.

Rao said Wednesday that his goal now is to advance stem cell therapies through the private sector. Stemedica drew his attention because it had developed a method of reliably generating "clinically compliant" stem cells suitable for use in therapy.

In addition, Rao said he likes that Stemedica is developing combination stem cell therapies, using a variety called mesenchymal stem cells. This variety of stem cell generates chemicals that promote short-term regrowth and seems to enhance the survival of other transplanted stem cells. For example, mesenchymal stem cells could help transplanted neural stem cells integrate into the brain.

"That's a high-risk process and it's a much more difficult road, but they seem to be willing to do that," Rao said.

He has also rejoined the board of Q Therapeutics, a Salt Lake City company developing treatments for spinal cord injuries and other neurological disorders. Rao is the company's scientific founder, but had to leave the company when he joined the NIH.

Stemedica and its affiliated companies are undertaking multiple clinical trials of stem cell therapies. One of the most advanced is for stroke, Howe said. See utsandiego.com/stemedicastroke1 for detailed information.

See more here:
Top stem cell scientist joins Stemedica

Pioneers in Regenerative Therapy to Discuss New Trends in Stem Cell Medicine

Washington (PRWEB) April 15, 2014

Research that resulted in the first stem cells that are pluripotentthose that have the potential to differentiate into almost any cell in the bodywill be the backdrop for a discussion about trends in regulation in the field of regenerative medicine at the DIA 2014 50th Annual Meeting, June 15 to 19 in San Diego.

Chaired by Shinji Miyake, professor of clinical research for the Keio University School of Medicine in Japan, the session Pioneering Regenerative Medicine: Trends in Regulations for New Therapy will introduce the worlds first clinical research of induced pluripotent stem (iPS) cell products, conducted in Japan, and review updated regulatory guidance to bring regenerative medicine to patients who need healthy tissue or organs. The session will be held June 16 at 8:30 a.m. in the San Diego Convention Center.

iPS cells are stem cells that can be generated directly from adult cells. These cells can multiply indefinitely and represent a single source of cells, such as heart, neural, pancreatic and liver, that can be used to replace damaged cells.

In 2006, Japanese physician and researcher Shinya Yamanaka led a team to generate iPS cells from adult mouse tissue using gene therapy. This work led to a Nobel Prize in Physiology or Medicine in 2012 for the discovery that mature cells can be reprogrammed to become pluripotent.

We are honored to host pioneers of this unique field of medicine at the DIA Annual Meeting to share their experiences in the planning of the first clinical research of iPS cell productswhich have the ability to enhance research worldwide, said Barbara L. Kunz, DIA global chief executive. Their expert knowledge of issues and solutions in the application of the regenerative therapies will benefit all who advocate for and drive innovative medicine.

The session will also feature a presentation about the application of iPS cells to retinal diseases by Masayo Takahashi, project leader for the RIKEN Center for Developmental Biology in Japan, along with a European Medicines Agency (EMA) presentation by Dariusz Sladowski, researcher and member of the Committee for Advanced Therapies at EMA.

ABOUT DIA: DIA is the global connector in the life sciences product development process. Our association of more than 18,000 members builds productive relationships by bringing together regulators, innovators and influencers to exchange knowledge and collaborate in an impartial setting. DIAs network creates unparalleled opportunities for the exchange of knowledge and has the interdisciplinary experience to prepare for future developments. DIA is an independent, nonprofit organization with its global center in Washington, D.C., USA; regional offices covering North and South America (Horsham, Pa., USA); Europe, North Africa and the Middle East (Basel, Switzerland); and Japan (Tokyo), India (Mumbai) and China (Beijing). For more information, visit http://www.diahome.org.

ABOUT DIAs 2014 50th ANNUAL MEETING: Celebrate the Past Invent the Future is the largest multidisciplinary event that brings together a community of life sciences professionals at all levels and across all disciplines involved in the discovery, development and life cycle management of medical products. The meeting aims to foster innovation that will lead to the development of safe and effective medical products and therapies for patients. For more information, visit http://www.diahome.org/dia2014.

