Archive for April, 2019
NSGC > Genetic Testing > About Genetic Testing
There are thousands of genetic tests, meaning we can test for many of these genetic mutations. But there are also many mutations that we dont have tests for.
Whether or not to have genetic testing is complicated. What will it tell you? What will you do about it once you get the results? Will having that information help you or not? Thats why the insight and guidance provided by a genetic counselor is invaluable. A genetic counselor can explain the different types of tests available and what they may and may not tell you as well as how they may or may not help you.
Genetic tests are generally performed as part of your clinical care. However, there are times when you may be offered one or more genetic tests as part of a research study. If this is the case, the genetic counselor or study staff will review the study in detail so that you can decide whether or not to participate
View thisresourcethat includes helpful information and critical points to consider throughout the genetic testing process.
Find a Genetic Counselor
Continued here:
NSGC > Genetic Testing > About Genetic Testing
Male and female ability differences down to socialisation …
It is the mainstay of countless magazine and newspaper features. Differences between male and female abilities from map reading to multi-tasking and from parking to expressing emotion can be traced to variations in the hard-wiring of their brains at birth, it is claimed.
Men instinctively like the colour blue and are bad at coping with pain, we are told, while women cannot tell jokes but are innately superior at empathising with other people. Key evolutionary differences separate the intellects of men and women and it is all down to our ancient hunter-gatherer genes that program our brains.
The belief has become widespread, particularly in the wake of the publication of international bestsellers such as John Gray's Men Are from Mars, Women Are from Venus that stress the innate differences between the minds of men and women. But now a growing number of scientists are challenging the pseudo-science of "neurosexism", as they call it, and are raising concerns about its implications. These researchers argue that by telling parents that boys have poor chances of acquiring good verbal skills and girls have little prospect of developing mathematical prowess, serious and unjustified obstacles are being placed in the paths of children's education.
In fact, there are no major neurological differences between the sexes, says Cordelia Fine in her book Delusions of Gender, which will be published by Icon next month. There may be slight variations in the brains of women and men, added Fine, a researcher at Melbourne University, but the wiring is soft, not hard. "It is flexible, malleable and changeable," she said.
In short, our intellects are not prisoners of our genders or our genes and those who claim otherwise are merely coating old-fashioned stereotypes with a veneer of scientific credibility. It is a case backed by Lise Eliot, an associate professor based at the Chicago Medical School. "All the mounting evidence indicates these ideas about hard-wired differences between male and female brains are wrong," she told the Observer.
"Yes, there are basic behavioural differences between the sexes, but we should note that these differences increase with age because our children's intellectual biases are being exaggerated and intensified by our gendered culture. Children don't inherit intellectual differences. They learn them. They are a result of what we expect a boy or a girl to be."
Thus boys develop improved spatial skills not because of an innate superiority but because they are expected and are encouraged to be strong at sport, which requires expertise at catching and throwing. Similarly, it is anticipated that girls will be more emotional and talkative, and so their verbal skills are emphasised by teachers and parents.
The latter example, on the issue of verbal skills, is particularly revealing, neuroscientists argue. Girls do begin to speak earlier than boys, by about a month on average, a fact that is seized upon by supporters of the Men Are from Mars, Women Are from Venus school of intellectual differences.
However, this gap is really a tiny difference compared to the vast range of linguistic abilities that differentiate people, Robert Plomin, a professor at the Institute of Psychiatry in London, pointed out. His studies have found that a mere 3% of the variation in young children's verbal development is due to their gender.
"If you map the distribution of scores for verbal skills of boys and of girls you get two graphs that overlap so much you would need a very fine pencil indeed to show the difference between them. Yet people ignore this huge similarity between boys and girls and instead exaggerate wildly the tiny difference between them. It drives me wild," Plomin told the Observer.
This point is backed by Eliot. "Yes, boys and girls, men and women, are different," she states in a recent paper in New Scientist. "But most of those differences are far smaller than the Men Are from Mars, Women Are from Venus stereotypes suggest.
"Nor are the reasoning, speaking, computing, emphasising, navigating and other cognitive differences fixed in the genetic architecture of our brains.
"All such skills are learned and neuro-plasticity the modifications of neurons and their connections in response experience trumps hard-wiring every time."
