Posts Tagged ‘knowledge’

Using a Blood Collection Device to Advance Genetic Research in Parkinson Disease: James Beck, PhD & Ben … – Neurology Live

WATCH TIME: 6 minutes

"Geographic diversity is incredibly important in Parkinson research. Tasso's device helps reach patients in remote areas where access to phlebotomists may be limited."

PD GENEration: Mapping the Future of Parkinsons Disease,an international genetics study led by the Parkinsons Foundation, tests for mutations among select, clinically relevant genes to accelerate research, advance treatments, and improve care for patients with Parkinson disease (PD). The goal of the study is to make genetic testing accessible to patients with PD, empower those with the disease and their clinicians to know their genetic status, and identify clinical trials in which they might enroll. PD GENEration returns genetic findings to all participants through a genetic counseling session, bridging the knowledge gap between patients and clinicians to accelerate research collectively.

In recent news, the foundation announced a partnership with Tasso that would leverage the companys patient-centric, end-to-end sample collection and logistics platform for PD GENEration.1 Patients in the study will receive a kit containing a Tasso device that will collect a small blood sample in the comfort and convenience of their home. Online proctors will help guide participants through the collection process and provide support for a successful collection. After collection, patients can ship their sample in a pre-paid box to a lab for research analysis. Overall, the goal of this research is to screen the collected samples for mutations among select, clinically relevant PD genes.

James Beck, PhD, senior vice president and chief scientific officer of the Parkinsons Foundation, and Ben Casavant, PhD, CEO and cofounder of Tasso, recently sat down with NeurologyLive in an interview to discuss how the blood collection device can simplify the process of collecting a sample of blood compared with traditional methods. The duo also talked about the role of genetic analysis in Parkinson research, and how Tasso is contributing to it. Additionally, Beck and Casavant talked about the importance of geographic diversity in the context of Parkinson research and patient access to testing.

Click here to learn more about PD GENEration.

Excerpt from:
Using a Blood Collection Device to Advance Genetic Research in Parkinson Disease: James Beck, PhD & Ben ... - Neurology Live

SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical … – Yahoo Finance

SNIPR Biome

SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical trials in haematological cancer patients

Phase 1b/2a trial will evaluate SNIPR001 for the prevention of E.coli infections in patients undergoing hematopoietic stem cell transplantation

Copenhagen, April 22 2024: SNIPR Biome ApS (SNIPR), the company pioneering the development of precision medicines using CRISPR technology for microbial gene therapy, announces today that it has received $5.48 million from Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) to co-fund a Phase 1b/2a clinical trial in hematological cancer patients.

The trial will evaluate SNIPR001, the first CRISPR-armed phage therapeutic that specifically targets E. coli in the gut, for the prevention of E. coli bloodstream infections in hematological cancer patients who are undergoing hematopoietic stem-cell transplantation (HSCT) and are colonized with Fluoroquinolone Resistant (FQR) E. coli. Fluoroquinolone is recommended in the US for prophylaxis of bacterial infections and febrile neutropenia in hematological cancer patients at high risk of neutropenia.

Despite the significant advances in hematologic cancer therapy over the past decade, infectious complications, and antimicrobial resistance (AMR) continue to pose significant threats to patients and clinical outcomes1. Currently, there are no approved therapies for the prevention of bloodstream infections (BSIs) in hematological cancer patients. SNIPR Biome is developing SNIPR001 to address this urgent unmet need to combat infections in hematological cancer patients.

Preclinical data published in Nature Biotechnology described SNIPR001s ability to selectively target and remove antibiotic-resistant E. coli strains in the gut, potentially offering a safe treatment which preserves the rest of the gut microbiome. This was supported by interim Phase 1 data published in 2023, which showed that oral dosing of SNIPR001 over seven days across three dosing levels in 24 healthy individuals was well tolerated. Furthermore, SNIPR001 could be recovered in faeces from treated individuals in a dose-dependent manner, and treatment with SNIPR001 numerically lowered gut E. coli levels.

Anticipated to begin later this year, the randomized, double-blinded Phase 1b/2a trial will investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of orally administrated SNIPR001 in 24 patients. It will be conducted at up to 10 sites across Europe and the United States.

CARB-X, a global non-profit partnership dedicated to supporting early-stage antibacterial research and development to address the rising threat of drug-resistant bacteria, has been a long-term collaborator with SNIPR in this field. The funding announced today enables SNIPR to move SNIPR001 into Phase 1b/2a clinical trials and will serve as a cornerstone for a further significant fundraise to enable the Company to continue development of its pipeline of CRISPR-based AMR and gut-directed gene therapies.

Story continues

Dr Christian Grndahl, Co-founder and CEO of SNIPR Biome, commented: Antibiotic resistance is one of healthcares biggest problems today, affecting treatment efficacy and survival among patients who are often already very sick. We are using our knowledge of gene editing and synthetic biology to create highly specific, designer bacteria and phage to disrupt, edit or add genes, and deliver these precision medicines in a carefully targeted way. We are pleased to be continuing our partnership with CARB-X who share our commitment to developing therapies for vulnerable patients.

Erin Duffy PhD, Chief of Research & Development, CARB-X, said: Having underscored safety for SNIPR001 in healthy subjects, SNIPR Biome is now focusing on demonstrating proof-of-mechanism for this novel product, with our support.We are keen to establish a link between gut decolonization and prevention of infection as a novel approach to antimicrobial resistance, and SNIPR001 offers the possibility of doing so.

CARB-X funding for this research is supported by the Biomedical Advanced Research and Development Authority under agreement number: 75A50122C00028, and by awards from Wellcome (WT224842), and Germanys Federal Ministry of Education and Research (BMBF). The content of this press release is solely the responsibility of the authors and does not necessarily represent the official views of CARB-X or any of its funders.