Read the original here:
Pioneers in Regenerative Therapy to Discuss New Trends in Stem Cell Medicine

Stem Cells | ICMS — Advancing Stem Cell Treatments, Stem …

T he International Cellular Medicine Society (ICMS) is an international non-profit dedicated to patient safety through strict evaluation of protocols and rigorous oversight of clinics and facilities engaged in the translation of point-of-care cell-based treatments.As a Professional Medical Association, the ICMS represents Physiciansand Researchersfrom over 35 countries who share a mission to provide Scientifically Credible and Medically Appropriate Treatments to Informed Patients.Join the ICMS.

The ICMS Works Tirelessly for the Clincial Translation of Field of Cell-Based Point-of-Care Treatments through:

Comprehensive Medical Standards and Best Practice Guidelines for Cell Based Medicine,

Strict Evaluation and Rigerous Oversight of Stem Cell Clinics and Facilities through aGlobal Accreditation Process,

Physician Education through daily updates on the latest Research on Stem Cells, the monthly Currents In Stem Cell Medicine and the annual International Congress for Regenerative and Stem Cell Medicine.

Join the ICMSto receive the latest news and research from cell-based medicne, including the bi-monthly publication, Currents in Stem Cell Medicine.

Read the original:
Stem Cells | ICMS -- Advancing Stem Cell Treatments, Stem ...

Lung Institute’s Innovative Stem Cell Procedure is Giving End Stage Lung Disease Patients a New Option

Tampa, Florida (PRWEB) April 10, 2014

One year ago, Gary Oberschlake was diagnosed with idiopathic pulmonary fibrosis (IPF), a deadly lung disease with no known cause characterized by the permanent scarring of lung tissue. Gary wasnt alone approximately 48,000 others received the same diagnosis last year. Claiming the lives of nearly 40,000 individuals annually, IPF is as deadly as breast cancer.

Doctors told Gary, a family man with a wife, four children, and four grandchildren, his only treatment option was a double lung transplant. Knowing the inherent risks associated with this procedure, including his bodys rejection of the new lungs, Gary refused to accept it as his only chance for survival.

After spending considerable time researching possible alternative options, Gary became fascinated by recent developments in stem cell medicine, and its potential for treating sufferers of chronic lung disease like IPF. His excitement regarding this option was met with doubt expressed by his pulmonologist, who didnt see the clinical viability of stem cells for lung conditions at the time. Despite his doctors reluctance, Gary decided to give stem cell therapy a chance.

According to his wife Debra, when he found Lung Institute in Tampa, FL, it was like it was meant to be. And, feeling as though it was a sign he couldnt ignore, Gary made the decision to pursue autologous stem cell treatment at Lung Institute in Tampa.

Today, nine months after receiving his first treatment at Lung Institute, Gary has seen results that have far exceeded his expectations, leaving his pulmonologist and cardiologist in disbelief. In fact, all the doctors he saw after his treatments have been shocked by his positive progression, which has completely changed their perspective on his prognosis and the viability of stem cells for lung disease in general.

Their astonishment at the treatments overwhelming success is not unusual many doctors like them are skeptical of the clinical application of stem cells for lung disease, simply because advancements in the field have been so recent. But skeptics need only witness the success of these treatments, as Garys doctors did, to have their position turned upside down.

Gary says prior to his stem cell treatment, his cardiologist said the next time hed see me would be in a hospital bed. Quite to the contrary, Gary is now able to enjoy many aspects of life that were previously limited by his condition. In his words, Ive been able to do things with [my grandchildren]. Before I was only able to sit down and watch them.

As a result of his refusal to accept his original prognosis, Gary and his wife are now looking into the future and planning ahead. Lung Institute continues to produce positive results, much like those experienced by Gary, and in doing so, is changing the lives of many suffering from chronic and debilitating pulmonary conditions.

About Lung Institute At Lung Institute (LI), we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook or call us today at 1-855-469-5864.

More here:
Lung Institute's Innovative Stem Cell Procedure is Giving End Stage Lung Disease Patients a New Option

Former NIH stem-cell chief joins New York foundation

Nature News Blog

10 Apr 2014 | 22:47 BST | Posted by Sara Reardon | Category: stem cells

Stem-cell biologist Mahendra Rao, who resigned last week as director of the Center for Regenerative Medicine (CRM) at the US National Institutes of Health (NIH), has a new job. On 9 April, he was appointed vice-president for regenerative medicine at the New York Stem Cell Foundation (NYSCF), a non-profit organization that funds embryonic stem-cell research.

