Page 11234..10..»

Posts Tagged ‘generated’

Documentary about a family’s journey to Minnesota for gene therapy premieres in Minneapolis – MPR News

NINA MOINI: The Minneapolis Saint Paul International Film Festival is currently under way. And tonight, a documentary will premiere called "Sequencing Hope." The film is directed by Lindsey Seavert and Maribeth Romslo. It follows an Alabama family who came to Minnesota to get their young daughter life-saving gene therapy for a rare disease. Let's listen to a clip from the trailer.

CELIA GRACE HAMLETT: Can you hold my hand?

[CHUCKLES]

They give me the medicine.

SUBJECT 1: There is lots of other gene therapy research on the horizon.

SUBJECT 2: That's got far-reaching consequences to move medicine forward.

SUBJECT 3: In my heart, I feel that the good Lord has something in store for Celia Grace.

SUBJECT 4: We just pray, Lord, for a miracle. We pray for a healing for Celia Grace.

SUBJECT 5: You know, when it comes to your kids, you're going to do whatever it takes to protect them.

SUBJECT 6: If it saves one child, then I feel like we have accomplished something.

NINA MOINI: Celia Grace Hamlett was four-years-old when she came to M Health Fairview Masonic Children's Hospital in 2021 and became the first person in the US to undergo the experimental gene therapy. Her family's in town for the film's premiere tonight and Celia Grace's dad, Gary, joins us now along with their doctor, Doctor Paul Orchard. Thank you both for being here.

GARY HAMLETT: Thank you.

PAUL ORCHARD: Thank you, Nina.

NINA MOINI: Yeah, and Gary, let me start with you if I might. Tell us about your daughter, Celia Grace. She's seven-years-old now and I understand she was diagnosed with this rare and often fatal genetic disorder, MLD, when she was diagnosed at three-years-old. What were her options at that point?

GARY HAMLETT: Well, at that point had one or had two options. One was bone marrow transplant or the other was gene therapy that was only being done in Milan, Italy.

NINA MOINI: Wow. Doctor Orchard, can you tell us all what MLD is?

PAUL ORCHARD: Certainly. Appreciate the opportunity to speak with you today. So metachromatic leukodystrophy is a rare inherited disorder. It's what we call a lysosomal disease. The lysosome is an organelle within cells that help break down materials that the cell is attempting to get rid of.

And there's a number of enzymes that are present in the lysosome that help accomplish that. Arylsulfatase A. is one of those. And in this circumstance, if you are unlucky enough to receive a mutation within the arylsulfatase gene from both mom and from dad, then you're affected with the disease.

But both parents who have one normal copy of the gene are absolutely fine. There's nothing to suggest that they have any sort of problem, but again, if you receive an abnormal copy from both parents then you see the disease. And in this situation, it's primarily a neurologic disorder. It occurs in kids as young as one or so in terms of manifestations of the disease, but it's progressive and lethal if there's no therapy.

NINA MOINI: Wow, that's just so much to take in, Gary. And you know, you mentioned having to maybe think about treatment over in Milan. How did you hear about the treatment for MLD that was right here in Minnesota?

GARY HAMLETT: Our doctor neurologist in Alabama, Doctor Matt, is the one that contacted us and said, what would y'all think if I told y'all y'all's daughter was going to make history books? At that point we said, what do you mean? And she said, well, your daughter may be the first child in the United States to receive gene therapy for MLD and it will be done at the Masonic Children's Hospital in Minneapolis under the care of Doctor Paul Orchard.

NINA MOINI: And then what did you think? I mean, were you going to have to pay for that?

GARY HAMLETT: Yes. At that point we didn't really care what it cost us being able to save our daughter's life. So our community started doing fundraisers to try to raise money to pay for this.

NINA MOINI: Wow, yeah. Doctor Orchard, can you explain how the gene therapy works and is it accessible to most people or is it just too costly?

PAUL ORCHARD: Well, the gene therapy clinical trials occurred in Europe, as Gary was alluding to, and the data was sufficiently positive that it was approved as therapy in the EU, essentially. So it's been licensed therapy there for several years, but none of the clinical trials have been done here in the US.

And because of the promise of this new therapy, we were gearing up to being able to offer this regardless, but there was the opportunity in this situation from Celia Grace's diagnosis to be able to intervene. So it's just become licensed therapy in the last month or so, as March 18th.

But prior to that and for Celia Grace, we had to petition the FDA to allow us to use it because it's still considered experimental therapy, and get all the approvals from all the various regulatory groups to be able to do that. So it took some time, but it opened the doors. And now we've treated a total of five patients with compassionate use therapy.

NINA MOINI: All right. Is it still pretty pricey, though? I understand it's among some of the priciest treatments.

PAUL ORCHARD: Yes, it is very expensive. So for the compassionate use treatment as an experimental therapy, the company actually donated the cell product, but it's millions of dollars now as licensed therapy.

NINA MOINI: Yeah. So still working to make it more accessible. Gary, you said something that really struck me in the trailer for the film. You said that you take care of people for a living. I understand you work in law enforcement, but you couldn't fix this for your daughter. And it seems like this film is really an exploration of your family's journey. Tell me how did that feel to feel sort of helpless in the moment, but then to see her go through this journey and be, I mean, cured?

GARY HAMLETT: We just felt very helpless, not knowing the outcome of it, how sick Grace was. Just thinking that we were going to lose our daughter. Possibly by the age of five-years-old.

NINA MOINI: Yeah.

GARY HAMLETT: And seeing her now as a normal seven-year-old, running, playing, is going to graduate in kindergarten, and it's just an amazing feeling.

NINA MOINI: Yeah, I'm sure. And so how is she doing? Tell us a little bit just about how she's getting around fine, and she's feeling well.

GARY HAMLETT: Oh, she is rambunctious, non-stop playing, running, doing her schoolwork. She is just like a typical seven-year-old little girl.

NINA MOINI: Yeah, and I understand some more patients are going to be undergoing that same treatment as Celia Grace, which is great news, Doctor Orchard.

PAUL ORCHARD: Yes, I hope it's going to be widely available. As you mentioned, the cost is going to be significant and attempting to determine how we're going to do this. The vast majority of these patients that we treat are obviously not from Minnesota.

And so being able to get insurance that's going to work across state lines and going to be sufficient for this is going to be a challenge. But that's one of the things that we're currently working on.

NINA MOINI: OK, and Gary, I'll leave the last question for you here. What do you hope people will take away from watching your family's story in this documentary?

GARY HAMLETT: The struggles of not knowing the outcome of your child. The struggles of possibly knowing that you will only have a few years with your child. And then knowing that there are people out there willing to help and willing to do anything possible to save your daughter or your son. I just can never repay everybody that along this journey for what they have done for my child.

NINA MOINI: Yeah, and it really sounds like it's some of the best parts of humanity and also some of the hardest struggles that anyone will go through. Thank you so much for sharing that journey and for being here, Gary. And to you as well, Doctor Orchard, thank you, and congratulations on this film reaching an audience today.

PAUL ORCHARD: Thank you.

GARY HAMLETT: Thank you so much.

NINA MOINI: Gary Hamlett is the father of Celia Grace Hamlett and Doctor Orchard is a pediatric blood and marrow transplant physician at M. Health Fairview. Both are featured in the documentary, "Sequencing Hope," which is premiering tonight at 7:00 PM. We'll have that information on our website, mprnews.org.

See the original post:
Documentary about a family's journey to Minnesota for gene therapy premieres in Minneapolis - MPR News

$6.2 million to help develop gene therapy for HIV Washington University School of Medicine in St. Louis – Washington University School of Medicine in…

Visit the News Hub

Genetically engineered B cells could produce super-antibodies to HIV

Researchers at Washington University School of Medicine in St. Louis have received a $6.2 million grant from the National Institutes of Health (NIH) to develop a gene therapy that would modify the immune systems B cells to spur them to produce broadly neutralizing antibodies against HIV. In theory, such an approach could control or eliminate the infection without need for ongoing antiretroviral therapy. Shown is the engineered adenovirus designed to deliver HIV superantibody genes into B cells.

HIV infections can be controlled with medication, but such therapy must continue throughout patients lives because no strategy exists to eliminate the virus from the body or control the infection without ongoing treatment.

With the aim of developing such a strategy, researchers at Washington University School of Medicine in St. Louis have received a $6.2 million grant from the National Institutes of Health (NIH) to develop a gene therapy that would modify the immune systems B cells to spur them to produce broadly neutralizing antibodies against HIV. In theory, such an approach could control or eliminate the infection without need for ongoing antiretroviral therapy.

Permanent ways to control or eliminate HIV infection remain elusive, and their development is a major goal of the field, said David T. Curiel, MD, PhD, the Distinguished Professor of Radiation Oncology. The idea of modifying B cells which naturally produce antibodies to ensure that they manufacture specific antibodies that are broadly effective at targeting HIV is an exciting strategy. We have brought together a great team with expertise in HIV, gene therapy, and animal models of infection to work toward this goal.

Curiels co-principal investigators are Michael R. Farzan, PhD, of Harvard Medical School and Boston Childrens Hospital, and Mauricio de Aguiar Martins, PhD, of the University of Florida.

Over the decades since HIV appeared, researchers have learned that about 1% of people with the virus are able to produce what might be considered superantibodies against the virus. Such individuals known as elite neutralizers can produce antibodies against multiple strains of HIV.

Some people naturally have antibodies that can bind and destroy or deactivate very diverse strains of HIV, and we now have the ability to build those types of antibodies in the lab, said Paul Boucher, a doctoral student in Curiels lab. But just giving other patients these superantibodies is not an ideal solution, because these proteins would stay in the body only temporarily. Instead, our approach is to genetically modify the cells responsible for making antibodies the immune systems B cells so they can always produce superantibodies against HIV whenever they may need to.

Such engineered B cells could create, in theory, a state of permanent vaccination against the virus. Even if such a gene therapy doesnt fully clear HIV from the body, the strategy could allow the amount of virus in the body to be controlled, keeping it at a minimal level and creating a functional cure, according to the researchers.

The strategy involves modifying a different type of virus, called adenovirus. When used in gene therapy, such viruses are genetically disabled so they cant cause disease. The researchers then could engineer the adenovirus to carry the gene responsible for manufacturing broadly neutralizing antibodies to HIV. In the same viral vector, they also could include genes responsible for manufacturing the CRISPR/Cas9 gene editing proteins. In this way, the gene therapy delivery vehicle would carry into the body both the antibody gene that will be edited into the B cell genome and the genes to build the molecular tools to carry out that editing.

Using a three-part targeting strategy, the researchers would design the adenovirus to deliver its genetic payload only to B cells, avoiding other cell types. They have developed ways to modify the virus so that it is targeted directly to a protein that is expressed on the surface of B cells and no other cell types. The researchers can further restrict the targeting by using genetic methods to ensure that the CRISPR/Cas9 proteins can only be manufactured when their genes are delivered into B cells. Finally, they have developed strategies to modify the adenovirus in a way that stops its natural tendency to accumulate in the liver.

This strategy to modify B cells is distinct from another adenoviral gene therapy approach to HIV treatment that is currently in clinical trials led by principal investigator Rachel M. Presti, MD, PhD, a professor of medicine in the Division of Infectious Diseases at Washington University School of Medicine. HIV is difficult to eliminate from the body because the virus integrates its genome into the DNA of the infected individuals T cells. The strategy currently in clinical trials is focused on using precise targeting of the CRISPR/Cas9 gene editing proteins to excise the virus from the genomes of all of a patients infected T cells. This strategy is being tested in a first-in-human, phase 1 clinical trial to determine its safety and preliminary efficacy at various doses.

Curiel said engineered B cells are ripe for developing new therapies to treat a wide variety of diseases. In November, a genetically engineered B cell therapy was administered to a patient for the first time at the University of Minnesota Medical Center. In that case, the therapy was designed to treat mucopolysaccharidosis type 1, a life-threatening condition in which the body lacks an enzyme necessary to break down large sugar molecules inside cells.

Gene therapy with engineered B cells is an exciting new area of research, Curiel said. We look forward to combining our expertise in adenovirus gene therapy, HIV infection and preclinical models of disease to realize our plan for developing an HIV therapy that we hope can permanently control the infection.

This work is supported by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH), grant number 1R01-AI174270-01A1. This content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

About Washington University School of Medicine

WashU Medicine is a global leader in academic medicine, including biomedical research, patient care and educational programs with 2,900 faculty. Its National Institutes of Health (NIH) research funding portfolio is the second largest among U.S. medical schools and has grown 56% in the last seven years. Together with institutional investment, WashU Medicine commits well over $1 billion annually to basic and clinical research innovation and training. Its faculty practice is consistently within the top five in the country, with more than 1,900 faculty physicians practicing at 130 locations and who are also the medical staffs of Barnes-Jewish and St. Louis Childrens hospitals of BJC HealthCare. WashU Medicine has a storied history in MD/PhD training, recently dedicated $100 million to scholarships and curriculum renewal for its medical students, and is home to top-notch training programs in every medical subspecialty as well as physical therapy, occupational therapy, and audiology and communications sciences.

Read more from the original source:
$6.2 million to help develop gene therapy for HIV Washington University School of Medicine in St. Louis - Washington University School of Medicine in...

Gene Therapy Is Halting Cancer. Can It Work Against Brain Tumors? – UC San Francisco

A type of gene therapy called CAR-T that has extended survival for thousands of patients with leukemia and other blood cancers is being adapted at UC San Francisco to treat people with glioblastoma, the most common and deadly adult brain tumor.

This new more powerful version of CAR-T employs a novel technology developed at UCSF called synthetic notch (synNotch) that both protects healthy tissue from damage and enables the treatment to work more effectively.

Remove this text and use the embed button to add an image.

Approximately 12,000 Americans are diagnosed each year, with an average survival of just 15 months.

UCSF opened enrollment this week for a clinical trial that is using the technology for the first time in people. A second trial, also at UCSF, is slated for 2025.

Approximately 12,000 Americans are diagnosed each year with glioblastoma. Patients survive on average for just 15 months after their diagnosis, and new treatments are urgently needed.

This project is a prime example of bench-to-bed translation within UCSF, representing the strengths in basic and clinical science, said Hideho Okada, MD, PhD, a physician-scientist and director of the UCSF Brain Tumor Immunotherapy Center. We have a truly home-grown project here.

Okada has received up to $11 million for the first trial from the California Institute for Regenerative Medicine (CIRM), which funds stem cell and gene therapy research for incurable diseases and disorders through all stages of clinical trial development.

Initial funding for the second trial is provided by the National Cancer Institute Specialized Programs of Research Excellence (NCI SPORE).

We hope that the treatment will prolong lives for patients with glioblastoma, said Okada, who is a professor of neurosurgery at UCSF and a member of the Weill Institute for Neurosciences. However, the primary goal of the current phase 1 study is to ensure safety and characterize any toxicities.

When tested in mice, Okada said the therapy provided a robust and long-lasting result that was more remarkable than anything he had encountered during 30 years of brain tumor research.

The CIRM-funded trial will be led by principal investigator Jennifer Clarke, MD, MPH. It is open to patients with newly diagnosed glioblastoma, who have completed standard-of-care treatment. Tumors must have a mutation found in approximately 20% of glioblastomas, and that can be identified by the UCSF500 cancer gene panel test.

The second study will be open to glioblastoma patients whether or not they have the mutation.

CAR-T refers to chimeric antigen receptor T-cells, which are cancer-killing immune cells that have been extracted from the patient and genetically modified to recognize and destroy antigens that appear on the surface of cancer cells. These supercharged CAR-T cells are then infused back into the body to attack tumor cells.

For many patients with leukemia and other blood cancers, CAR-T has demonstrated long-term remission, but the approach hasnt worked against brain tumors. Glioblastoma cells are more diverse than blood cancer cells, and they can evade CAR-T. Many of the antigens made by the tumors are also found in healthy tissue, leaving them open to attack.

To overcome these obstacles, Okada drew from the synNotch system developed by Wendell Lim, PhD, director of the UCSF Cell Design Institute and professor in the UCSF Department of Cellular and Molecular Pharmacology.

The technology allowed scientists to program CAR-T cells to target specific antigens on tumor cells, without touching those found in healthy tissue. They also do not succumb to T-cell exhaustion, a common problem with CAR-T therapies, because they are more metabolically stable and use less energy to fight cancer longer.

Weve created a system that is flexible and thorough and addresses the major concerns weve had about using CAR-T cells against solid tumors, Lim said. These cells act like computers: integrating multiple units of information and making complex decisions.