Ends

About SNIPR001 SNIPR001, a CRISPR-armed phage therapeutic that specifically targets E. coli in the gut, is designed to prevent infections from spreading into the bloodstream and represents a promising advancement against antibiotic-resistant pathogens. The pre-clinical studies of SNIPR001 published in Nature Biotechnology2 demonstrated the products activity against multi-drug resistant strains of E. coli and its specificity towards E. coli with no off-target effects toward any of the tested non-E. coli strains. SNIPR successfully completed a Phase 1 trial in the US, also funded by CARB-X, demonstrating safety of SNIPR001 and target engagement with E. coli in the gut of healthy subjects without disturbing the overall gut microbiome (NCT05277350), supporting its potential as a safe and effective preventative therapy for bloodstream infections in hematological cancer patients. SNIPR001 has been granted a Fast-Track designation for the indication Prophylaxis of bloodstream E. coli infections in patients with hematological malignancy at risk of neutropenia from the US Food and Drug Administration (FDA). SNIPR001 is also being developed to directly treat active E. coli infections.

About SNIPR BIOME SNIPR Biome is a Danish clinical-stage biotech company pioneering the development of precision medicines using CRISPR technology for microbial gene therapy. We are pioneering a novel use of CRISPR/Cas technology to better treat and prevent human diseases through precision killing of bacteria or gene modification. SNIPR Biome was the first company to orally dose humans with a CRISPR therapeutic and the first company to have been granted US and European patents for the use of CRISPR for targeting microbiomes. SNIPR technology is used in collaborations with Novo Nordisk A/S, CARB-X, SPRIN-D, and MD Anderson Cancer Center. For more information, visit http://www.sniprbiome.com and follow us on LinkedIn and X.

About CARB-X

CARB-X (Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator) is a global non-profit partnership dedicated to supporting early-stage antibacterial research and development to address the rising threat of drug-resistant bacteria. CARB-X supports innovative therapeutics, preventatives and rapid diagnostics. CARB-X is led by Boston University and funded by a consortium of governments and foundations. CARB-X funds only projects that target drug-resistant bacteria highlighted on the CDCs Antibiotic Resistant Threats list, or the Priority Bacterial Pathogens list published by the WHO, with a priority on those pathogens deemed Serious or Urgent on the CDC list or Critical or High on the WHO list. https://carb-x.org/ | X (formerly Twitter) @CARB_X

Contact ICR Consilium Tracy Cheung, Chris Welsh, Davide Salvi SNIPR@consilium-comms.com

SNIPR Biome Dr Christian Grndahl, Co-founder and CEO contact@sniprbiome.com http://www.sniprbiome.com

1 So M. Determining the Optimal Use of Antibiotics in Hematopoietic Stem Cell Transplant Recipients. JAMA Netw Open. 2023 Jun 1;6(6):e2317101 2 Gencay, Y.E., Jasinskyt, D., Robert, C. et al. Engineered phage with antibacterial CRISPRCas selectively reduce E. coli burden in mice. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01759-y

Read more here:
SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical ... - Yahoo Finance

The Now: Could Science Really Extend The Human Lifespan? – GCFGlobal.org

Lesson 10: Could Science Really Extend The Human Lifespan?

/en/thenow/what-is-labgrown-meat/content/

Despite advances in medicine and nutrition, science has had difficulty extending the human lifespan beyond a certain age. Nevertheless, scientists are researching how to push beyond these limits and increase the duration and quality of a persons life. However, the big question remains: Could science really extend the human lifespan?

The science of life extension has one main goal, which is to prolong the human lifespan while maintaining youthful health. Since antiquity, people have pursued this goal through countless medicines, diets, and scientific procedures. But now, science has the knowledge to possibly make life extension a reality.

Life extension has been in the news lately because many entrepreneurs, especially within Silicon Valley, have publicly advocated and funded life extension research. Many of these advocates are incredibly optimistic because they see human aging not as inevitable but as an obstacle that will eventually be overcome.

Currently, there is no proven method of delaying or reversing the aging process. However, there are plenty of products available that will try to convince you otherwise.

Always be wary of any drug, food, or supplement that makes anti-aging claims. Also keep in mind that in the United States, the FDA only reviews supplements for safety, not for effectiveness. This means a supplement that claims to prevent aging could actually be useless. As for cosmetics that make anti-aging claims, these products are typically designed to hide the effects of aging, not reverse aging itself.

Essentially, if an anti-aging product seems too good to be true, it probably is.

Although life extension is being researched from numerous angles, genetic engineering has shown the most promise. Some methods involve replacing damaged cells with new ones, while others alter the mechanisms of DNA. In 2017, Harvard scientists discovered how to reverse aging in lab mice by changing how their DNA repairs itself. However, it's unclear if scientists will be able to duplicate this feat in humans.

While it can't delay aging itself, replacing worn organs could help people survive the more deteriorating effects of aging. Scientists have already grown kidneys and windpipes in laboratory settings using stem cells, and theyre researching how to create more complex organs like the heart and liver. There has also been significant progress with artificial organs, partially thanks to new technologies like 3D printing.

Currently, life extension is mostly research and educated guesses. Some experts believe we are not even close to breaking through the natural barriers of aging, while others believe some form of life extension will be widely available by the middle of the 21st century.

Almost everyone wants to live longer, healthier lives, but science has a long way to go before we overcome the natural limits of the human lifespan. Although life extension technology will continue to develop, major discoveries will take decades to realize, if they are realized at all.

/en/thenow/how-crispr-could-change-the-world/content/

Go here to read the rest:
The Now: Could Science Really Extend The Human Lifespan? - GCFGlobal.org

Archives