The current popular stress on innate intellectual differences between the sexes is, in part, a response to psychologists' emphasis of the environment's importance in the development of skills and personality in the 1970s and early 1980s, said Eliot. This led to a reaction against nurture as the principal factor in the development of human characteristics and to an exaggeration of the influence of genes and inherited abilities. This view is also popular because it propagates the status quo, she added. "We are being told there is nothing we can do to improve our potential because it is innate. That is wrong. Boys can develop powerful linguistic skills and girls can acquire deep spatial skills."
In short, women can read maps despite claims that they lack the spatial skills for such efforts, while men can learn to empathise and need not be isolated like Mel Gibson's Nick Marshall, the emotionally retarded male lead of the film What Women Want and a classic stereotype of the unfeeling male that is perpetuated by the supporters of the hard-wired school of intellectual differences.
This point was also stressed by Fine. "Many of the studies that claim to highlight differences between the brains of males and females are spurious. They are based on tests carried out on only a small number of individuals and their results are often not repeated by other scientists. However, their results are published and are accepted by teachers and others as proof of basic differences between boys and girls.
"All sorts of ridiculous conclusions about very important issues are then made. Already sexism disguised in neuroscientific finery is changing the way children are taught."
So should we abandon our search for the "real" differences between the sexes and give up this "pernicious pinkification of little girls", as one scientist has put it?
Yes, we should, Eliot insisted. "There is almost nothing we do with our brains that is hard-wired. Every skill, attribute and personality trait is moulded by experience."
Cambridge University psychologist and autism expert Simon Baron-Cohen:
"The female brain is predominantly hard-wired for empathy. The male brain is predominantly hard-wired for understanding and building systems"
Writer and feminist Joan Smith:
"Very few women growing up in England in the late 18th century would have understood the principles of jurisprudence or navigation because they were denied access to them"
John Gray, author of Men are from Mars, Women are from Venus:
"A man's sense of self is defined through his ability to achieve results. A woman's sense of self is defined through her feelings and the quality of her relationships"
Sociologist Beth Hess:
"For two millennia, 'impartial experts' have given us such trenchant insights as the fact that women lack sufficient heat to boil the blood and purify the soul, that their heads are too small, their wombs too big, their hormones too debilitating, that they think with their hearts or the wrong side of the brain. The list is never-ending"
Read more:
Male and female ability differences down to socialisation ...
Advanced maturation of human cardiac tissue grown from …
Bellin, M., Marchetto, M. C., Gage, F. H. & Mummery, C. L. Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell Biol. 13, 713726 (2012).
Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239 (2014).
Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616623 (2014).
Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230234 (2011).
Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511523 (2014).
Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110134 (2016).
Domian, I. J. et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326, 426429 (2009).
Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 19912002 (2013).
Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781787 (2013).
Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports 7, 2942 (2016).
Ribeiro, M. C. et al. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitrocorrelation between contraction force and electrophysiology. Biomaterials 51, 138150 (2015).
Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).
Brette, F. & Orchard, C. T-tubule function in mammalian cardiac myocytes. Circ. Res. 92, 11821192 (2003).
Wiegerinck, R. F. et al. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr. Res. 65, 414419 (2009).
Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130140 (2010).
Jackman, C. P., Carlson, A. L. & Bursac, N. Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111, 6679 (2016).
Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 1812918134 (2004).
Eng, G. et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).
Hasenfuss, G. et al. Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ. Res. 68, 836846 (1991).
Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60S67 (2007).
Gong, G. et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350, aad2459 (2015).
Porter, G. A. Jr et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 7581 (2011).
Vega, R. B., Horton, J. L. & Kelly, D. P. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116, 18201834 (2015).
Gottlieb, R. A. & Bernstein, D. Metabolism. Mitochondria shape cardiac metabolism. Science 350, 11621163 (2015).
Sun, R., Bouchard, M. B. & Hillman, E. M. C. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition. Biomed. Opt. Express 1, 385397 (2010).
Hong, T. et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat. Med. 20, 624632 (2014).
Bers, D. M. Cardiac excitationcontraction coupling. Nature 415, 198205 (2002).
Huebsch, N. et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6, 24726 (2016).
Tulloch, N. L. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 4759 (2011).
Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006H2017 (2011).