About the California Institute for Regenerative Medicine (CIRM): AtCIRM, we never forget that we were created by the people of California to accelerate stem cell treatments to patients with unmet medical needs, and act with a sense of urgency to succeed in that mission. To meet this challenge, our team of highly trained and experienced professionals actively partners with both academia and industry in a hands-on, entrepreneurial environment to fast track the development of todays most promising stem cell technologies. With $5.5 billion in funding and more than 150 active stem cell programs in our portfolio,CIRMis one of the worlds largest institutions dedicated to helping people by bringing the future of cellular medicine closer to reality.

Read the rest here:
Gene Therapy Is Halting Cancer. Can It Work Against Brain Tumors? - UC San Francisco

Gene Therapy is Having its Moment: Can the Clinical Research Ecosystem Seize It? – Contract Pharma

Gene therapy research is booming. Since the U.S. Food and Drug Administration (FDA) issued its first approval for a gene therapyin 2017, oncology researchers have been breaking barriers in gene therapy trials, followed by an explosion in mRNA research during the COVID pandemic. Today, this trailblazing science is providing new ways to approach rare diseases and new hope when other investigational interventions have failed. In fact, themajorityof approved gene therapies are for rare diseases 14 are currently in Phase III trials for 10 rare diseases and 45 gene therapies are in early stages of development to treat 30 rare diseases. We see great potential for gene therapies, said Leslie Johnston, senior vice president of biotech delivery for Parexel. As more products are approved, it will gain traction and more companies will look to expand their therapies into other therapeutic indications. This progress presents tremendous potential to change more patients lives across many different diseases. This could be gene therapys moment. But to fully seize it, the industry must clear some complex hurdles. Gene therapies pose several unique challenges for clinical research, including ethical and safety considerations, regulatory hurdles, precarious logistics, and potentially staggering costs. These challenges may already be having ramifications: New U.S. patients treated with gene therapies approved or in development areexpected to fallby one-third from 2025 to 2034. The key to clearing these hurdles? Cooperation between sponsors, sites, regulators, patients, and other stakeholders is essential to expediting the advancement of life-saving gene therapies. Regulators should address risks without limiting innovation Gene therapy trials are strictly regulated and rightly so, due to the novel nature of the intervention and the potential long-term consequences. Gene therapy interventions also carry inherent safety risks, including the potential for unintended genetic changes or adverse immune reactions. Ensuring patient safety requires rigorous monitoring and adherence to strict protocols. However, obtaining regulatory approval under these conditions is time consuming and resource intensive. To avoid hampering scientific progress, regulators should aim to ensure that requirements are appropriately rigorous without being unmanageably onerous. Thankfully, the FDA is paying close attention to gene therapy and has demonstrated a desire to work with drug developers toward the success and approval of these treatments. Dr. Peter Marks, Director of the Center for Biologics Evaluation and Research (CBER) at the FDA, has expressed his hope for an exponential, if not logarithmic, increase in gene therapy approvals. There is a lot of excitement that this could potentially make a big difference for the treatment of human disease, said Dr. Marks in hisremarksto the National Press Forum last November. The FDA is going beyond mere rhapsodizing and taking action to accelerate gene therapy. Last year, the agencylaunched a pilot programcalled Support for Clinical Trials Advancing Rare Disease Therapeutics, or START. This program is designed to accelerate the development and approval process for treatments targeting rare diseases by providing regulatory guidance, assistance, and incentives to sponsors conducting clinical trials in this field. The program represents an important step forward in fostering innovation and collaboration between regulatory bodies and sponsors. In addition, the FDA is working toharmonize global requirementsfor the review of gene therapies. Encouraging and facilitating international cooperation and harmonization of regulatory standards including mutual recognition agreements and shared regulatory pathways for multinational clinical trials can help streamline gene therapy development globally and help bring innovations to patients faster. Even with this progress, regulators should continue to help accelerate gene therapy research by streamlining regulatory pathways specifically tailored to gene therapies. This means providing clear guidance on requirements for preclinical and clinical development, fostering collaboration between stakeholders to share knowledge and best practices, and offering expedited review processes for gene therapy products aimed at treating serious or life-threatening diseases. With a staggering2,500 cell and gene therapyinvestigational new drug applications (INDs) on file, the FDA approved justfivecell and gene therapies in 2023. Dr. Marks hassuggestedthat accelerated approval, which has successfully advanced cancer and HIV/AIDS treatments, may be the most appropriate path for this new category of treatments. But, regulators also need to commit to proactively partner with developers to understand the patient population and the risks and benefits of each new therapy. Likewise, researchers, industry stakeholders, and patient advocacy groups should engage with regulators to help them understand the unique challenges and opportunities in the field of gene therapy. This can help regulators adapt regulatory frameworks to ensure patient safety while expediting the development and approval of promising treatments. Sites and sponsors must be prepared Of course, sites and sponsors also have a crucial part to play in advancing this promising field of medicine. Clinical trial sites should enhance their capacity to conduct gene therapy trials safely and effectively and sponsors should do their part to assist sites in these efforts. By working closely with clinicians and regulators, sponsors can ensure that the trial development process aligns with clinical needs and regulatory standards. Sponsors should have a thorough understanding of FDA requirements pertaining to design, preclinical testing, and long-term follow-up. Better alignment from the outset will lead to more efficient trial designs, faster regulatory approvals, and ultimately quicker patient access to therapies. For example, sponsors working with mRNA and other genetically engineered therapies in North America not only have to go through institutional review board (IRB) review, they also have to navigate additional requirements from the U.S. National Institutes of Health (NIH) Office of Science PolicyGuidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules(NIH Guidelines). These requirements usually involve an additional biosafety risk assessment review from an institutional biosafety committee (IBC) in addition to IRB review. NIH Guidelines apply for any research involving recombinant or synthetic nucleic acids (e.g. genetically engineered materials) that receives NIH support or takes place at sites that have received NIH support for such research. Even when there is zero NIH support, IBC review is considered a best practice. IBC review and inspection helps sites ensure they are fully prepared by identifying areas for improved biosafety protections and calling out gaps in current standard operating procedures (SOPs). Proactive coordination and integration of these separate review processes can speed trial timelines and help sponsors consistently address any potential concerns or issues. Sites can also be better prepared by pre-registering an IBC. The NIH takes six to eight weeks or more to approve a new registration, in addition to IBC review time so by registering an IBC before they even have a trial, sites can save a month or more in startup time over a site that waited to register. Clinical trial sites looking to host gene therapy studies must be prepared in other ways, as well, both in terms of knowledge and infrastructure. Gene therapy studies require specialized infrastructure for manufacturing, storing, and administering genetic material to adhere to strict biosafety guidelines. Something as simple as having an upholstered chair in the infusion room which would pose an unacceptable contamination risk if genetic materials were to spill would require the site to rethink their current processes. Rigorous training is also key due to the added risk of spreading genetic material to caregivers and others in close contact with patients. Research staff must be specially trained to handle, deliver, and dispose of this material safely. Of course, these measures can seem intimidating for sites that are already cost-constrained. Large academic medical centers with more resources and experience are more likely to be well-positioned for these studies. For instance, they may already have conducted bench, animal, and/or agricultural research with genetic engineering or have the funding to make any needed adjustments such as purchasing special equipment. But to maximize the potential number of sites where this research can be conducted and therefore reach more potential participants sponsors might consider providing help in the form of financial assistance, training curricula, SOP guidance, and more to smaller sites seeking to conduct gene therapy research. Logistical complexities depending on the investigational medicine and therapeutic area are among the most complicated challenges in gene therapy trials, added Johnston. From collecting the specimen from the patient, modifying it, storing it, transporting it, and then returning it back to the patient all comes with tremendously unique logistical challenges and requires equally unique equipment, technology, and expertise. And it can be cost-prohibitive. Patients must be fully on board Of course, the most essential stakeholder in any clinical trial is the patient. In gene therapy research, which can be particularly demanding, patients must have a complete understanding of and commitment to their involvement. Understanding the potential risks and benefits can help patients make informed decisions and navigate the study process. First, it's crucial for patients to adhere strictly to the protocol provided by the clinical trial team, including following medication schedules, maintaining specific hygiene practices, and attending all study visits. They should strive to maintain optimal health to enhance the body's response to gene therapy. And to avoid delays, patients should maintain open and honest communication with the clinical trial team, reporting any changes in symptoms, side effects, or general health as soon as they occur. Trial participants also need to be in it for the long haul. Because gene therapy interventions aim to produce lasting effects, even cures, they typically require long-term patient follow-up to assess efficacy and safety. But they may also need to have incredible patience. Johnston explained, There are many complexities that can impact study progress. For example, unpredictable logistical challenges like a weather event or vehicle accident could delay a temperature-sensitive delivery to a site, or data review outcomes could require an indeterminate pause period. Patience and agility are must-haves, but it is difficult for patients potentially depending on this new therapy to save or change their lives. Lastly, the industry cannot forget the patient. Involving patients and patient advocacy groups in the regulatory process can help ensure that the development of gene therapies is aligned with patient needs and priorities, as well as shed light on risk-benefit perspectives from a patients viewpoint. The more these perspectives are considered from the beginning, the greater the chance of a trials success. Rita Naman, co-founder of the Mighty Milo Foundation, emphasizes the need for a more collaborative and patient-centered approach to gene therapy development. "For ultra-rare diseases likeSPAX5, gene therapy offers a glimmer of hope where traditional treatments do not. But logistical hurdles make these therapies expensive and inaccessible, explained Naman. Closer collaboration with patients, industry, and regulators could streamline these processes, drive costs down, and speed trials. Patients like my son, and their caregivers, plus advocacy groups should be invited into the earliest discussions to prevent false starts or missed milestones in gene therapy development especially as the patients priorities dont always line up with the sponsors. In the fight for gene therapy breakthroughs, cooperation is key. The road to operationalizing gene therapy clinical trials is laced with land mines and potholes. To capture the full potential of novel gene therapy research, a new level of collaboration between sponsors, CROs, sites, oversight committees, regulatory bodies, and patients is paramount. Patients want access to novel gene treatments, and they want it fast. Sponsors want to deliver but fight logistical and financial obstacles. Regulators want to ensure safety first, especially considering such new, promising science, concluded Johnston. These three goals may seem conflicting at times, so we need to strike a balance of safety and speed, so patients dont miss their only potential treatment opportunity. A seasoned industry veteran with more than 25 years of experience, James Riddle is senior vice president of global review operations at Advarra. Riddles expertise includes large program management and growth, operational processes, development and implementation of technology solutions, and management of large Human Research Protection Programs (HRPP), Biosafety programs (IBC) and Institutional Animal Care and Use programs (IACUC). Riddle has directed numerous clients in achieving Part 11 compliance and meeting computer system validation requirements.

See original here:
Gene Therapy is Having its Moment: Can the Clinical Research Ecosystem Seize It? - Contract Pharma

Cancer Gene Therapy Industry is Rising Rapidly Up to USD 18.11 Bn by 2033 – BioSpace

The global cancer gene therapy market size was accounted for USD 2.95 billion in 2023 and it is increasing around USD 18.11 billion by 2033 with a CAGR of 19.9% from 2024 to 2033, according to a new report by Nova One Advisor.

Cancer Gene Therapy Market Overview

Cancer is a group of diseases that involve abnormal cell growth which can spread to respective parts of the body. Cancer can spread throughout the human body.Gene therapyis a kind of treatment in which the genes that are not normal or are missing in the patients cells are replaced with normal genes. Cancer gene therapy is a technique for treating cancers where the therapeutic DNA is introduced in the gene of the individual suffering from cancer.

Due to a high success rate in preclinical as well asclinical trials, cancer gene therapy is gaining high popularity all over the world. There are numerous techniques utilized in cancer gene therapy. In one of the gene therapy techniques, either the mutated gene is replaced with a healthy gene, or the gene is inactivated if its function is abnormal. In a newly developed technique, new genes can be introduced in the body of the patient to help fight against cancer cells.

Further, the ongoing extensive research and development (R&D) strategies implemented bybiopharmaceuticalfirms for producing novel therapeutic drugs are driving the market growth notably.

The market players can aim towards expansions, collaborations, joint ventures, acquisitions, and partnerships to advance capabilities in gene therapy. This would help in yielding effective therapeutic drugs for treating different kinds of cancers. In April 2022, GSK plc announced the acquisition of Sierra Oncology for 1.6 billion ($1.9 billion). This acquisition would help GSK plc in enhancing its capabilities with respect to targeted therapies for treating rare forms of cancer.

Biotechnologyfirms are evaluating novel gene therapy vectors for increasing levels of protein production/gene expression, reducing immunogenicity, and improving durability.

The top cancers in terms of the count of new cases in 2020 all over the world were Lung Cancer (2,206,771 cases),Breast Cancer(2,261,419 cases),Prostate Cancer(1,414,259 cases), Colorectal Cancer (1,931,590 cases), Stomach Cancer (1,089,103 cases), and Liver cancer (905,677 cases). In 2018, there were around 134,632 new cancer cases and 89,042 cancer-related fatalities. Breast and liver cancers were among the most common tumors in terms of incidence and mortality. The high prevalence of breast cancer cases enhances the scope for CRISPR/Cas9-based gene editing for breast cancer therapy and VISA-claudin4-BikDD gene therapy.

Get Sample Copy of Report@ https://www.novaoneadvisor.com/report/sample/7820

Key Takeaways:

Cancer Gene Therapy Market Size in U.S. 2024 to 2033

The U.S. cancer gene therapy market size was valued at USD 1.25 billion in 2023 and is anticipated to reach around USD 7.94 billion by 2033, growing at a CAGR of 20.31% from 2024 to 2033.

North America accounted for the largest share of over 61.15% in 2023. This is attributed to the conducive environment facilitated by the government and the National Cancer Institute that supports research and development activities to enhance cancer therapeutics. Further, the presence of key market players in the region, their research efforts in devising gene therapy for cancer treatment, and collaborative efforts among market players to enhance research are boosting the market growth in the region. For instance, in August 2022, Merck & Co., Inc., collaborated with Orna Therapeutics Inc., for discovery, development, and commercialization of multiple programs, inclusive of utilization of mRNA for cancer gene therapy.

Europe is estimated to be the fastest-growing region over the forecast period due to increase in research funding for novel therapeutics by government bodies and increasing demand for novel therapeutics that could help combat the growing incidence of cancer cases across the region. Moreover, The European Unions Horizon Europe Mission on Cancer was launched in September 2023 so as to offer funds to a broad spectrum of activities that are intended to lower Europes cancer burden by accelerating research and innovation in cancer therapeutics. The mission is anticipated to help over 3 million cancer survivors by the year 2033.

The cancer gene therapy market in the Asia Pacific (APAC) region is segmented into India, China, Japan, South Korea, and the rest of the Asia Pacific (APAC) region. China dominated the Asia Pacific region followed by Japan and India in 2023.

The Latin America, Middle East, and African (LAMEA) cancer gene therapy market is segmented into North Africa, South Africa, Saudi Arabia, Brazil, Argentina, and the Rest of LAMEA. The Middle East and the Latin America region are anticipated to have notable growth in the cancer gene therapy market during the forecast period. Brazil held the largest share in the LAMEA region in 2023. Due to low literacy, uncertainty, and civil war in African countries, the cancer gene therapy market in Africa is expected to grow at a comparatively slow rate.

What are the importance of Cancer Gene Therapy?

Immediate Delivery Available, Get Full Access@

https://www.novaoneadvisor.com/report/checkout/7820

Types of gene therapy for cancer

Gene therapy aims tocontrolthe altered genesor genetic mutationsof a cancertoprevent the cancers growth.This approach to using our own cells and genes to treat cancer is called somatic gene therapy.Thistype of gene therapydoes not impact germ-line cells in the reproductive system, meaning none of the genetic changescan bepassedon to otherfamily members.

There are four types of somatic gene therapy: gene editing; gene replacement; gene addition; and gene inhibition.

Gene editing is correcting the cells gene to fix the imbalance by snipping out the faulty part of the gene and changing the cancers DNA. This type of gene therapy may correct the alteration rather than trying to remove it. Gene replacement is just that: replacing the faulty or nonworking gene with a healthy copy of it. This type of gene therapy is another form of trying to fix the genetic change rather than trying to remove it.

Gene addition is adding novel genetic code to a different cell usually an immune system fighter cell to help it combat the protein linked to the damaged gene. CAR T-cell therapy is an example of gene addition. This form of gene therapy isnt adding a copy of an already-existing gene but rather an entirely new gene usually with the intent of killing the cancer cell via the immune system. Doctors may also add a new gene directly to the cancer cell that causes the cancer cell to commit apoptosis (kill itself).