Rao left the NIH abruptly on 28 March, apparently because of disagreements about the number of clinical trials of stem-cell therapies that the NIHs intramural CRM programme would conduct. The CRM was established in 2010 to shepherd therapies using induced pluripotent stem cells (iPS cells) adult cells that have been reprogrammed to an embryonic state into clinical translation. One of the CRMs potential therapies, which will use iPS cells to treat macular degeneration of the retina, will continue moving towards clinical trials at the NIH, although several others were not funded. NIH officials say that the CRM will not continue in its current direction, but the fate of the centres remaining budget and resources is undecided.

Rao says that he wants to move more iPS cell therapies towards trials than the NIH had been willing to do. He has already joined the advisory boards of several stem-cell-therapy companies: Q Therapeutics, a Salt Lake City-based neural stem cell company he co-founded; and Cesca Therapeutics (formerly known as ThermoGenesis) of Rancho Cordova, California, and Stemedica of San Diego, California, both of which are developing cell-based therapies for cardiac and vascular disorders.

Rao says that his initial focus at the NYSCF will be developing iPS cell lines for screening, and formulating a process for making clinical-grade cell lines from a patients own cells.

Read more from the original source:
Former NIH stem-cell chief joins New York foundation

Global Stem Cells Group and Revita Life Sciences Announce Joint Venture to Establish a Stem Cell Training Course in …

Miami (PRWEB) April 11, 2014

GlobalStemCellsGroup.com and Revita Life Sciences have announced plans to present the adipose and bone marrow stem cells course hosted by Himanshu Bansal, M.D., May 22-23 in Delhi.

Revita Life Sciences is a biotech company based in Dehli that specializes in stem cell research, training and clinical applications protocol development in regenerative medicine. Stem Cell specialists from both Global Stem Cells Group and Revita will participate in the two-day training program designed to help medical professionals bring stem cell therapies to the physicians office.

The adipose-derived harvesting, isolation and re-integration training course for the advancement of stem cell procedures is a two-day, hands-on intensive training course developed for physicians and high-level practitioners to learn techniques in harvesting and reintegrating stem cells derived from adipose (fat) tissue and bone marrow. The objective of the training is to bridge the gap between bench science in the laboratory and the doctors office by teaching effective in office regenerative medicine techniques.

For more information, visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

About the Global Stem Cell Group: Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

About Revita Life Science:

Revita Life Sciences is a biotechnology company that provides complete support to patients from their first inquiry through stem cell therapy performed by a Revita Life Science specialized physician.

Revitas primary objective is the development of stem cell therapies that target areas of significant unmet or poorly met medical need. Years of research and experience have resulted in substantial improvements in the health and condition of patients suffering from a variety of illnesses through stem cell therapy, even where other treatments have failed.

Read more:
Global Stem Cells Group and Revita Life Sciences Announce Joint Venture to Establish a Stem Cell Training Course in ...

NIH Stem-Cell Program Closes

The director of the agency's Center for Regenerative Medicine resigned on March 28 after just one clinical-trial award had been made

Therapies based on induced pluripotent stem cells, here differentiating into retinal cells on a scaffold, were the focus of the Center for Regenerative Medicine. Credit: NIH

Stem-cell researchers at the National Institutes of Health (NIH) have been left frustrated and confused following the demise of the agencys Center for Regenerative Medicine (CRM). The intramural programs director, stem-cell biologist Mahendra Rao, left the NIH, in Bethesda, Maryland, on 28March, and the centers website was taken down on 4 April. Although no official announcement had been made at the timeNaturewent to press, NIH officials say that they are rethinking how they will conduct in-house stem-cell research.

Researchers affiliated with the center say that they have been left in the dark. When contacted byNatureon 7April, George Daley, a stem-cell biologist at Harvard Medical School in Boston, Massachusetts, and a member of the centers external advisory board, said that he had not yet been told of Raos departure or the centers closure.

The CRM was established in 2010 to centralize the NIHs stem-cell program. Its goal was to develop useful therapies from induced pluripotent stem (iPS) cells adult cells that have been converted into embryonic-like stem cells and shepherd them towards clinical trials and regulatory approval. Its budget was intended to be $52million over seven years.