Morikawa, K., Song, L., Ronaldson-Bouchard, K., Vunjak-Novakovic, G. & Yazawa, M. Electrophysiological recordings of cardiomyocytes isolated from engineered human cardiac tissues derived from pluripotent stem cells.Protoc. Exch. https://doi.org/10.1038/protex.2018.030 (2018).
Continued here:
Advanced maturation of human cardiac tissue grown from ...
Addgene: CRISPR Pooled gRNA Libraries
Bassik Human CRISPR Knockout Library 101926 101934 Knockout Human Bassik 3rd 10 Varies Bassik Mouse CRISPR Knockout Library 1000000121 1000000130 Knockout Mouse Bassik 3rd 10 Varies Activity-optimized genome-wide library Discontinued Knockout Human Sabatini and Lander 3rd 10 178,896 Activity-optimized genome-wide library 1000000100 Knockout Human Sabatini and Lander 3rd 10 187,535 Broad GPP genome-wide Brunello 73179 (1 plasmid)73178 (2 plasmid) Knockout Human Doench and Root 3rd 4 76,441 Broad GPP genome-wide Brie 73632 (1 plasmid)73633 (2 plasmid) Knockout Mouse Doench and Root 3rd 4 78,637 Broad GPP kinome Brunello 75314, 75315 (1 plasmid)75312, 75313(2 plasmid) Knockout Human Doench and Root 3rd 4 3,052 Broad GPP kinome Brie 75317 (1 plasmid)75316 (2 plasmid) Knockout Mouse Doench and Root 3rd 4 2,852 Broad GPP activation Calabrese p65-HSF 92379 (Set A)92380 (Set B) Activation Human Doench and Root 3rd 36 56,762 (Set A)56,476 (Set B) Broad GPP activation Caprano p65-HSF 92383 (Set A)92384 (Set B) Activation Mouse Doench and Root 3rd 36 67,187 (Set A)66,889 (Set B) Broad GPP inhibition Dolcetto 92385 (Set A)92386 (Set B) Inhibition Human Doench and Root 3rd 36 57,050 (Set A)57,011 (Set B) Broad GPP inhibition Dolomiti 104090 (Set A)104091 (Set B) Inhibition Mouse Doench and Root 3rd 36 67,366 (Set A)67,194 (Set B) Cas13a/C2c2 Protospacer flanking site (PFS) Library 79153 Knockout E. coli Zhang N/A N/A - The protospacers contained in the library represent all 4096 (46) combinations of 6 nucleotides. N/A CRiNCL - Human CRISPRi Non-coding Libraries 86538 86550 Inhibition Human Weissman 3rd 10 Varies CRISPR/Cas9-assisted Removal of Mitochondrial DNA (CARM) Library 82480 Knockout Mouse Xie N/A N/A 395 CRISPRa Discontinued Activation Human Weissman 3rd 10 198,810 CRISPRa-v2 839781000000091 Activation Human Weissman 3rd 510 104,540209,080 CRISPRa-v2 839961000000093 Activation Mouse Weissman 3rd 510 107,105214,210 CRISPRi Discontinued Inhibition Human Weissman 3rd 10 206,421 CRISPRi-v2 839691000000090 Inhibition Human Weissman 3rd 510 104,535209,070 CRISPRi-v2 839871000000092 Inhibition Mouse Weissman 3rd 510 107,415214,830 Enriched subpools (kinase, nuclear, ribosomal, cell cycle) 51043 51048 Knockout Human Sabatini and Lander 3rd 10 Varies Focused Ras Synthetic Lethal Human CRISPR Knockout Library 92352 Knockout Human Sabatini and Lander 3rd 50 6,661 hCRISPRa-v2 subpooled libraries 83980 83986 Activation Human Weissman 3rd 5 Varies hCRISPRi-v2 subpooled libraries 83971 83977 Inhibition Human Weissman 3rd 5 Varies mCRISPRa-v2 subpooled libraries 83998 84004 Activation Mouse Weissman 3rd 5 Varies mCRISPRi-v2 subpooled libraries 83989 83995 Inhibition Mouse Weissman 3rd 5 Varies Human CRISPR Knockout Library 1000000132 Knockout Human X.S. Liu 3rd 10 185,634 Human GeCKO v2 1000000048 (1 plasmid)1000000049 (2 plasmid) Knockout Human Zhang 3rd 6 123,411 Human genome-wide library v1 69763 Knockout Human Wu 3rd 4 77,406 Human improved genome-wide library v1 67989 Knockout Human Yusa 3rd 5 90,709 Human CRISPR lncRNA Activation Pooled Library 1000000106 Activation Human Zhang 3rd 10 96,458 Human CRISPR Metabolic Gene Knockout Library 110066 Knockout Human Sabatini 3rd 10 30,290 Human miRNA CRISPR