Gene inhibition simply shuts down the faulty gene. This can either kill the cell or prevent it from acting in a cancerous manner, such as growing and replicating exponentially.

Steps of gene therapy

Gene therapy is a new and potentially curative approach to treating cancer, but researchers still have so much to learn. While the steps below may seem straightforward, each part of the process requires years of study to develop the technologies.

Researchers must first identify the gene and protein linked to the cancer. The next steps are:

Steps of CAR T-cell therapy

CAR T-cell therapy has a slightly different process than more direct forms of gene therapy. CAR T cells are lab-generated fighter cells with specific, anti-cancer genetic code. Adding this genetic code is the gene therapy component of CAR T-cell therapy. CAR stands for chimeric antigen receptor, which is the new genetic code added to the T cells.

There are six CAR T-cell therapy agents approved by the U.S. Food and Drug Administration for different blood cancers. These approvals validate CAR T cells as an effective form of cancer gene therapy to improve patient life expectancy.

Doctors first draw blood from a patient and separate the T cells, which are white blood cells leading the immune systems defense against viruses, diseases and more unwanted intruders. T cells aim to protect the body from cancer, but theyre often ineffective at doing so.

The process of drawing blood from patients and separating the T cells is called apheresis.

After removing T cells from the body, the steps of CAR T-cell therapy are:

A similar process occurs for CAR NK-cell therapy. Scientists create chimeric antigen receptors to strengthen natural killer (NK) cells, another white blood cell of the immune system.

How long does CAR T-cell therapy take?

There are six CAR T-cell therapies approved for types of three blood cancers: myeloma, leukemia and lymphoma. CAR T-cell therapy infusions can take place in an inpatient or outpatient care setting, but the patient must be closely monitored at all times.

CAR T-cell therapy can lead to side effects, most notable cytokine release syndrome.

The entire CAR T-cell process lasts approximately one month, not including the recovery time after treatment:

For the first seven days after receiving the CAR T-cell infusion, patients must remain under medical supervision. For weeks 2-4 of the post-infusion timeline, patients must remain within a short drive of their medical facility to respond to any issues.

The total recovery period from CAR T-cell therapy is usually 2-3 months following infusion, according to the Dana-Farber Cancer Institute.

There are several studies for CAR T-cell therapies for cancer. Participating in a clinical trial helps advance cell and gene therapy research and can advance much-needed therapies to more patients in need.

Therapy Insights

Gene induced immunotherapy dominated the market with a revenue share of over 41.9% in 2023. The dominance of the segment can be attributed to research studies aiming to lower the proliferation of various types of cancer by strengthening the immune system. Many gene therapies for cancers are designed on the basis of immunotherapy elements. For instance, PROVENGE (by Dendreon Corporation) is an autologous cellular immunotherapy designed to stimulate a subjects immune system against prostate cancer.

Oncolytic virotherapy is expected to grow at the fastest rate over the forecast period owing to the favorable outcomes and the level of efficacy offered by oncolytic virotherapy. Oncolytic viruses can combat cancer cells without disturbing the healthy cells in vicinity by stimulating natural killer cells. Moreover, there are lucrative research grants for the research on oncolytic virotherapy. For instance, in July 2022, the researchers at the Center for Nuclear Receptors and Cell Signaling at the University of Houston received a USD 1.8 million grant from the National Institutes of Health to work on oncolytic virotherapy.

End-use Insights

Biopharmaceutical companies led the market with a revenue share of over 50.0% in 2023. This is attributed to the increasing global prevalence of different types of cancers owing to various hereditary, environmental, and lifestyle risk factors. Moreover, the market is driven by increasing adoption of elemental gene therapy options by biopharmaceutical giants to design cancer therapeutic regimes. Many novel therapeutic drugs are under different phases of trials and firms are striving to market them in different regions across the globe. For instance, in January 2020, bluebird bio, Inc. launches its drug, ZYNTEGLO in Germany to be used as a one-time gene therapy solution for patients aged 12 years and above.

The biopharmaceutical companies segment is projected to grow at the fastest rate over the forecast period. The increasing global prevalence of malignant tumors is a key factor driving the market. Moreover, an increased interest in oncology therapeutics research and development is resulting in a rise in the number of FDA approvals of gene therapy drugs. For instance, there are 6 FDA-approved cancer gene therapy drugs with Tecratus, Abcema, and Kymriah being the recent approvals.

Recent Developments:

Some of the prominent players in the Cancer gene therapy market include:

Segments Covered in the Report

This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2023 to 2033. For this study, Nova one advisor, Inc. has segmented the global cancer gene therapy market.

Therapy

End-use

By Region

Order the 150+ Pages Detailed Report @ https://www.novaoneadvisor.com/report/checkout/7820

Call: USA: +1 650 460 3308 | IND: +91 87933 22019 |Europe: +44 2080772818

Email: sales@novaoneadvisor.com

Excerpt from:
Cancer Gene Therapy Industry is Rising Rapidly Up to USD 18.11 Bn by 2033 - BioSpace

Benitec Biopharma Reports Positive Interim Clinical Trial Data for First OPMD Subject Treated with BB-301 in Phase 1b … – GlobeNewswire

-First efficacy signals demonstrated for a gene therapy under development for Oculopharyngeal Muscular Dystrophy (OPMD) which affects ~15,000 patients worldwide-

- BB-301 facilitated improvements across multiple measures of swallowing function in the first Phase 1b/2a clinical study subject as compared to pretreatment assessments conducted during the observational natural history portion of the study-

-Virtual R&D Day being held today at 9:00 am EDT, details below-

HAYWARD, Calif., April 18, 2024 (GLOBE NEWSWIRE) -- Benitec Biopharma Inc. (NASDAQ: BNTC) (Benitec or Company), a clinical-stage, gene therapy-focused, biotechnology company developing novel genetic medicines based on its proprietary Silence and Replace DNA-directed RNA interference (ddRNAi) platform, today announces positive interim clinical data from the 90-day timepoint following the administration of BB-301 to the studys first subject (Subject 1) treated in the BB-301 Phase 1b/2a single-arm, open-label, sequential, dose-escalation cohort study (NCT06185673) in Oculopharyngeal Muscular Dystrophy (OPMD). BB-301 has been granted Orphan Drug designation by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) Committee for Orphan Medicinal Products (COMP).

To date, no clinical studies have systematically demonstrated a clinical improvement in OPMD patients across both objective and subjective measures of swallowing. We are, therefore, pleased to report positive interim clinical data from multiple radiographic measures as well as subject-reported outcome measures from the first subject treated with BB-301, said Jerel A. Banks, M.D., Ph.D., Executive Chairman and Chief Executive Officer of Benitec. We are highly encouraged by these early clinical trial results and for the hope that they may offer to patients and caregivers, and we look forward to reporting additional results and continuing to treat patients as they enter the dosing portion of the study from the Natural History observational lead-in period.

BB-301 Interim Clinical Study Results:

During the OPMD Natural History Study, which represents the pre-dose observational period for each subject, Subject 1 experienced progressive worsening of dysphagia as demonstrated by the results of the videofluoroscopic swallowing studies (VFSS), the cold water timed drinking test, and the key subject-reported outcome measure (the Sydney Swallow Questionnaire). Videofluoroscopic swallowing studies represent the gold standard analytical method for the quantitative assessment of dysphagia (swallowing difficulty) in the clinical setting.

At the 90-day timepoint following the administration of BB-301, Subject 1 demonstrated improvements in key videofluoroscopic assessments which correlated with the observation of similar improvement in the key subject-reported outcome measure as compared to the average values for the respective assessments completed during the pre-dose observational period (as summarized in Figure 1). Notably, the results of many assessments completed at the 90-day timepoint demonstrated improvements over the initial measurements assessed at the subjects first visit for the natural history observational study which occurred more than 12 months prior to the 90-day assessment.

The most significant VFSS improvements at Day 90 were observed for swallowing tasks centered on the evaluation of pharyngeal constrictor muscle function and swallowing efficiency in the context of the consumption of thin liquids, solid foods and thick, non-solid foods (e.g., yogurt or pudding) (Figure 1). The VFSS improvements correlated with an improvement in the key subject-reported outcome measure the Sydney Swallow Questionnaire, indicating an improvement in swallowing function as reported by Subject 1 (Figure 1).

Figure 1: Improvement in All Outcomes at 90-Days Post-BB-301 Injection*

*Company data on file

Regarding the BB-301 safety profile observed to date, no Serious Adverse Events have been observed for the two subjects that have received BB-301. Transient Grade 2 Gastroesophageal Reflux Disease or GERD (i.e., acid reflux or heartburn) was observed for the two subjects that received BB-301. For both subjects, the GERD resolved following the completion of a short course of common prescription medications approved for the treatment of GERD.

OPMD is a rare progressive muscle-wasting disease caused by a mutation in the poly(A)-binding protein nuclear 1 (PABPN1) gene, for which there is currently no effective drug therapy. The disease is characterized by swallowing difficulties (dysphagia), limb weakness and eyelid drooping (ptosis). Dysphagia worsens over time and can lead to chronic choking, regurgitation, aspiration pneumonia, and in severe cases, death. Available clinical and surgical interventions are limited in scope and effectiveness and do not address the underlying progressive muscle weakness.

Virtual R&D Event Information: This live virtual R&D Event, featuring two OPMD key opinion leaders, will be held at 9:00 AM EDT today, April 18th, 2024 and can be accessed here. The event replay will be placed on the News & Events tab on the Investor page of the Benitec website.

About BB-301

BB-301 is a novel, modified AAV9 capsid expressing a unique, single bifunctional construct promoting co-expression of both codon-optimized Poly-A Binding Protein Nuclear-1 (PABPN1) and two small inhibitory RNAs (siRNAs) against mutant PABPN1. The two siRNAs are modeled into microRNA backbones to silence expression of faulty mutant PABPN1, while allowing expression of the codon-optimized PABPN1 to replace the mutant with a functional version of the protein. We believe the silence and replace mechanism of BB-301 is uniquely positioned for the treatment of OPMD by halting mutant expression while providing a functional replacement protein.

About Benitec Biopharma, Inc.

Benitec Biopharma Inc. (Benitec or the Company) is a clinical-stage biotechnology company focused on the advancement of novel genetic medicines with headquarters in Hayward, California. The proprietary Silence and Replace DNA-directed RNA interference platform combines RNA interference, or RNAi, with gene therapy to create medicines that simultaneously facilitate sustained silencing of disease-causing genes and concomitant delivery of wildtype replacement genes following a single administration of the therapeutic construct. The Company is developing Silence and Replace-based therapeutics for chronic and life-threatening human conditions including Oculopharyngeal Muscular Dystrophy (OPMD). A comprehensive overview of the Company can be found on Benitecs website at http://www.benitec.com.

Forward Looking StatementsExcept for the historical information set forth herein, the matters set forth in this press release include forward-looking statements, including statements regarding Benitecs plans to develop and potentially commercialize its product candidates, the timing of completion of pre-clinical and clinical trials, the timing of the availability of data from our clinical trials, the timing and sufficiency of patient enrollment and dosing in clinical trials, the timing of expected regulatory filings, the clinical utility and potential attributes and benefits of ddRNAi and Benitecs product candidates, the intellectual property position, and other forward-looking statements.

These forward-looking statements are based on the Companys current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by the FDA and other governmental authorities; the Companys ability to protect and enforce its patents and other intellectual property rights; the Companys dependence on its relationships with its collaboration partners and other third parties; the efficacy or safety of the Companys products and the products of the Companys collaboration partners; the acceptance of the Companys products and the products of the Companys collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; the Companys ability to satisfy its capital needs through increasing its revenue and obtaining additional financing, given market conditions and other factors, including our capital structure; our ability to continue as a going concern; the length of time over which the Company expects its cash and cash equivalents to be sufficient to execute on its business plan; the impact of the COVID-19 pandemic, the disease caused by the SARS-CoV-2 virus and similar events, which may adversely impact the Companys business and pre-clinical and clinical trials; the impact of local, regional, and national and international economic conditions and events; and other risks detailed from time to time in the Companys reports filed with the Securities and Exchange Commission. The Company disclaims any intent or obligation to update these forward-looking statements.

Investor Relations Contact: Irina Koffler LifeSci Advisors, LLC (917) 734-7387 ikoffler@lifesciadvisors.com

A photo accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/a47d2f41-3feb-49a7-a58f-62e5b0dd4332

Originally posted here:
Benitec Biopharma Reports Positive Interim Clinical Trial Data for First OPMD Subject Treated with BB-301 in Phase 1b ... - GlobeNewswire

Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device – Nature.com

This Springer Nature service is currently unavailable. This could be due to abnormal network traffic or problems with our systems. We are working to resolve the issue.

Error details: 503 Backend is unhealthy Server: cache-lga13620-LGA

Please try again later and thank-you for your patience.

See original here:
Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device - Nature.com

CRISPR Therapeutics to Present Oral Presentation at the American Society of Gene & Cell Therapy (ASGCT) 2024 … – GlobeNewswire

ZUG, Switzerland and BOSTON, April 22, 2024 (GLOBE NEWSWIRE) -- CRISPR Therapeutics(Nasdaq: CRSP), a biopharmaceutical company focused on creating transformative gene-based medicines for serious diseases, today announced an oral presentation highlighting the Company's lipid nanoparticle (LNP) approach for ocular editing will be presented at the American Society of Gene & Cell Therapy (ASGCT) 2024 Annual Meeting, taking place May 7 11, 2024, in Baltimore, MD and virtually.

The abstract describes our proprietary capabilities to deliver to and edit genes in the eye, opening a potential new focus area. Multiple LNPs as well as modified gRNAs and mRNAs were screened to achieve maximal editing in vivo. These optimized components have been applied to target myocilin (MYOC). Mutations of MYOC in trabecular meshwork cells have been linked to severe glaucomatous conditions. In human primary trabecular meshwork cells, up to 95% MYOC editing and 85% protein knockdown were seen. This novel approach aims to facilitate glaucoma treatment using transient expression of editing machinery targeting MYOC.

Title: Development of an In Vivo Non-Viral Ocular Editing Platform and Application to Potential Treatments for Glaucoma Session Type: In-Person Oral Presentation Session Title: Ophthalmic and Auditory: Delivery Innovations Abstract Number:87 Location: Room 318 323 Session Date and Time: Wednesday, May 8, 2024, 1:30 p.m. 3:15 p.m. ET

The accepted abstract is available online on the ASGCT website. The data are embargoed until 6:00 a.m. ET on the presentation day, Wednesday May 8, 2024. A copy of the presentation will be available at http://www.crisprtx.com once the presentation concludes.

About CRISPR Therapeutics Since its inception over a decade ago, CRISPR Therapeutics has transformed from a research-stage company advancing programs in the field of gene editing, to a company that recently celebrated the historic approval of the first-ever CRISPR-based therapy and has a diverse portfolio of product candidates across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine, cardiovascular, autoimmune, and rare diseases. CRISPR Therapeutics advanced the first-ever CRISPR/Cas9 gene-edited therapy into the clinic in 2018 to investigate the treatment of sickle cell disease or transfusion-dependent beta thalassemia, and beginning in late 2023, CASGEVY (exagamglogene autotemcel) was approved in some countries to treat eligible patients with either of those conditions. The Nobel Prize-winning CRISPR science has revolutionized biomedical research and represents a powerful, clinically validated approach with the potential to create a new class of potentially transformative medicines. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic partnerships with leading companies including Bayer and Vertex Pharmaceuticals. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Boston, Massachusetts and San Francisco, California, and business offices in London, United Kingdom. To learn more, visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) its ongoing and/or planned preclinical studies, clinical trials and pipeline products and programs, including, without limitation, the status of such studies and trials, potential expansion into new indications and expectations regarding data generally (including expected timing of data releases) as well as the data in the above-described abstract and any associated poster and the data that is being presented as described above; (ii) the safety, efficacy and clinical progress of its various clinical and preclinical programs including the program described in the oral presentation and poster; (iii) the data that will be generated by ongoing and planned preclinical studies and/or clinical trials, and the ability to use that data for the design and initiation of further preclinical studies and/or clinical trials; and (iv) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. AlthoughCRISPR Therapeuticsbelieves that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the efficacy and safety results from ongoing pre-clinical studies and/or clinical trials will not continue or be repeated in ongoing or planned pre-clinical studies and/or clinical trials or may not support regulatory submissions;pre-clinical study and/or clinical trial results may not be favorable or support further development; one or more of its product candidate programs will not proceed as planned for technical, scientific or commercial reasons; future competitive or other market factors may adversely affect the commercial potential for its product candidates; uncertainties inherent in the initiation and completion of preclinical studies for its product candidates and whether results from such studies will be predictive of future results of future studies or clinical trials; uncertainties about regulatory approvals to conduct trials or to market products; uncertainties regarding the intellectual property protection for its technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K and in any other subsequent filings made byCRISPR Therapeuticswith theU.S. Securities and Exchange Commission, which are available on theSEC'swebsite atwww.sec.gov.CRISPR Therapeuticsdisclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

Investor Contact: Susan Kim +1-617-307-7503 susan.kim@crisprtx.com

Media Contact: Rachel Eides +1-617-315-4493 rachel.eides@crisprtx.com

Read the original:
CRISPR Therapeutics to Present Oral Presentation at the American Society of Gene & Cell Therapy (ASGCT) 2024 ... - GlobeNewswire

SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical … – Yahoo Finance

SNIPR Biome

SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical trials in haematological cancer patients

Phase 1b/2a trial will evaluate SNIPR001 for the prevention of E.coli infections in patients undergoing hematopoietic stem cell transplantation

Copenhagen, April 22 2024: SNIPR Biome ApS (SNIPR), the company pioneering the development of precision medicines using CRISPR technology for microbial gene therapy, announces today that it has received $5.48 million from Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) to co-fund a Phase 1b/2a clinical trial in hematological cancer patients.