Rao took the helm in 2011. Relations seem to have soured last month owing to an NIH decision to award funding to only one project aiming to move iPS cells into a clinical trial. Rao says he resigned after this became clear. He says that he had hoped that five trials would be funded, especially because the center had already sorted out complex issues relating to tissue sources, patents and informed consent.

James Anderson, director of the NIHs Division of Program Coordination, Planning, and Strategic Initiatives, which administered the CRM, counters that only one application that made by Kapil Bharti of the National Eye Institute in Bethesda and his colleagues received a high enough score from an external review board to justify continued funding. The team aims to use iPS cells to treat age-related macular degeneration of the retina, and hopes to commence human trials within a few years. Several other proposals, which involved the treatment of cardiac disease, cancer and Parkinsons disease, will not receive funding to ready them for clinical trials. Anderson stresses that Bhartis trial will not be affected by the CRMs closure.

Other human iPS-cell trials are further along. For example, one on macular degeneration designed by Masayo Takahashi at the RIKEN Center for Developmental Biology in Kobe, Japan, began recruiting patients last August.

Anderson says that the CRM will not continue in its current form. The field is moving so fast that we need to rethink. To that end, the NIH plans to hold a workshop in May to gather stem-cell researchers together and decide what to do with the program and its remaining budget. To me thats just smart science, he says. If somethings not on track you dont keep spending money on it.

One option could be to allow CRM projects to be absorbed by the National Center for Advancing Translational Sciences, an NIH institute established in 2011 to translate basic research into therapies. But Anderson says that participants at the workshop will also discuss whether the NIH needs to replace the CRM with another dedicated stem-cell program.

Originally posted here:
NIH Stem-Cell Program Closes

Mahendra Rao Joins The New York Stem Cell Foundation Research Institute

Contact Information

Available for logged-in reporters only

Newswise NEW YORK, NY (April 9, 2014) Dr. Mahendra Rao, who has directed the Center for Regenerative Medicine at the National Institutes of Health (NIH CRM) since 2010, will join The New York Stem Cell Foundation (NYSCF) Research Institute as its Vice President for Regenerative Medicine, a newly created position, Susan Solomon, NYSCF Chief Executive Officer, announced today.

Dr. Rao, who holds an MD degree and a PhD in developmental neurobiology, is one of the nations most prominent stem cell scientists. He has over twenty years of experience in all aspects of the stem cell field including government, academia, and business. Before joining the NIH, Dr. Rao spent six years as the vice president of Regenerative Medicine at Life Technologies, Inc. (now Thermo Fisher Scientific) after serving as the chief of Neurosciences at the National Institute on Aging and co-founding Q Therapeutics, a neural stem cell company based in Utah. Dr. Rao is tenured at the University of Utah School of Medicine in both Neurobiology and Anatomy and has over twenty submitted and ten issued patents.

Dr. Raos expertise in translational research, academia, and industry make him a valuable asset in our mission to take stem cell research from the laboratory to the clinic in order to find cures for the diseases that affect those we love, Solomon said. We are delighted to have him on board.

Solomon said that recruiting Dr. Rao is a major coup for NYSCF as it builds on its existing successes and carries out its strategic goals. Dr. Raos expertise and experience in setting up a company and in leading the translational effort at NIH will complement their expertise in automation and high-throughput induced pluripotent stem (iPS) cell generation.

I am enthused about NYSCFs efforts to generate high-quality stem cell lines and partner with the pharma and academic communities. I am excited to be joining them to advance their goals, said Dr. Rao.

In addition to his business career, Dr. Rao has served on scientific advisory boards, editorial boards and review panels and on committees including as the U.S. Food and Drug Administrations Cellular, Tissue, and Gene Therapies Advisory Committee chair and as the California Institute of Regenerative Medicine and International Society for Stem Cell Research liaison to the International Society for Cellular Therapy. Currently, he sits on the board of Cesca Therapeutics, Inc. and serves as the Chief Strategy Officer and Chairman of the Scientific Advisory Board at Q Therapeutics.

"Mahendra is a widely-recognized and accomplished leader in stem cell research. He will be a major asset for NYSCF as we continue to develop new therapeutics for patients," said Dr. Zach Hall, NYSCF Board Member and former Director of National Institute of Neurological Disorders and Stroke.

About The New York Stem Cell Foundation

See the original post here:
Mahendra Rao Joins The New York Stem Cell Foundation Research Institute

Archives