Knockout Library 112200 Knockout Human Lin 3rd 4-5 8,382 Human Paired-guide RNA (pgRNA) Library for Long Non-coding RNAs (lncRNAs) 89640 Knockout Human Wei 3rd Varies 12,472 pairs Mouse GeCKO v2 1000000052 (1 plasmid)1000000053(2 plasmid) Knockout Mouse Zhang 3rd 6 130,209 Mouse genome-wide library v1 Discontinued Knockout Mouse Yusa 3rd 5 87,897 Mouse improved genome-wide library v2 67988 Knockout Mouse Yusa 3rd 5 90,230 Oxford Fly 64750 Knockout D. melanogaster Liu N/A 3 40,279 Perturb-seq Guide Barcodes (GBC) 85968 Barcode Human Weissman 3rd N/A N/A SAM v1 - 3 plasmid system 1000000057 (Zeocin)1000000074 (Puromycin) Activation Human Zhang 3rd 3 70,290 SAM v1 - 3 plasmid system 1000000075 (Puromycin) Activation Mouse Zhang 3rd 3 69,716 SAM v2 - 2 plasmid system 1000000078 (Blasticidin) Activation Human Zhang 3rd 3 70,290 Toronto KnockOut - Version 1 1000000069 Knockout Human Moffat 3rd 12 176,500 Toronto KnockOut - Version 3 90294 Knockout Human Moffat 3rd 4 70,948 Toxoplasma Knockout 80636 Knockout T. gondii Lourido N/A 10 8,158 Two plasmid human activity-optimized genome-wide library 1000000095 Knockout Human Sabatini and Lander 3rd 10 187,536 Two plasmid mouse activity-optimized genome-wide library 1000000096 Knockout Mouse Sabatini and Lander 3rd 10 188,509
Original post:
Addgene: CRISPR Pooled gRNA Libraries
BONE MARROW – Stem Cell International
Inside of our bones is where we find this soft, sponge-like material called bone marrow. This bone marrow is filled with blood-forming stem cells that can either divide and form more blood-forming stem cells, or they can transform into three types of blood cells: white blood cells, red blood cells, or platelets.
This method of stem cell therapy is most commonly used for patients suffering from some types of cancer.
How it Works
There are two types of bone marrow transplants; autologous and allogeneic. An autologous bone marrow transplant is when the stem cells are taken from your own body, while an allogeneic process will use the stem cells from a healthy donor.
The procedure starts with an anesthesia being administered to the patient before a doctor begins harvesting the bone marrow from the hip bone, or sometimes, the sternum. The bone marrow is then moved through a process that removes blood and bone from the marrow. The stem cells are then isolate and will be released into your bloodstream, like a blood transfusion.
Who Can Benefit
The conditions most commonly treated with a bone marrow transplant include:
If you are suffering from any of the above diseases, it doesnt mean you are automatically a candidate for a bone marrow transplant. You need to meet with a physician first to be sure this is the most appropriate treatment for your needs. Here at Stem Cell International, our expert physicians would love to talk with you.
What You Can Expect
If you decide this therapy may be right for you, each one of our patients will meet with a physician to discuss your medical history and desired outcomes of the entire process. This is also important for you and the physician to become more comfortable with each other and be absolutely sure this is the best route for your needs.
Did You Know
If you decide a bone marrow transplant is the best route for your needs, you can expect to see and feel improvements anywhere from 2 to 8 weeks. Although, complete recovery of immune function could take several months.
If youre interested in being treated with a bone marrow transplant at Stem Cell International, one of our stem cell experts would be happy to help you decide. Get in touch today!
Read more here:
BONE MARROW - Stem Cell International