The trial will evaluate SNIPR001, the first CRISPR-armed phage therapeutic that specifically targets E. coli in the gut, for the prevention of E. coli bloodstream infections in hematological cancer patients who are undergoing hematopoietic stem-cell transplantation (HSCT) and are colonized with Fluoroquinolone Resistant (FQR) E. coli. Fluoroquinolone is recommended in the US for prophylaxis of bacterial infections and febrile neutropenia in hematological cancer patients at high risk of neutropenia.

Despite the significant advances in hematologic cancer therapy over the past decade, infectious complications, and antimicrobial resistance (AMR) continue to pose significant threats to patients and clinical outcomes1. Currently, there are no approved therapies for the prevention of bloodstream infections (BSIs) in hematological cancer patients. SNIPR Biome is developing SNIPR001 to address this urgent unmet need to combat infections in hematological cancer patients.

Preclinical data published in Nature Biotechnology described SNIPR001s ability to selectively target and remove antibiotic-resistant E. coli strains in the gut, potentially offering a safe treatment which preserves the rest of the gut microbiome. This was supported by interim Phase 1 data published in 2023, which showed that oral dosing of SNIPR001 over seven days across three dosing levels in 24 healthy individuals was well tolerated. Furthermore, SNIPR001 could be recovered in faeces from treated individuals in a dose-dependent manner, and treatment with SNIPR001 numerically lowered gut E. coli levels.

Anticipated to begin later this year, the randomized, double-blinded Phase 1b/2a trial will investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of orally administrated SNIPR001 in 24 patients. It will be conducted at up to 10 sites across Europe and the United States.

CARB-X, a global non-profit partnership dedicated to supporting early-stage antibacterial research and development to address the rising threat of drug-resistant bacteria, has been a long-term collaborator with SNIPR in this field. The funding announced today enables SNIPR to move SNIPR001 into Phase 1b/2a clinical trials and will serve as a cornerstone for a further significant fundraise to enable the Company to continue development of its pipeline of CRISPR-based AMR and gut-directed gene therapies.

Story continues

Dr Christian Grndahl, Co-founder and CEO of SNIPR Biome, commented: Antibiotic resistance is one of healthcares biggest problems today, affecting treatment efficacy and survival among patients who are often already very sick. We are using our knowledge of gene editing and synthetic biology to create highly specific, designer bacteria and phage to disrupt, edit or add genes, and deliver these precision medicines in a carefully targeted way. We are pleased to be continuing our partnership with CARB-X who share our commitment to developing therapies for vulnerable patients.

Erin Duffy PhD, Chief of Research & Development, CARB-X, said: Having underscored safety for SNIPR001 in healthy subjects, SNIPR Biome is now focusing on demonstrating proof-of-mechanism for this novel product, with our support.We are keen to establish a link between gut decolonization and prevention of infection as a novel approach to antimicrobial resistance, and SNIPR001 offers the possibility of doing so.

CARB-X funding for this research is supported by the Biomedical Advanced Research and Development Authority under agreement number: 75A50122C00028, and by awards from Wellcome (WT224842), and Germanys Federal Ministry of Education and Research (BMBF). The content of this press release is solely the responsibility of the authors and does not necessarily represent the official views of CARB-X or any of its funders.

Ends

About SNIPR001 SNIPR001, a CRISPR-armed phage therapeutic that specifically targets E. coli in the gut, is designed to prevent infections from spreading into the bloodstream and represents a promising advancement against antibiotic-resistant pathogens. The pre-clinical studies of SNIPR001 published in Nature Biotechnology2 demonstrated the products activity against multi-drug resistant strains of E. coli and its specificity towards E. coli with no off-target effects toward any of the tested non-E. coli strains. SNIPR successfully completed a Phase 1 trial in the US, also funded by CARB-X, demonstrating safety of SNIPR001 and target engagement with E. coli in the gut of healthy subjects without disturbing the overall gut microbiome (NCT05277350), supporting its potential as a safe and effective preventative therapy for bloodstream infections in hematological cancer patients. SNIPR001 has been granted a Fast-Track designation for the indication Prophylaxis of bloodstream E. coli infections in patients with hematological malignancy at risk of neutropenia from the US Food and Drug Administration (FDA). SNIPR001 is also being developed to directly treat active E. coli infections.

About SNIPR BIOME SNIPR Biome is a Danish clinical-stage biotech company pioneering the development of precision medicines using CRISPR technology for microbial gene therapy. We are pioneering a novel use of CRISPR/Cas technology to better treat and prevent human diseases through precision killing of bacteria or gene modification. SNIPR Biome was the first company to orally dose humans with a CRISPR therapeutic and the first company to have been granted US and European patents for the use of CRISPR for targeting microbiomes. SNIPR technology is used in collaborations with Novo Nordisk A/S, CARB-X, SPRIN-D, and MD Anderson Cancer Center. For more information, visit http://www.sniprbiome.com and follow us on LinkedIn and X.

About CARB-X

CARB-X (Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator) is a global non-profit partnership dedicated to supporting early-stage antibacterial research and development to address the rising threat of drug-resistant bacteria. CARB-X supports innovative therapeutics, preventatives and rapid diagnostics. CARB-X is led by Boston University and funded by a consortium of governments and foundations. CARB-X funds only projects that target drug-resistant bacteria highlighted on the CDCs Antibiotic Resistant Threats list, or the Priority Bacterial Pathogens list published by the WHO, with a priority on those pathogens deemed Serious or Urgent on the CDC list or Critical or High on the WHO list. https://carb-x.org/ | X (formerly Twitter) @CARB_X

Contact ICR Consilium Tracy Cheung, Chris Welsh, Davide Salvi SNIPR@consilium-comms.com

SNIPR Biome Dr Christian Grndahl, Co-founder and CEO contact@sniprbiome.com http://www.sniprbiome.com

1 So M. Determining the Optimal Use of Antibiotics in Hematopoietic Stem Cell Transplant Recipients. JAMA Netw Open. 2023 Jun 1;6(6):e2317101 2 Gencay, Y.E., Jasinskyt, D., Robert, C. et al. Engineered phage with antibacterial CRISPRCas selectively reduce E. coli burden in mice. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01759-y

Read more here:
SNIPR Biome receives funding from CARB-X to support advancement of CRISPR-medicine SNIPR001 into clinical ... - Yahoo Finance

Bullish Trendline Has Never Failed Crispr Therapeutics Stock – Yahoo Finance

Crispr Therapeutics AG (NASDAQ:CRSP)is 2.8% lower at $56.35 this afternoon, continuing a pullback from a Feb. 22, more than two-year high of $91.10. Over the last month, CRSP has erased 20.8% and now sports a 9.6% year-to-date deficit.

For those looking to buy in on the dip, however, the recent pullback puts Crispr Therapeutics stock within one standard deviation of its 320-day moving average, a trendline with historically bullish implications. According to Schaeffer's Senior Quantitative Analyst Rocky White, the equity saw two similar signals in the past three years, after which it was higher one month later each time, averaging an impressive 13.3% gain. A move of similar magnitude would put the shares at roughly $63.85.

Crispr Therapeutics stock's 14-day relative strength index (RSI) of 18.2 is deep in "oversold" territory, which is typically indicative of a short-term bounce. Plus, short interest represents 17.6% of the stock's available float, and would take eight days to cover at CRSP's average pace of trading.

Plus, itsSchaeffer's Volatility Scorecard(SVS) stands at a high 86 out of 100, indicating the stock exceededoptiontraders' volatility expectations in the past 12 month -- a boon for premium buyers.

Read more from the original source:
Bullish Trendline Has Never Failed Crispr Therapeutics Stock - Yahoo Finance

Engineered Cas clears barrier to antiviral CRISPR therapies – LabPulse

Researchers have engineered a Cas enzyme to enhance activity against RNA viruses, resulting in a system that completely blocked the replication of various SARS-CoV-2 strains.

The research, details of which were published in Cell Discovery, was prompted by the need to overcome a barrier to the use of the Cas13d enzyme as an antiviral against human RNA viruses. Studies have shown that CRISPR/Cas13 systems are programmable tools for manipulating RNAs and Cas13d is the most active subtype of the enzyme in mammalian cells, making it the most promising antiviral candidate.

However, the activity of Cas13d is largely restricted to the nucleus. Most RNA viruses only replicate in the cytosol, where Cas13d is barely active in mammalian cells and as such are protected from the antiviral effects enabled by the enzyme, wrote the study's authors, led by Christoph Gruber of the Technical University of Munich (Cell Discov, April 12, 2024, Vol. 10 [1], pp. 1-4).

The problem led Gruber and other scientists from Helmholtz Munich and the Technical University of Munich to investigate why Cas13d is largely restricted to the nucleus and explore ways to bring the enzyme into contact with replicating RNA viruses in mammalian cells.

The research revealed that the enzyme has little activity in the cytosol because the RNA that guides the CRISPR-Cas complex to specific target sequences is found in the nucleus. That finding led the scientists to explore ways to move CRISPR RNAs (crRNAs) from the nucleus to the cytosol.

Through screening and optimization of various designs of shuttling proteins, the researchers developed a system that transfers nuclear crRNAs into the cytosol. The enzyme -- nucleocytoplasmic shuttling Cas13d or Cas13d-NCS for short -- moves nuclear crRNAs to the cytosol, where the protein/crRNA complex binds and degrades complementary target RNAs.

The researchers hypothesized that Cas13d-NCS more adeptly degrades viral cytosolic RNAs than standard Cas13d and tested that idea using a self-replicating RNA from the Venezuelan equine encephalitis RNA virus. The tests showed the engineered approach "targets solely cytosolic RNA with greater efficiency compared to the current Cas13d system," the authors wrote.

To assess antiviral efficacy, the scientists targeted SARS-CoV-2, the RNA virus that causes COVID-19. The assessment showed Cas13d-NCS can completely block the replication of various SARS-CoV-2 strains, they wrote.

"Targeting conserved but weakly expressed viral-coding sequences resulted in relatively weak inhibition, whereas targeting the ubiquitous 3'UTR with a single crRNA resulted in complete inhibition of viral replication," Gruber et al concluded.

View post:
Engineered Cas clears barrier to antiviral CRISPR therapies - LabPulse

Enhancing Quality of Life: Testosterone Replacement Therapy for Hypogonadal Men – Physician’s Weekly

The following is a summary of Effect of Testosterone Replacement Therapy on Sexual Function and Hypogonadal Symptoms in Men with Hypogonadism, published in the February 2024 issue of Endocrinology by Pencina, et al.

For a Testosterone Replacement Therapy for Assessment of long-term Vascular Events and efficacy ResponSE in hypogonadal men (TRAVERSE) study, researchers sought to assess the efficacy of testosterone replacement therapy (TRT) in improving sexual function and hypogonadal symptoms in men with hypogonadism, with a focus on whether these effects are sustained beyond 12 months. The Sexual Function Study, nested within the TRAVERSE trial, specifically evaluated the impact of TRT on sexual activity, hypogonadal symptoms, libido, and erectile function among men with low libido.

Among 5,204 men aged 45-80 years with two testosterone concentrations <300 nag/dL, hypogonadal symptoms, and cardiovascular disease (CVD) or increased CVD risk enrolled in the TRAVERSE trial, 1,161 participants with low libido were included in the Sexual Function Study. Of these, 587 were randomized to receive 1.62% testosterone gel and 574 to placebo gel for their participation. The primary outcome was the change from baseline in sexual activity score, with secondary outcomes including hypogonadal symptoms, erectile function, and sexual desire.

TRT was associated with a significantly greater improvement in sexual activity compared to placebo, with a sustained treatment effect observed at 24 months. Additionally, TRT improved hypogonadal symptoms and sexual desire, although it did not significantly affect erectile function compared to placebo.

In middle-aged and older men with hypogonadism and low libido, TRT for 2 years effectively improved sexual activity, hypogonadal symptoms, and sexual desire. However, it did not demonstrate significant improvements in erectile function compared to placebo.

Reference: academic.oup.com/jcem/article-abstract/109/2/569/7244351

Continue reading here:
Enhancing Quality of Life: Testosterone Replacement Therapy for Hypogonadal Men - Physician's Weekly

CRISPR technologies fuelling haematological innovations – European Pharmaceutical Review

Greater use of CRISPR-based therapies in clinical trials is expected to drive further advancements in precision medicine, GlobalData states.

There has been a notable rise in licensing agreements for innovator drugs incorporating clustered regularly interspaced short palindromic repeats (CRISPR)-based technology for gene therapies over the past five years, according to data and analytics firm GlobalData.

These agreements have amassed a total deal value of $21 billion. Of note, between 2020 to 2022, there was a remarkable surge in deal worth. For agreements relating to or involving treatments for haematological disorders, the total deal value reached $1.8 billion, the research found.

For instance, the approval of Casgevy in the US in December 2023 signified a breakthrough in gene therapy. Vertex Pharmaceuticals treatment was subsequently the first CRISPR/Cas9 gene-edited therapy to be granted a marketing authorisation by the European Commission (EC) in February 2024.

Innovator drugs harnessing CRISPR technologies saw 182 percent growth in total licensing agreement deal value from $5.6 billion in 2020 to $15.8 billion in 2022. Among the top three therapy areas, oncology represented over half of the total deal value with $11.9 billion, followed by immunology with $6.7 billion, and central nervous system with $2.2 billion, Ophelia Chan, Business Fundamentals Analyst at GlobalData explained.

GlobalData highlighted that the largest CRISPR-based deal of 2023 was Eli Lilys subsidiary, Prevail Therapeutics gaining rights to Scribe Therapeuticss CRISPR X-Editing (XE) technologies. In a deal potentially worth over $1.57 billion, the agreement seeks to advance in vivotherapies for targets that cause serious neurological and neuromuscular diseases.

The increasing presence of CRISPR-based therapies in clinical trials is anticipated to fuel further advancements in precision medicine

CRISPR technology is transforming targeted gene therapies for diverse unmet diseases by precisely targeting diverse genomic sites, promising tailored treatments and improved patient outcomes. The increasing presence of CRISPR-based therapies in clinical trials is anticipated to fuel further advancements in precision medicine, Chan stated.

In other recent gene therapy news, last month the US Food and Drug Administration (FDA) authorised Lenmeldy (atidarsagene autotemcel) for children with early-onset metachromatic leukodystrophy (MLD).

Anti-Cancer Therapeutics, Big Pharma, Biopharmaceuticals, business news, Clinical Development, Clinical Trials, Data Analysis, Drug Development, Drug Markets, Drug Safety, Gene therapy, Industry Insight, Research & Development (R&D), Technology, Therapeutics

Read more from the original source:
CRISPR technologies fuelling haematological innovations - European Pharmaceutical Review

Kelly Banas, Ph.D., To Present Her Latest Discovery at CRISPR Medicine’s First International Conference – Milford LIVE

Kelly Banas, Ph.D., principal investigator at ChristianaCares Gene Editing Institute, will present her latest research discovery related to targeting the NRF2 gene in cancer cells at the first CRISPR Medicine Conference held in Copenhagen, Denmark, April 22 to 25. The Gene Editing Institutes research has focused on the NRF2 gene and the strong immune response []

The post Kelly Banas, Ph.D., To Present Her Latest Discovery at CRISPR Medicines First International Conference appeared first on ChristianaCare News.

Gold Alert Issued for Two Missing Dover Children1 day ago

I-95 Drive to Save Lives Commences During National Distracted Driving Awareness Month April 20241 day ago

State Police Asking for Witnesses Following Fatal Pedestrian Hit-and-Run Crash in Newark1 day ago

State Police Investigating a Pedestrian Killed by a Train Near Newark1 day ago

Post Views: 270

Share this Post

View original post here:
Kelly Banas, Ph.D., To Present Her Latest Discovery at CRISPR Medicine's First International Conference - Milford LIVE

Mental Performance Is the #1 Factor for Healthy Aging, According to Life Extension Survey – GlobeNewswire

Fort Lauderdale, FL, April 09, 2024 (GLOBE NEWSWIRE) -- The adage age is just a number embodies feeling young at any age. So whats more important when it comes to healthy aging: brain or brawn? In a recent survey of 4,100 Life Extension customers, 68% of whom were aged 61 or older, more than half ranked mental performance as the most important factor for feeling young for their age, while physical health came in a distant second place at 24%. To help people stay ahead of the aging game, Life Extension has launched Healthy Aging Powder, a triple-nutrient blend of taurine for cardiovascular health, lithium for a healthy mood, and spermidine from wheat germ extract to promote memory health. February 2024 survey of Life Extension customers.

We wanted to offer customers a way to promote a healthy aging process, so we focused on finding nutrients that support three cornerstones of aging gracefully: memory and mood health and a healthy heart, explained Life Extensions Vice President of Product Development, Glenn MacEachern, MBA.

According to Michael A. Smith, MD, Life Extensions Director of Education, aging healthily goes beyond flexing strong muscles; it also depends on heart health and, yes, cognition. Physical health is a no-brainer when it comes to healthy aging, but many dont realize that maintaining cognitive health and performance, including a healthy mood, is also crucial, Dr. Smith said. Weve come to accept our working memory slowing down and our mood souring as the norm. But we dont have to take age-related cognitive decline for granted. By tweaking our lifestyle, we can support memory health and maintain a healthy mood at every age.

Dr. Smith recommends choosing a dietary supplement that addresses the trifecta of healthy agingmemory and mood health, and a healthy heartas a proactive way to make those later years truly golden.

Healthy Aging Powder is a new addition to Life Extensions longevity supplements line, which also includes Optimized Resveratrol Elite to help protect against oxidative stress and NAD+ Cell Regenerator to support healthy cellular energy pathways. The easy-mix, unflavored powder blend contains no genetically modified ingredients.

About Life Extension For more than 40 years, Life Extension has pursued innovative advances in health, conducting rigorous clinical trials and setting some of the most demanding standards in the industry to offer a full range of quality vitamins and nutritional supplements and blood-testing services. Life Extensions Wellness Specialists provide personalized counsel to help customers choose the right products for optimal health,nutritionand personal care. To learn more, visit LifeExtension.com.

These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease.

See more here:
Mental Performance Is the #1 Factor for Healthy Aging, According to Life Extension Survey - GlobeNewswire

The New Transformers: Innovators in Regenerative Medicine – NYAS – The New York Academy of Sciences

Overview

The human body regenerates itself constantly, replacing old, worn-out cells with a continuous supply of new ones in almost all tissues. The secret to this perpetual renewal is a small but persistent supply of stem cells, which multiply to replace themselves and also generate progeny that can differentiate into more specialized cell types. For decades, scientists have tried to isolate and modify stem cells to treat disease, but in recent years the field has accelerated dramatically.

A major breakthrough came in the early 21st century, when researchers in Japan figured out how to reverse the differentiation process, allowing them to derive induced pluripotent stem (iPS) cells from fully differentiated cells. Since then, iPS cells have become a cornerstone of regenerative medicine. Researchers can isolate cells from a patient, produce iPS cells, genetically modify them to repair any defects, then induce the cells to form the tissue the patient needs regenerated.

On April 26, 2019, the New York Academy of Sciences and Takeda Pharmaceuticals hosted the Frontiers in Regenerative Medicine Symposium to celebrate 2019 Innovators in Science Award winners and highlight the work of researchers pioneering techniques in regenerative medicine. Presentations and an interactive panel session covered exciting basic research findings and impressive clinical successes, revealing the immense potential of this rapidly developing field.

Shinya Yamanaka Kyoto University

Shruti Naik New York University

Michele De Luca University of Modena and Reggio Emilia

Masayo Takahashi RIKEN Center for Biosystems Dynamics Research

Hiromitsu Nakauchi Stanford University and University of Tokyo

Brigid L.M. Hogan Duke University School of Medicine

Emmanuelle Passegu Columbia University Irving Medical Center

Hans Schler Max Planck Institute for Molecular Biomedicine

Austin Smith University of Cambridge

Moderator: Azim Surani University of Cambridge

Shinya Yamanaka Kyoto University

Shinya Yamanakaof Kyoto University, gave the meetings keynote presentation, summarizing his laboratorys recent work using induced pluripotent stem (iPS) cells for regenerative medicine. The first clinical trial using iPS cells to treat age-related macular degeneration started five years ago. In his clinical trial, physicians isolated somatic cells from a patient, then used developed culture techniques to derive iPS cells from them. iPS cells can proliferate and differentiate into any type of cell in the body, which can then be transplanted back into the patient. Experiments over the past five years have shown that this approach has the potential to treat diseases ranging from age-related macular degeneration to Parkinsons disease.

However, this autologous transplantation strategy is slow and expensive. It takes up to a year just evaluating one patient, [and] it costs us almost one million US dollars, said Yamanaka. Before transplanting the differentiated cells, the researchers evaluated the entire iPS cell derivation and iPS cell differentiation processes, adding to time and cost. As another strategy, Yamanakas team is working on the iPS Cell Stock for Regenerative Medicine. Here, iPS cells are derived from blood cells of healthy donors, not the patients, and are stocked. The primary problem with this approach is the human leukocyte antigen (HLA) system, which encodes multiple cell surface proteins. Each person has a specific combination of HLA genes, or haplotype, defining the HLA proteins expressed on their own cells. The immune system recognizes and eliminates any cell expressing non-self HLA proteins. Because there are millions of potential HLA haplotypes, cells derived from one person will likely be rejected by another.

The homozygous superdonor cell line has limited immunological diversity, allowing it to match multiple patients.

To address that, Yamanaka and his colleagues are collaborating with the Japanese Red Cross to develop superdonor iPS cells. These cells carry homozygous alleles for different human lymphocyte antigen (HLA) genes, limiting their immunological diversity and making them match multiple patients. So far, the team has created four superdonor cell lines, allowing them to generate cells compatible with 40% of the Japanese population. Those cells are now being used in clinical trials treating macular degeneration and Parkinsons disease, with more indications planned.

So far so good, said Yamanaka, but he added that in order to cover 90% of the Japanese population we would need 150 iPS cell lines, and in order to cover the entire world we would need over 1,000 lines. It took the group about five years to generate the first four lines, so simply repeating the process that many more times isnt practical.

Instead, Yamanaka hopes to take the HLA reduction a step further, knocking out most of the major HLA genes to generate cells that will survive in large swaths of the population. However, simply knocking out entire families of genes isnt enough. Natural killer cells attack cells that are missing particular cell surface antigens, so the researchers had to leave specific markers in the cells, or reintroduce them transgenically. Natural killer and T cells from various donors ignore leukocytes derived from these highly engineered iPS cells, proving that the concept works. With this approach, just ten lines of iPS cells should yield a range of donor cells suitable for any human HLA combination. Yamanaka expects these gene-edited iPS cells to be available in 2020.

By 2025, Yamanaka hopes to announce my iPS cell technology. This technology will reduce the cost and time for autologous transplantation to about $10,000 and one month per patient.

While preclinical and early clinical trials on iPS cells have yielded promising results, the new therapies must still cross the valley of death, the pharmaceutical industrys term for the unsuccessful transition and industrialization of innovative ideas identified in academia to routine clinical use. In an effort to make that process more reliable, Yamanaka and his colleagues have begun a unique collaboration with Takeda Pharmaceutical Company Limited, Japans largest drug maker. The effort involves 100 scientists, 50 each from the company and academic laboratories. The corporate researchers gain access to the latest basic science developments on iPS cell technology, while the academics can use the companys cutting-edge R&D know-how equipment and vast chemical libraries.

In one project, the collaborators used iPS cells to derive pancreatic islet cells, and then encapsulated the cells in an implantable device to treat type 1 diabetes. The system successfully decreased blood glucose in a mouse model, and the team is now scaling up cell production to test it in humans in the future. Another effort identified chemicals in Takedas compound library that speed cardiomyocyte maturation, which the researchers are now using to improve iPS cell-derived treatments for heart failure. In a third project, the team has modified iPS cell-derived T cells to identify and attack tumors, again showing promising results in a mouse model.

Shruti Naik New York University

Michele De Luca University of Modena and Reggio Emilia

Shruti Naik, Early-Career Scientist winner of the 2019 Innovators in Science Award, discussed her work on epithelial barriers. These barriers, which include skin and the linings of the gut, lungs, and urogenital tract, exhibit nuanced responses to the many microbes they encounter. Injuries and pathogenic infections trigger prompt inflammatory responses, but the millions of harmless commensal bacteria that live on these surfaces dont. How does the epithelium know the difference?

To ask that question, Naik first studied germ-free mice, which lack all types of bacteria. These animals have defective immune responses against pathogens that affect epithelia, so commensal bacteria are clearly required for developing normal epithelial immunity. Naik inoculated the germ-free mice with bacterial strains found either on the skin or in the guts of normal mice, then assessed their immune responses in those two compartments.

When you gave gut-tropic bacteria, you were essentially able to rescue immunity in the gut but not the skin, and conversely when you gave skin-tropic bacteria, you were able to rescue immunity in the skin and not the gut, said Naik. Even though the commensal bacteria caused no inflammation, they did activate certain T cells in the epithelia they colonized, apparently preparing those tissues for subsequent attacks by pathogens.

Next, Naik took germ-free mice inoculated with Staphylococcus epidermidis, a normal skin commensal bacterium, and challenged them with an infection by Candida albicans, a pathogenic yeast. The bacterially primed mice produced a much more robust immune response against the yeast infection than control animals that hadnt gotten S. epidermidis. Naik confirmed that this immune training effect operates through the T cell response shed seen before. You essentially develop an immune arsenal to your commensals that helps protect against pathogens, Naik explained, adding that each epithelial barrier requires its own commensal bacteria to trigger this response.

Augmented wound repair in post-inflammation skin reveals that naive and inflammation-educated skin stem cells respond differently to subsequent stresses.

The response to epithelial commensals is remarkably durable; Naik found that the skin T cells in the inoculated mice remained on alert a year after their initial activation. That led her to wonder whether non-hematopoietic cells, especially epithelial stem cells, contribute to immunological memory in the skin.

To probe that, Naik and a colleague used a mouse model in which the topical drug imiquimod induces a temporary psoriasis-like skin inflammation. By tracing the lineages of cells in the animals skin, the researchers found that epithelial stem cells expand during this inflammation, and then persist. Challenging the mice with a wound one month after the inflammation resolves leads to faster healing than if the mice hadnt had the inflammation. Several other models of wound healing yielded the same result. The investigators concluded that naive and inflammation-educated skin stem cells respond differently to subsequent stresses.

Naiks team found that inflammation causes persistent changes in skin stem cells chromatin organization. Using a clever reporter gene assay, they demonstrated that the initial inflammation leaves inflammatory gene loci more open in the chromatin, making them easier to activate after subsequent insults. What was really surprising to us was that this change never fully resolved, said Naik. Even six months after the acute inflammation, skin stem cells retained the distinct post-inflammatory chromatin structure and the ability to heal wounds quickly. This chronic ready-for-action state isnt always beneficial, though. Naik noticed that the mice that had had the inflammatory treatment were more prone to developing tumors, for example.

In establishing her new laboratory, Naik has now turned her focus to another aspect of epithelial immunity: the link between immune responses and tissue regeneration. She looked first at a type of T cells found in abundance around hair follicles on skin. Mice lacking these cells exhibit severe delays in wound healing, apparently as a result of failing to vascularize the wound area. That implies a previously unknown role for inflammatory T cells in vascularization, which Naik and her lab are now probing.

Michele De Luca, Senior Scientist winner of the 2019 Innovators in Science Award, has developed techniques for regenerating human skin from transgenic epidermal stem cells. Researchers first isolated holoclones, or cells derived from a single epidermal stem cell, over 30 years ago. These cells can be used to grow sheets of skin in culture for both research and clinical use, but scientists have only recently begun to elucidate how the process works.

The first stem cell-derived therapies tested in humans were for skin and eye burns, allowing doctors to regenerate and replace burned epidermal tissue from a patients own stem cells. Thats the basis of Holoclar, a stem cell-based treatment for severe eye burns approved in Europe in 2015.

Holoclar and similar procedures work well for injured patients with normal epithelia. We wanted to genetically modify those cells in order to address one of the most important genetic diseases in the dermatology field, which is epidermolysis bullosa (EB), a devastating skin disease, said De Luca. In EB, patients carry a genetic defect in cell adhesion that causes severe blisters all over their skin and prevents normal healing. A large number of EB patients die as children from the resulting infections, and those who survive seldom get beyond young adulthood before succumbing to squamous cell carcinomas.

De Luca developed a strategy to isolate stem cells from a skin biopsy, repair the genetic defect in these cells with a retroviral vector, and then grow new skin in culture that can be transplanted back to the patient, replacing their original skin with genetically repaired skin. In 2015, the researchers carried out the procedure on a young boy named Hassan, who had arrived in the burn unit of a German hospital with EB after fleeing Syria. The burn unit was only able to offer palliative care, and his prognosis was poor because of his constant blistering and infections. De Lucas team received approval to perform their gene therapy on him.

The new strategy, which combines cell and gene therapy, resulted in the restoration of normal skin adhesion in Hassan.

After isolating and modifying epidermal stem cells from Hassan and growing new sheets of skin in culture, De Lucas team re-skinned the patients arms and legs, then his abdomen and back. The complete procedure took about three months. The new skin resists blister formation even when rubbed and heals normally from minor wounds. In the ensuing three and a half years, Hassan has begun growing normally and living an ordinary, healthy life.

Detailed analysis of skin biopsies showed that Hassans epidermis has normal cellular adhesion machinery and revealed that his skin is now derived from a population of proliferating transgenic stem cells, with no single clone dominating. By tracing the lineages of cells carrying the introduced transgene, De Luca was able to identify self-renewing transgenic stem cells, intermediate progenitor cells, and fully differentiated stem cells, indicating normal skin growth and replacement.

Besides being good news for the patient, the results confirmed a longstanding theory of skin regeneration. These data formally prove that the human epidermis is sustained only by a small population of long-lived stem cells that generates [short-lived epithelial] progenitors, said De Luca, adding that with this in mind, weve started doing other clinical trials.

The researchers plan to continue targeting junctional as well as dystrophic forms of EB, both of which are genetically distinct from EB simplex. Initial experiments revealed that in these conditions, transplant recipients developed mosaic skin, where some areas continued to be produced from cells lacking the introduced genetic repair. The non-transgenic cells appeared to be out-competing the transgenic cells and supplanting them, undermining the treatment. De Luca and his colleagues developed a modified strategy that gave the transgenic cells a competitive advantage. This approach and additional advances should allow them to achieve complete transgenic skin coverage.

Masayo Takahashi RIKEN Center for Biosystems Dynamics Research

Hiromitsu Nakauchi Stanford University and University of Tokyo

Masayo Takahashi, of RIKEN Center for Biosystems Dynamics Research, began her talk with a brief description of the new Kobe Eye Center, a purpose-built facility designed to house a complete clinical development pipeline dedicated to curing eye diseases. Not only cells, not only treatments, but a whole care system is needed to cure the patients, said Takahashi. In keeping with that philosophy, the Center includes everything from research laboratories to a working eye hospital and a patient welfare facility.

Takahashis recent work has focused on treating age-related macular degeneration (AMD). In AMD, the retinal pigment epithelium that nourishes other retinal cells accumulates damage, leading to progressive vision loss. AMD is the most common cause of serious visual impairment in the elderly in the US and EU, and there is no definitive treatment. Fifteen years ago, Takahashi and her colleagues derived retinal pigment epithelial cells from monkey embryonic stem cells and successfully transplanted them into a rat model of AMD, treating the condition in the rodents. They were hesitant to extend the technique to humans, though, because it required suppressing the recipients immune response to prevent them from rejecting the monkey cells.

The advent of induced pluripotent stem (iPS) cell technology pointed Takahashi toward a new strategy, in which she took cells from a patient, derived iPS cells from them, and then prompted those cells to differentiate into retinal pigment epithelial cells that were perfectly compatible with the patients immune system. Her team then transplanted a sheet of these cells into the patient. That experiment, in 2014, was the first clinical use of iPS cells in humans. The grafted cells were very stable, said Takahashi, who has checked the graft in multiple ways in the ensuing years.

Having proven that iPS cell-derived retinal grafts can work, Takahashi and her colleagues sought to make the procedure cheaper and faster. Creating customized iPS cells from each patient is a huge undertaking, so instead the team investigated superdonor iPS cells that can be used for multiple patients. These cells, described by Shinya Yamanaka in his keynote address, express fewer types of human leukocyte antigens than most patients, making them immunologically compatible with large swaths of the population. Just four lines of superdonor iPS cells can be used to derive grafts for 40% of all Japanese people.

Transplantation of an iPS cell-derived sheet into the retina ultimately proved successful.

In the next clinical trial, Takahashis lab performed several tests to confirm that the patients immune cells would not react with the superdonor cells, before proceeding with the first retinal pigment epithelial graft. Nonetheless, after the graft the researchers saw a minuscule fluid pocket in the patients retina, apparently due to an immune reaction. Clinicians immediately gave the patient topical steroids in the eye to suppress the reaction. Then after three weeks or so, the reaction ceased and the fluid was gone, so we could control the immune reaction to the HLA-matched cells, said Takahashi. Four subsequent patients showed no reaction whatsoever to the iPS superdonor-derived grafts.

While the retinal grafts were successful, none of the patients have shown much improvement in visual acuity so far. Takahashi explained that subjects in the clinical trial all had very severe AMD and extensive loss of their eyes photoreceptors. I think if we select the right patients, we could get good visual acuity if their photoreceptors still remain, said Takahashi.

Takahashi finished with a brief overview of her other projects, including using aggregates of iPS cells and embryonic stem cells to form organoids, which can self-organize into a retina. She hopes to use this system to develop new therapies for retinitis pigmentosa, another major cause of vision loss. Finally, Takahashi described a project aimed at reducing the cost and increasing the efficacy of stem cell therapies even further by employing a sophisticated laboratory robot. The system, called Mahoro, is capable of learning techniques from the best laboratory technicians, then replicating them perfectly. That should make stem cell culturing procedures much more reproducible and significantly reduce the cost of deploying new therapies.

Hiromitsu Nakauchi, of Stanford University and the University of Tokyo, described his groups efforts to overcome a decades-old challenge in stem cell research. Scientists have known for over 25 years that all of the blood cells in a human are renewed from a tiny population of multipotent, self-renewing hematopoietic stem cells. In an animal thats had all of its hematopoietic lineages eliminated by ionizing radiation, a single such cell can reconstitute the entire blood cell population. This protocol is the basis for several experimental models.

In theory, then, a single hematopoietic stem cell should also be able to multiply indefinitely in pure culture, allowing researchers to produce all types of blood cells on demand. In practice, cultured stem cells inevitably differentiate and die off after just a few generations in culture. Nakauchi and his colleagues have been trying to fix that problem. After years of hard work, we decided to take the reductionist approach and try to define the components that we use to culture [hematopoietic stem cells], said Nakauchi.

The team focused on the most undefined component of their culture media: bovine serum albumin (BSA). This substance, a crude extract from cow blood, has been considered an essential component of growth media since researchers first managed to culture mammalian cells. However, Nakauchis lab found tremendous variation between different lots of BSA, both in the types and quantities of various impurities in them and in their efficacy in keeping stem cells alive. Worse, factors that appeared to be helpful to the cells in some BSA lots were harmful when present in other lots. So this is not science; depending on the BSA lot you use, you get totally different results, said Nakauchi.

Next, the researchers switched to a recombinant serum albumin product made in genetically engineered yeast. That exhibited less variation between lots, and after optimizing their culture conditions they were able to grow and expand hematopoietic stem cells for nearly a month. Part of the protocol they developed was to change the medium every other day, which they found was required to remove inflammatory cytokines and chemokines being produced by the stem cells. That suggested the cells were still under stress, perhaps in response to some of the components of the recombinant serum albumin.

Polyvinyl alcohol can replace BSA in culture medium.

The ongoing problems with serum albumin products led Nakauchi to ask why albumin is even necessary in tissue culture. Scientists have known for decades that cells dont grow well without it, but why not? While trying to figure out what the albumin was doing for the cells, Nakauchis lab tested it against the most inert polymer they could find: polyvinyl alcohol (PVA). Best known as the primary ingredient for making school glue, PVA is also used extensively in the food and pharmaceutical industries. To their surprise, hematopoietic stem cells grew better in PVA-spiked medium than in medium with BSA. The PVA-grown cells showed decreased senescence, lower levels of inflammatory cytokines, and better growth rates.

In long-term culture, Nakauchi and his colleagues were able to achieve more than 900-fold expansion of functional mouse hematopoietic stem cells. Transplanting these cells into irradiated mice confirmed that the cells were still fully capable of reconstituting all of the hematopoietic lineages. Further experiments determined that PVA-containing medium also works well for human hematopoietic stem cells.

Besides having immediate uses for basic research, the ability to grow such large numbers of hematopoietic stem cells could overcome a fundamental barrier to using these cells in the clinic. Current hematopoietic stem cell therapies require suppressing or destroying a patients existing immune system to allow the transplanted cells to become established, but this immunosuppression can lead to deadly infections. Transplanting a much larger population of stem cells can overcome the need for immunosuppression, but growing enough cells for this approach has been impractical. Using their new culture techniques, Nakauchis team can now produce enough hematopoietic stem cells to carry out successful transplants without immunosuppression in mice. They hope to take this approach into the clinic soon.

Brigid L.M. Hogan Duke University School of Medicine

Emmanuelle Passegu Columbia University Irving Medical Center

Hans Schler Max Planck Institute for Molecular Biomedicine

Austin Smith University of Cambridge

Moderator: Azim Surani University of Cambridge

Austin Smith, from the University of Cambridge, gave the final presentation, in which he discussed his studies on the progression of embryonic stem cells through development. In mammals, embryonic development begins with the formation of the blastocyst. In 1981, researchers isolated cells from murine blastocysts and demonstrated that each of them can grow into a complete embryo. Stem cells isolated after the embryo has implanted itself into the uterus, called epiblast stem cells, have lost that ability but gained the potential to differentiate into multiple cell lineages in culture. So we have two different types of pluripotent stem cells in the mouse, and theyre different in just about every way you could imagine, said Smith.

Work on other species, including human cells, suggests that this transition between two different types of stem cells is a common feature of mammalian development. The transition from the earlier to the later type of stem cell is called capacitation. To find the factors driving capacitation, Smith and his colleagues looked for differences in gene transcription patterns and chromatin organization during the process, in both human and murine cells. What they found was a global re-wiring of nearly every aspect of the cells physiology. Together these things lead to the acquisition of both germline and somatic lineage competence, and at the same time decommission that extra-embryonic lineage potential, Smith explained.

Having characterized the cells before and after capacitation, the researchers wanted to isolate cells from intermediate stages of the process to understand how it unfolds. To do that, they extracted cells from mouse embryos right after implantation, then grew them in culture conditions that minimized their exposure to signals that would direct them toward specific lineages. Detailed analyses of these cells, which Smith calls formative stem cells, shows that they have characteristics of both the naive embryonic stem cells and the later epiblast stem cells. Injecting these cells into mouse blastocysts yields chimeric mice carrying descendants of the injected cells in all their tissues. The formative stem cells can therefore function like true embryonic stem cells, albeit less efficiently.

The developmental sequence of pluripotent cells.

Post-implantation human embryos arent available for research, but Smiths team was able to culture naive stem cells and prompt them to develop into formative stem cells. These cells exhibit transcriptional profiles and other characteristics homologous to those seen in the murine formative stem cells.

Having found the intermediate cell type, Smith was now able to assemble a more detailed view of the steps in development. Returning to the mouse model, he compared the chromatin organization of naive embryonic, formative, and epiblast stem cells. The difference between the naive and formative cells chromatin was much more dramatic than between the formative and epiblast cells.

Based on the results, Smith proposes that naive embryonic stem cells begin as a blank slate, which then undergoes capacitation to become primed to respond to later differentiation signals. The capacitation process entails a dramatic change in the cells transcriptional and chromatin organization and occurs around the time of implantation. We think we now have in culture a cell that represents this intermediate stage and that has distinctive functional properties and distinctive molecular properties, said Smith. After capacitation, the formative stem cells undergo a more gradual shift to become primed stem cells, which are the epiblast stem cells in mice.

Smith concedes that the human data are less detailed, but all of the experiments his team was able to do produced results consistent with the mouse model. Other work has also found corroborating results in non-human primate embryos, implying that the same developmental mechanisms are conserved across mammals.

After the presentations, a panel consisting of members of the Innovators in Science Awards Scientific Advisory Council and Jury took the stage to address a series of questions from the audience.

The panel first took up the question of how researchers can better study human stem cells, given the ethical challenges of working with embryos. Brigid Hogan described organoid cultures, in which researchers stimulate human iPS cells to grow into minuscule organ-like structures. This is a way of looking at human development at a stage when its [otherwise] completely inaccessible, said Hogan. Other speakers concurred, adding that implanting human organoids into mice provides an especially useful model.

Another audience member asked about the potential for human stem cell therapy in the brain. Hogan pointed to the use of fetal cells for treating Parkinsons disease as an example, but panelist Hans Schler suggested that that could be a unique case. Patients with Parkinsons disease suffer from deficiency in dopamine-secreting neurons, so implanting cells that secrete dopamine in the correct brain region may provide some relief.

Panelists also addressed the use of stem cells in regenerative medicine, where researchers are targeting the nexus of aging, nutrition, and brain health. Emmanuelle Passegu explained that the bodys progressive failure to regenerate itself from its own stem cells is a hallmark of aging. I think we are getting to an era where transplantation or engraftment [of cells] will not be the answer, it will really be trying to reawaken the normal properties of the [patients own] stem cells, said Passegu.

As the meeting concluded, speakers and attendees seemed to agree that the field of stem cell research, like the cells themselves, is now poised to develop in a wide range of promising directions.

View original post here:
The New Transformers: Innovators in Regenerative Medicine - NYAS - The New York Academy of Sciences

Long-Term Ovarian Function Assessment After Haematopoietic Stem Cell Transplantation in Female Sickle Cell … – Cureus

Specialty

Please choose I'm not a medical professional. Allergy and Immunology Anatomy Anesthesiology Cardiac/Thoracic/Vascular Surgery Cardiology Critical Care Dentistry Dermatology Diabetes and Endocrinology Emergency Medicine Epidemiology and Public Health Family Medicine Forensic Medicine Gastroenterology General Practice Genetics Geriatrics Health Policy Hematology HIV/AIDS Hospital-based Medicine I'm not a medical professional. Infectious Disease Integrative/Complementary Medicine Internal Medicine Internal Medicine-Pediatrics Medical Education and Simulation Medical Physics Medical Student Nephrology Neurological Surgery Neurology Nuclear Medicine Nutrition Obstetrics and Gynecology Occupational Health Oncology Ophthalmology Optometry Oral Medicine Orthopaedics Osteopathic Medicine Otolaryngology Pain Management Palliative Care Pathology Pediatrics Pediatric Surgery Physical Medicine and Rehabilitation Plastic Surgery Podiatry Preventive Medicine Psychiatry Psychology Pulmonology Radiation Oncology Radiology Rheumatology Substance Use and Addiction Surgery Therapeutics Trauma Urology Miscellaneous

Read more here:
Long-Term Ovarian Function Assessment After Haematopoietic Stem Cell Transplantation in Female Sickle Cell ... - Cureus

VRD versus VCD as induction therapy before autologous stem cell transplantation in multiple myeloma: a nationwide … – Nature.com

Induction therapy followed by autologous stem cell transplantation (ASCT) is standard of care for young and fit patients with newly diagnosed multiple myeloma (MM) [1]. Induction therapy has evolved from doublet to triplet to quadruplet regimens over the last decades. The most common triplet therapy is either Bortezomib-Cyclophosphamide-Dexamethasone (VCD), Bortezomib-Lenalidomide-Dexamethasone (VRD), or less frequently Bortezomib-Thalidomide-Dexamethasone (VTD). No large, randomized phase III study comparing the VCD and VRD regimens has been conducted and is unlikely to be done in the future. Retrospective studies and smaller prospective studies comparing VRD and VCD have produced mixed results [2,3,4,5,6,7].

In Norway, there has been a shift from VCD to VRD induction therapy in recent years, while VTD has only been used in a minority of patients. ASCT for multiple myeloma in Norway is performed at four centers, and comprehensive population-based nationwide follow-up data are available from electronic journals.

In collaboration with all centers in Norway doing ASCT, we identified all patients in Norway who had undergone ASCT for multiple myeloma in the study period 2008 to 2020.

We included patients with multiple myeloma [8] who received first line induction therapy followed by ASCT in the period from January 1st 2008 to December 31st 2020 in Norway. We did not include patients who received induction therapy but did not proceed to ASCT. Patients were censored March 1st 2022 or at loss to follow-up because of relocation outside of Norway (n=5), or if the journal from the local hospital could not be obtained (n=7).

Data was collected from electronic patient journals at the transplant centers and from hospitals responsible for induction therapy and follow-up after ASCT. Change of induction therapy was recorded if a patient changed from one line to another, and the reason for change was collected. Patients who changed therapy were not included in the primary response analysis, regardless of the reason for change, but they were included in a separate intention-to-treat analysis. All patients, including those who changed treatment, were included in the PFS and OS analysis. Further description of study design, endpoints and statistical analysis is provided in the supplementary material.

We identified 1354 patients who received ASCT as first-line treatment for multiple myeloma in Norway in the study period.

Of these, 682 patients received VCD induction, 332 patients received VRD induction, and 42 patients received VTD induction. Baseline characteristics are described in Table 1 and were largely similar between patients who received VCD and VRD induction, with two notable exceptions. Patients in the VRD group were older than patients in the VCD group (median 62 years vs. 60 years). Patients in the VRD group received ASCT in more recent years (mostly 2017-2020), compared to VCD.

Three months after ASCT, response rates were higher with VRD, with 89% in the VRD group achieving VGPR, versus 76% in the VCD group (p<0.001). In the intention-to-treat analysis, the difference in response between the groups remained statistically significant (Table 1).

In the VCD group, 4% of patients changed therapy due to lack of response, and 1% due to progression. In the VRD group, very few patients changed treatment due to lack of response (1%) or progression (1%). Only a small minority, 3% and 2% of patients in the VRD and VCD group respectively, changed treatment due to adverse effects (Table 1). In patients who received bortezomib, thalidomide and dexamethasone (VTD), 36% of patients changed treatment due to side effects (Supplementary Table 5).

Patients in the VRD group more often received treatment after ASCT than in the VCD group (61% vs. 14%, p<0.001). Consolidation treatment (22% vs. 1%), maintenance treatment (25% vs. 10%) or both (14% vs. 3%) were all more frequent in the VRD group (Table 1). In the VCD group, 4.7% of patients (n=32) and in the VRD group 3.9% of patients (n=13) had progressive disease before starting consolidation or maintenance treatment.

The median follow-up time of patients still alive at data cut-off was 79 months (range: 19179 months) in the VCD group and 38 months (range: 1871 months) in the VRD group.

In the VCD group, the median PFS was 30.1 months (95% confidence interval (CI) 28.331.9 months). In the VRD group, the median PFS was 55.1 months (95% CI 46.0-not reached (NR), Fig. 1A). The difference was significant on log-rank test, p<0.001. In the VTD group median PFS was 36.6 months (Supplementary Fig. 2)

A PFS, all patients. B PFS, only patients who received maintenance treatment. C PFS, only patients who revied ASCT in later years (20172020) and did not received any post-ASCT treatment. D OS, all patients.

When we included only patients who received maintenance therapy after ASCT, the median PFS in the VCD group increased to 47.1 months, which is not statistically different from patients in the VRD group who received maintenance, who had a median PFS of 56.4 months, p=0.174 (Fig. 1B).

In a separate analysis excluding patients who received maintenance and/or consolidation and who received ASCT in later years (20172020), VRD was superior to VCD regarding PFS with a log-rank test of p<0.001 (Fig. 1C).

The median OS for VCD was 114.0 months (95% CI 103.4125.8 months) and the median OS for VRD was not reached, log-rank test p<0.001 (Fig. 1D).

The hazard ratios for PFS and OS on multivariate analysis is provided in Supplementary Table 2. After controlling for patient and disease factors, VCD had inferior PFS compared to VRD (HR 2.08, 95% CI 1.492.91, p<0.001). There was no significant difference in OS between the two regimens in multivariate analysis.

VTD is approved by the European Medical Agency as induction therapy before ASCT. This is not the case for VCD and VRD, although they are used widely in current clinical practice. The most recent European Society of Medical Oncology (ESMO) guidelines [1] recommend VRD as the first option for induction therapy. Daratumumab-VTD is also approved and recommended, but our study confirms the high toxicity associated with regimens containing thalidomide. VRD is the comparator arm in recent clinical trials comparing Daratumumab-VRD vs VRD before ASCT [9, 10]. Our study supports the use of VRD in both clinical practice, and as the standard treatment arm in clinical trials, as it is more effective than VCD and better tolerated than VTD. However, recent results from the PERSEUS trial [9], with significantly longer PFS for Daratumumab-VRD vs VRD, will most likely be practice changing.

We observed a statistically significant improvement in both PFS and OS favoring VRD. This must, however, be interpreted with caution. The difference in use of post-ASCT therapy, and the time periods in which the regimes were given, are two major biases. We corrected for this by performing a separate analysis for only patients who received ASCT in later years and who did not receive consolidation and/or maintenance therapy. In this analysis VRD still showed significantly longer PFS compared to VCD. The median PFS was also longer in the VRD group when only patients who received maintenance therapy were included, although the difference was not statistically significant. Multivariate analysis showed a statistically significant PFS benefit favoring VRD, but no statistically significant OS benefit. Given the median overall survival in our data of approximately 9.5 years in the VCD group, induction therapy administered for 24 months represents only a fraction of this total observed time. Therefore, the effect of induction therapy on overall survival may be modest, and other factors, like treatment options available at relapse, will have a significant impact on patient survival. Most patients in the VCD group received ASCT before 2017, when consolidation and maintenance treatment were uncommon and fewer treatment options were available at relapse, affecting the survival of this group negatively. Conversely, in the VRD group, most patients received ASCT after 2017. In this period, maintenance treatment was usually given (or consolidation treatment when maintenance was not reimbursed), and effective treatments like CD38-antibodies and carfilzomib were available at relapse.

The main limitation of the study is its retrospective nature, and as patients were not randomized, confounding factors cannot be excluded. However, the type of induction the patient received was mainly dependent on center and not on patient or disease factors. Standard induction therapy differed between regions, where some centers consistently used VCD while others consistently used VRD. In Norway, access to new therapies is similar for all, and national and regional treatment guidelines are usually the factors that determine choice of treatment, and to a lesser degree individual patient risk factors. Furthermore, a limitation was that we only included patients who received ASCT. Patients who died before ASCT, started induction therapy but for various reasons did not proceed to ASCT, including those who could not harvest enough stem cells, were not included. The follow-up time for VRD patients was relatively short. Patients were included from many different hospitals in Norway over a long period of time, with variable practices regarding timing of treatment start, dosing schedules, response assessment and supportive care. Although the data quality was generally good, some data was missing and incomplete.

Our study is the first to report from a comprehensive nationwide, population-based cohort with a very low proportion of patients lost to follow-up. This is a major strength, as the inclusion of a broad, heterogenous population increases the generalizability of the results and reduces the risk of selection bias. Our data included an overlap period where both regimens were given. Apart from the type of induction therapy, the treatment course between the two groups were similar; Length of induction treatment, the ASCT procedure and time to response evaluation was unchanged throughout the study period and similar for both groups.

In conclusion, our results suggests that VRD should be preferred to VCD as induction therapy for newly diagnosed MM patients who are eligible for ASCT.

Original post:
VRD versus VCD as induction therapy before autologous stem cell transplantation in multiple myeloma: a nationwide ... - Nature.com

Being prepared for the future – DVM 360

Sponsored by Embark

Adam Christman, DVM, MBA: We talk a lot now about spectrum of care. What happens to the dog parents, unfortunately, who cannot afford the price of DNA testing? We really want to recommend it, but they just dont have the funds. What are your thoughts on that?

Jenna Dockweiler, MS, DVM, DACT, CCRT, CVAT: DNA testing is fairly cost effective and it will only become more so in the future. A dog's DNA is the same from the day it's born to the last day of that pet's life. So really at any point along that journey, it is appropriate to DNA test. Potentially in the future, as costs come down with just the testing technology itself, it will likely become more accessible for those folks.

Adam Christman, DVM, MBA: What about the practice that says, "We don't have the time for this?

Lindsey Kock, DVM: I think it's one of those things that taking the time to do that DNA test enables you to have more time later. By taking the time to do that test, you no longer have a full laundry list of things to cover at that puppy exam, but you have a few individual talking points.

We talked about compliance, but if you have the genetic testing to back up the recommendations, you're spending less time teaching and helping the pet parent to understand those things that come up. Something that really is a pretty quick, minimally invasive test, the results can be a lot, but Embarks done a great job of whittling down those results. You take that and you save yourself time in the long run. So it's a little effort for, I think, a huge increased efficiency and increased payoff in the long run.

Adam Christman, DVM, MBA: Okay, are there specific dog breeds that, I don't want to say they have predispositions, but need DNA testing more than other dog breeds out there?

Jenna Dockweiler, MS, DVM, DACT, CCRT, CVAT: We all know there are certain breeds predisposed to certain genetic conditions. I think that's a known truth at this point in veterinary medicine, but certainly testing is appropriate for every dog at every age. Even conditions that we see or think of as particularly breed-associated may not be as breed-associated as we thought, which the urate stones would be a great example of something like that.

And the dog's DNA is going to be the same from when it's born to the last day of that pet's life. So you can test it anytime during that spectrum. And some of these diseases won't manifest until later in life.

Adam Christman, DVM, MBA: I want to talk a little bit about taking away some of the financial issues or burdens that can happen. I find, personally, when you DNA test these dogs and puppies that are coming in, that the clients are more likely to say, oh, let me get pet insurance, just to help take away some of that financial stress that can happen down the road. Have you experienced that in your neck of the woods?

Lindsey Kock, DVM: Yeah, it'll be interesting to see how genetic results have an impact on health insurance. I think today, genetic results are really giving us more insight into potential issues down the road, right? And I think a lot of insurance coverage to my knowledge is based on actual diagnosed conditions that we're seeing clinical signs for, but using some caution too in that and potentially getting the insurance on board first and then doing the genetic test may not be a bad idea.

But I think too, aside from insurance, just being able to be financially prepared for decisions that you may have to make down the road, right? So we talked about intervertebral disc disease (IVDD) with those at an increased risk. Dogs who have at least one of those mutations tend to be at like 45 fold more increased risk of having an episode, but also out of five to 15 increased risk for needing surgery, right? So being able to prepare early for that financial burden and being able to be prepared for that decision, whether you're saving up or you have insurance is really important.

Adam Christman, DVM, MBA: I know we chatted a few years ago about this and I'll share the story with all of you out here because some of you, probably all of you, know I'm a huge dashchund fan. I did want to do the DNA testing for Clark W. Griswald and Lindsay was the one to say you really should, just so that way you know if there's the marker. Well, lo and behold, he did, and this past summer he did have inner vertebral disc disease. He did fantastic, but I expected it. I had pet insurance for him. Granted, I'm his veterinarian, but I can't do the surgery, but it made me so much more aware as a dog dad, knowing like, okay, I know what's gonna happen as much as I had dog ramps, and anything that you try to do. I didn't have that huge panic feeling especially with IVDD when the dogs go down.

Lindsey Kock, DVM: It is hard. Yes, like I don't care who you are. Getting a dog to keep quiet is hard.

Adam Christman, DVM, MBA: I remember talking to clients in the exam room about this with IVDD just because it could be so scary to see your dog walking all of a sudden just go down. But I tell them to be prepared, just like you were talking about, just to know what to expect in case. And I have noticed in my experience that these clients, they're more responsible with the decision-making. Yes, they're emotional, but not nearly as emotional because we already had that discussion. Have you heard that too exactly?

Jenna Dockweiler, MS, DVM, DACT, CCRT, CVAT: Exactly. It's a more proactive discussion, like we were talking about earlier, rather than reactive. So you can tell this client, hey, this is what you're gonna look out for. Maybe they're gonna be wobbly in their hind end, have some back pain, or maybe, go all the way down. They're not panicked about what could this be. It's already, I have a good idea of what this might be and I know I need to seek veterinary attention.

Adam Christman, DVM, MBA: Yes, absolutely.

Excerpt from:
Being prepared for the future - DVM 360

Opinion: Misinformation and profits keep doctors like me from offering Utahns the best care – Salt Lake Tribune

(Scott Sommerdorf | The Salt Lake Tribune) Researchers walk in one of the huge research labs at the Huntsman Cancer Institute, Wednesday, August 26, 2015.

By Josh Bonkowsky | For The Salt Lake Tribune

| April 10, 2024, 12:05 p.m.

Why should we get the test?

Cassies mother was not convinced that we should test her daughter for genetic mutations that could cause epilepsy. In class at school, Cassie (whose name Ive changed for privacy) had a generalized tonic-clonic seizure that lasted for 20 minutes. The next week, she started to have smaller seizures several times a day.

I am a pediatric neurologist, and every year we see more than 1,500 children with new epilepsy in our clinics and in our hospital. For Cassie, the important steps to understand and treat her epilepsy were to order an electroencephalogram or an EEG; to get a brain MRI scan and to test for genetic mutations. We started Cassie on lamotrigine, a very effective and safe anti-seizure medicine.

These decisions about how to take care of Cassie result from cumulative learning and the passing on of information from one generation to the next. Sometimes the chain of knowledge gets lost.

Our current knowledge about epilepsy diagnosis and care; and the field of medicine in general; are guided by the scientific method, one of the great triumphs of the Enlightenment, an 18th century intellectual movement that emphasized reason over superstition. The scientific method holds that we can learn facts and make hypotheses about ourselves and our world; and critically, that the hypotheses are testable.

Our newest tool for epilepsy is genetic testing. Several months after her first seizure, we did genetic testing for Cassie and found that she had a mutation in the SCN1A gene. The SCN1A gene works in the neurons of the brain to maintain a normal electrical balance. It turns out that lamotrigine is not a good choice for people who have SCN1A mutations and can worsen seizures over time. We stopped the lamotrigine and started a different medicine (clobazam). The genetic testing was critical for Cassies treatment.

This power to understand and treat diseases like epilepsy is a triumph of our biomedical enterprise; which is an accomplishment of our society, guided by the values of the Enlightenment.

These values are under threat from both commercialism and sciolism.

Commercialism or the belief that financial profit is valued above all else is corrupting our societys ability to provide equitable care. When I meet with families in my clinic, I have to ask what their insurance is, because I know that, for some, it will be difficult or impossible for them to afford the genetic testing or afford the best medicine.

Sciolism or the arrogance of absolute certainty leads to being convinced of something in the absence of actual knowledge. For example: Some of the families I work with are afraid to start an anti-seizure medicine for their child, or to get genetic testing, after reading about risks or misinformation on the internet. Anti-seizure medicines work very well and, as in Cassies case, genetic testing is important. It is a much bigger risk to a child, by a considerable amount, to not be treated or tested. There are, of course, definite limits of knowledge, and the potential for problems even if very rare. But the reality is that physicians and scientists provide true expertise that can prevent disease and save lives.

What we need is a re-Enlightenment.

The re-Enlightenment should incorporate dedication to the scientific method and valuing of the universal rights of a person, aspects missing from the original Enlightenment. People from disadvantaged and overlooked groups must be part of the discourse; and the importance of the spiritual can not be discounted. Policy decisions need to incorporate true equality of opportunity including housing, health care and financial stability for all persons, whether they are a university professor, a school teacher or a janitor.

The accomplishments of the Enlightenment are real, and we can take those best approaches and best values in a re-Enlightenment. We need a shared commitment that agrees upon rationality and a scientific approach for taking care of our children; that values our humanity and all of its members. The stakes are too high and too important to not take this on.

(Photo courtesy of Josh Bonkowsky) Josh Bonkowsky

Josh Bonkowsky, MD, PhD, is a professor of pediatrics at the University of Utah and director of the Center for Personalized Medicine at Primary Childrens Hospital. The views expressed here are his own and do not necessarily reflect those of his employer.

The Salt Lake Tribune is committed to creating a space where Utahns can share ideas, perspectives and solutions that move our state forward. We rely on your insight to do this. Find out how to share your opinion here, and email us at voices@sltrib.com.

Read the rest here:
Opinion: Misinformation and profits keep doctors like me from offering Utahns the best care - Salt Lake Tribune

Adeno-associated virus as a delivery vector for gene therapy of human diseases | Signal Transduction and Targeted … – Nature.com

Wang, D. & Gao, G. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov. Med. 18, 151161 (2014).

PubMed PubMed Central Google Scholar

Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 1121 (2018).

Article CAS PubMed Google Scholar

Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343348 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, D. & Gao, G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov. Med. 18, 6777 (2014).

PubMed PubMed Central Google Scholar

Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 6, 53 (2021).

Article CAS Google Scholar

Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754756 (1965).

Article CAS PubMed Google Scholar

Hoggan, M. D., Blacklow, N. R. & Rowe, W. P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc. Natl Acad. Sci. 55, 14671474 (1966).

Article CAS PubMed PubMed Central Google Scholar

Samulski, R. J., Berns, K. I., Tan, M. & Muzyczka, N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl Acad. Sci. 79, 20772081 (1982).

Article CAS PubMed PubMed Central Google Scholar

Laughlin, C. A., Tratschin, J. D., Coon, H. & Carter, B. J. Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23, 6573 (1983).

Article CAS PubMed Google Scholar

Srivastava, A., Lusby, E. W. & Berns, K. I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45, 555564 (1983).

Article CAS PubMed PubMed Central Google Scholar

Samulski, R. J., Chang, L. S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 30963101 (1987).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. 99, 1185411859 (2002).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 63816388 (2004).

Article CAS PubMed PubMed Central Google Scholar

Cheung, A. K., Hoggan, M. D., Hauswirth, W. W. & Berns, K. I. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33, 739748 (1980).

Article CAS PubMed PubMed Central Google Scholar

Laughlin, C. A., Cardellichio, C. B. & Coon, H. C. Latent infection of KB cells with adeno-associated virus type 2. J. Virol. 60, 515524 (1986).

Article CAS PubMed PubMed Central Google Scholar

Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358378 (2019).

Article CAS PubMed PubMed Central Google Scholar

Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

Article PubMed Google Scholar

Keeler, A. M. & Flotte, T. R. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol. 6, 601621 (2019).

Article CAS PubMed PubMed Central Google Scholar

Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136150 (2020).

Article CAS PubMed PubMed Central Google Scholar

Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255272 (2020).

Article CAS PubMed Google Scholar

Tseng, Y. S. & Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol. 5, 9 (2014).

Article PubMed PubMed Central Google Scholar

Sonntag, F., Schmidt, K. & Kleinschmidt, J. A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl Acad. Sci. 107, 1022010225 (2010).

Article CAS PubMed PubMed Central Google Scholar

Kelsic, E. D., Ogden, P. J., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 11391143 (2019).

Article PubMed PubMed Central Google Scholar

Lusby, E., Fife, K. H. & Berns, K. I. Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J. Virol. 34, 402409 (1980).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl Acad. Sci. 100, 60816086 (2003).

Article CAS PubMed PubMed Central Google Scholar

Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381390 (2009).

Article PubMed Google Scholar

Bashirians, G. et al. Global seroprevalence of neutralizing antibodies against adeno-associated virus (AAV) serotypes of relevance to gene therapy. Blood 140, 1066810670 (2022).

Article Google Scholar

Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938945 (1998).

Article CAS PubMed Google Scholar

Xiao, X., Li, J. & Samulski, R. J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 22242232 (1998).

Article CAS PubMed PubMed Central Google Scholar

McCarty, D. M. Jr., Young, S. M. & Samulski, R. J. Integration of adeno-associated viruS (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38, 819845 (2004).

Article CAS PubMed Google Scholar

Servellita, V. et al. Adeno-associated virus type 2 in US children with acute severe hepatitis. Nature 617, 17 (2023).

Article Google Scholar

Morfopoulou, S. et al. Genomic investigations of unexplained acute hepatitis in children. Nature 617, 564573 (2023).

Article CAS PubMed PubMed Central Google Scholar

Ho, A. et al. Adeno-associated virus 2 infection in children with non-AE hepatitis. Nature 617, 555563 (2023).

Article CAS PubMed Google Scholar

Tacke, F. Severe hepatitis outbreak in children linked to AAV2 virus. Nature 617, 471472 (2023).

Article CAS PubMed Google Scholar

Lisowski, L., Tay, S. S. & Alexander, I. E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharmacol. 24, 5967 (2015).

Article CAS PubMed Google Scholar

Issa, S. S., Shaimardanova, A. A., Solovyeva, V. V. & Rizvanov, A. A. Various AAV Serotypes and their applications in gene therapy: an overview. Cells 12, 785 (2023).

Article CAS PubMed PubMed Central Google Scholar

Verdera, H. C., Kuranda, K. & Mingozzi, F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol. Ther. 28, 723746 (2020).

Article CAS PubMed PubMed Central Google Scholar

Pillay, S. et al. Adeno-associated Virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. J. Virol. 91, e0039117 (2017).

Article CAS PubMed PubMed Central Google Scholar

Dudek, A. M. et al. GPR108 is a highly conserved AAV entry factor. Mol. Ther. 28, 367381 (2020).

Article CAS PubMed Google Scholar

Dhungel, B. P., Bailey, C. G. & Rasko, J. E. J. Journey to the center of the cell: tracing the path of AAV transduction. Trends Mol. Med. 27, 172184 (2021).

Article CAS PubMed Google Scholar

Woodard, K. T., Liang, K. J., Bennett, W. C. & Samulski, R. J. Heparan sulfate binding promotes accumulation of intravitreally delivered adeno-associated viral vectors at the retina for enhanced transduction but weakly influences tropism. J. Virol. 90, 98789888 (2016).

Article CAS PubMed PubMed Central Google Scholar

Shen, S., Bryant, K. D., Brown, S. M., Randell, S. H. & Asokan, A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J. Biol. Chem. 286, 1353213540 (2011).

Article CAS PubMed PubMed Central Google Scholar

Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108112 (2016).

Article CAS PubMed PubMed Central Google Scholar

Dudek, A. M. et al. An alternate route for adeno-associated virus (AAV) entry independent of AAV receptor. J. Virol. 92, e02213e02217 (2018).

Article PubMed PubMed Central Google Scholar

Berry, G. E. & Asokan, A. Cellular transduction mechanisms of adeno-associated viral vectors. Curr. Opin. Virol. 21, 5460 (2016).

Article CAS PubMed PubMed Central Google Scholar

Schultz, B. R. & Chamberlain, J. S. Recombinant adeno-associated virus transduction and integration. Mol. Ther. 16, 11891199 (2008).

Article CAS PubMed Google Scholar

Sonntag, F., Bleker, S., Leuchs, B., Fischer, R. & Kleinschmidt, J. A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 80, 1104011054 (2006).

Article CAS PubMed PubMed Central Google Scholar

Xiao, P. J. & Samulski, R. J. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J. Virol. 86, 1046210473 (2012).

Article CAS PubMed PubMed Central Google Scholar

Nicolson, S. C. & Samulski, R. J. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J. Virol. 88, 41324144 (2014).

Article PubMed PubMed Central Google Scholar

Kelich, J. M. et al. Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol. Ther. Methods Clin. Dev. 2, 15047 (2015).

Article PubMed PubMed Central Google Scholar

Excerpt from:
Adeno-associated virus as a delivery vector for gene therapy of human diseases | Signal Transduction and Targeted ... - Nature.com

Cell and Gene Therapy Market Size to Reach USD 97.33 Bn by 2033 – BioSpace

According to the latest research by nova one advisor, the global cell and gene therapy market size was valued at USD 18.13 billion in 2023 and is anticipated to reach around USD 97.33 billion by 2033, growing at a CAGR of 18.3% from 2024 to 2033.

Request PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart)@ https://www.novaoneadvisor.com/report/sample/7720

The cell and gene therapy market provides therapeutic solutions related to genes and cells. The market deals with research & development, testing, production, and distribution of products and treatment procedures related to genes and cells. Hospitals, research laboratories, pharmaceutical companies, pharmacies, research institutions, and universities are involved in delivering the applications associated with gene and cell therapies. Gene and cell therapies are developed to prevent, treat, or potentially cure numerous diseases. The potential of these therapies to cure, treat, or prevent diseases that are life-threatening increases the demand and boosts the growth of the market. Gene and cell therapies are used in blood stem cell transplantation, gene editing, engineering of the immune system, tissue regeneration, in-vivo gene transfer, cancer treatment, and treatment of different disorders. These therapies can provide better results and enhance quality of life.

North America dominated the cell and gene therapy market in 2023. North America is a developed region that has developed healthcare and research infrastructure, better facilities, and government support that boosts the growth of the market. Governments in the North American region have a huge national budget for healthcare and research. Countries like the U.S. and Canada contribute to the growth of the market in the North American region. As of now, the FDA has approved 37 products for gene and cell therapy. The U.S. has the American Society of Gene & Cell Therapy (ASGCT) for professionals, scientists, physicians, and patient advocates that help advance knowledge, education, and awareness for discovering and developing clinical applications of gene and cell therapy.

The Canadian government is also focusing on improving health with the help of genes and therapies and is launching various programs to help with this. The government launched Disruptive Technology Solutions, which will help tackle the challenges associated with gene and cell therapies. The treatment procedures will be done to cure rare genetic disorders and chronic diseases.

Key Takeaways:

Immediate Delivery Available, Get Full Access@

https://www.novaoneadvisor.com/report/checkout/7720

The cell and gene therapy market is exploding globally

Ground-breaking developments in next-generation cell and gene therapies (CGTs) offer curative value for patients with few to no other therapeutic interventions for either maintenance or cure within specific disease areas, many of which include rare and ultra-rare diseases.The largest therapeutic area is cancer, followed by musculoskeletal diseases and eye diseases.Multiple approved products have been launched in global markets and the number of clinical trials continues to grow. In Europe, these therapies are classified under Advanced Therapeutic Medicinal Products (ATMPs) and are driven by a diverse set of scientific advancements including CAR-T, TCR-T, stem cells, siRNA, oligonucleotides, gene editing (CRISPR, Zinc Fingers, TALENs) and viral transfection.

The global CGT market is projected to grow at a compound annual growth rate of over 36 percent from 2019-2025, to ~ 10 billion. With more than 900 companies globally focusing on CGTS and over 1,000 clinical trials being conducted, the industry could see numerous approvalsas many as 10 to 20 new advanced therapies per year starting in 2025. Moreover, 33% of these clinical trials is being conducted in Europe.1

Global biopharma companies as well as smaller, venture backed-up start-ups are rapidly investing in this complex space. In 2018, about $13 billion has been invested globally in advanced therapies such as cell, gene and gene modifying therapies. In 2019, 19 CGT-related M&A deals worth over $156 billion were completed.

As with any innovative and disruptive technology, CGT developers face challenges along several key stages of the product life cycle. Compared to chemical-based pharmaceuticals, key success factors such as enabling patient access, managing supply chain and manufacturing operations, evidencing compliance with increasingly complex regulatory requirements and alternate business models impose a greater burden.

Segments Insights:

By Therapy Insights

The market for cell and gene treatments consists of companies (organizations, sole proprietors, and partnerships) that sell the therapies they have developed. Cell therapy is the transfer of whole, living cells derived from allogeneic or autologous sources, while gene therapy is the introduction, deletion, or alteration of the genome to treat disease. The market is made up of the money that businesses creating goods for cell and gene therapy make from the sales of those items.

Cell treatment and gene therapy are the two primary product categories in this field. Gene therapy is a field of medicine that focuses on altering cells' genetic make-up to treat disease or reverse it by repairing or replacing genetic material that has been damaged. Oncology, dermatological, musculoskeletal, and other applications are among the many that are used in hospitals, ambulatory surgery centers, cancer treatment facilities, wound care facilities, and other industries.

Cell & Gene Therapy Market Revenue, By Therapy Type, 2022-2032 (USD Million)

By Therapy Type

2022

2023

2027

2031

2032

Cell Therapy

13,396.01

15,621.48

29,433.95

57,138.21

67,757.69

Gene Therapy

2,067.97

2,502.14

5,406.11

11,864.27

14,480.51

By Therapeutic class

Based on application, the market is divided into cardiovascular disease, cancer, genetic disorder, rare diseases, oncology, hematology, ophthalmology, infectious disease, neurological disorders. Among these, the infectious disease segment dominates the market in 2023. The oncological disorder segment held a revenue share of 13.53% in 2023. Research and treatment in the biomedical domains of cell therapy and gene therapy. Both treatments have the ability to lessen the underlying cause of hereditary disorders and acquired diseases. Both therapies aim to treat, prevent, or perhaps cure diseases. By repairing or changing specific cell types, or by employing cells to transport a medication across the body, cell therapy tries to treat diseases. Cell therapy involves growing or modifying cells outside of the body before injecting them into the patient. The cells may come from a donor (allogeneic cells) or the patient (autologous cells)6. By replacing, deactivating, or introducing genes into cells, either inside the body (in vivo) or outside the body, gene therapy seeks to treat disorders (ex vivo).

The market for genetic disorders is expanding as a result of factors like the high prevalence of genetic and chronic disease cases and the growing government initiatives to raise public knowledge of genetic testing and diagnosis. Researchers are developing novel techniques for screening, diagnosing, and treating patients for a variety of cardiac diseases as they investigate the genetic roots of heart and vascular illness. Some researchers are looking for new ways to nine patients who are at risk for sudden cardiac death. Others are examining how medicines that could postpone or obviate the need for cardiac surgery could benefit patients with uncommon illnesses.

The intricacy of mitochondrial genetics and the diverse clinical and biochemical symptoms of primary mitochondrial disorders (PMDs) have shown to be a significant obstacle to the development of effective disease-modifying medications. A successful clinical transition of genetic medicines for PMDs is possible, according to encouraging evidence from gene therapy trials in patients with Leber hereditary optic neuropathy and improvements in DNA editing tools.

Cell & Gene Therapy Market Revenue, By Therapeutic Class, 2022-2032 (USD Million)

By Therapeutic Class

2022

2023

2027

2031

2032

Cardiovascular Disease

744.36

882.84

1,780.08

3,697.84

4,460.03

Genetic Disorder

1,643.41

1,922.21

3,665.70

7,202.20

8,566.52

Oncology

1,936.87

2,272.26

4,385.58

8,720.66

10,403.81

Hematology

1,196.56

1,396.75

2,642.34

5,150.06

6,113.36

Ophthalmology

835.60

972.46

1,817.62

3,500.15

4,142.33

Infectious Disease

4,420.18

5,206.30

10,210.05

20,628.98

24,708.86

Neurological Disorders

658.61

777.29

1,536.51

3,129.23

3,755.58

Others

4,028.39

4,693.50

8,802.17

16,973.35

20,087.70

By Delivery Method

The market is split into In Vivo therapy and Ex Vivo therapy according to the type of therapy. In vivo therapy market is anticipated to grow exponentially throughout the projected period. When it comes to gene therapy, there are two different methods: ex vivo and in vivo, setting aside cell therapies. The altered human gene must first enter the diseased person's cells for gene therapy to take effect. There are two methods for doing this; Genetic material is supplied in vivo to afflicted cells (cancer cells or other cells) that are still present within an individual's body. After cells are collected and exposed to the genome in Ex vivo, altered genes are transferred to a person's body.

See the original post:
Cell and Gene Therapy Market Size to Reach USD 97.33 Bn by 2033 - BioSpace

Research shows stellar growth for gene therapies in ophthalmology – The Pharma Letter

Advances in the treatment of ophthalmic conditions with gene therapies have led to a growing market with huge potential for the future, according to research from DelveInsight.

The industry analyst has prepared a reportindicating that the market size for gene therapies in ophthalmology reached roughly $132 million across mature markets last year.

Taking into account new therapies expected to come online in future years, this market could grow at

This article is accessible to registered users, to continue reading please register for free. A free trial will give you access to exclusive features, interviews, round-ups and commentary from the sharpest minds in the pharmaceutical and biotechnology space for a week. If you are already a registered user pleaselogin. If your trial has come to an end, you cansubscribe here.

Try before you buy

All the news that moves the needle in pharma and biotech. Exclusive features, podcasts, interviews, data analyses and commentary from our global network of life sciences reporters. Receive The Pharma Letter daily news bulletin, free forever.

Become a subscriber

Unfettered access to industry-leading news, commentary and analysis in pharma and biotech. Updates from clinical trials, conferences, M&A, licensing, financing, regulation, patents & legal, executive appointments, commercial strategy and financial results. Daily roundup of key events in pharma and biotech. Monthly in-depth briefings on Boardroom appointments and M&A news. Choose from a cost-effective annual package or a flexible monthly subscription.

See the original post here:
Research shows stellar growth for gene therapies in ophthalmology - The Pharma Letter

Verve Therapeutics Halts Enrollment of Heart-1 PCSK9 Gene Therapy Trial – MD Magazine

Sekar Kathiresan, MD Credit: Verve Therapeutics

Verve Therapeutics announced it would be halting enrollment in its Heart-1 trial following an adverse event in the trials 6th patient dosed with VERVE-101 0.45 mg/kg dose and subsequent consultation with the independent data safety and monitoring Board.

Announced by Verve Therapeutics on April 2, 2024, the press release indicates the patient experienced a Grade 3 drug-induced transient increase in ALT a d a Grade 3 drug-induced thrombocytopenia within the first 4 days after dosing with the 0.45 mg/kg dose of VERVE-101. A decision that comes less than 5 months after the phase 1b trial stole headlines alongside SELECT and other late-breakers at the American Heart Associations Scientific Sessions 2023, the company now intends to prioritize the development of VERVE-102 and the initiation of the Heart-2 clinical trial.1,2

The Heart-1 study continues to support proof-of-concept forin vivobase editing of thePCSK9gene in the liver, with a meaningful and durable lowering of LDL-C, said Sekar Kathiresan, MD, co-founder and chief executive officer of Verve Therapeutics.1 However, at potentially therapeutic dose levels of VERVE-101, we have observed certain asymptomatic laboratory abnormalities, which we believe are attributable to the LNP delivery system. The safety of patients in our clinical trials is of the utmost importance. We plan to further investigate the laboratory abnormalities observed in the Heart-1 study in order to inform the next steps for VERVE-101.

At AHA 2023, Andrew Bellinger, MD, PhD, chief scientific officer of Verve Therapeutics, presented interim data from the heart-1 trial. A first-in-human trial of patients with heterozygous familial hypercholesterolemia (HeFH), Bellinger presented data from 10 participants across 4 dose cohorts: 0.1 mg/kg (n = 3), 0.3 mg/kg (n = 3), 0.45 mg/kg (n = 3), and 0.6 mg/kg (n = 1). With a data cutoff of October 16, 2023, results of the trial pointed to an LDL-C reduction of 55% with just a single treatment at the greatest dose.2

In their April 02, 2024 announcement, Verve Therapeutics underlined all safety events were reported to regulatory agencies in the US, New Zealand, and the UK. The company pointed out theInvestigational New Drug Application and other CTAs for VERVE-101 remain active at this time.1

Of note, the patient did not experience any bleeding or other symptoms related to the aforementioned abnormalities and the abnormalities full resolved within a few days.1

Like VERVE-101, VERVE-102 leverages a the same base editor and guide RNA for PCSK9, but uses a different lipid nanoparticle delivery system. Verve Therapeutics highlighted 2 key differences in the therapies in their release:1

Verve Therapeutics highlighted receipt of regulatory clearances for the Heart-2 trial, which will include patients with HeFH or premature coronary artery disease, in the UK and Canada, with plans to launch the trial in Q2 2024.1

At this time, we are prioritizing the initiation of the Heart-2 clinical trial of VERVE-102 due to its proximity to the clinic and its use of a different LNP that incorporates an ionizable lipid which has been well-tolerated in third-party clinical trials, Kathiresan said.1 We are grateful to our study participants and to our investigators, who share our belief in the promise of single-course gene editing medicines for the treatment of cardiovascular disease. We look forward to initiating the Heart-2 trial in the second quarter of this year.

References:

Originally posted here:
Verve Therapeutics Halts Enrollment of Heart-1 PCSK9 Gene Therapy Trial - MD Magazine

Science Milestone: The evolution of gene therapy – Drug Discovery News

The concept of putting genes into the human body to correct a missing or dysfunctional gene first emerged in the 1960s. Since then, the field of gene therapy has experienced groundbreaking research discoveries, tragic pitfalls, and finally, a resurgence in interest and a rise in breakthroughs.

Download this Science Milestone from Drug Discovery News to learn about the complicated past of early gene therapy discoveries and the technologies that eventually led to gene therapy success.

Original post:
Science Milestone: The evolution of gene therapy - Drug Discovery News

Archives