Page 11234..1020..»

Archive for the ‘Cardiac Stem Cells’ Category

Cardiac Stem Cells – Cedars-Sinai

Preclinical Research

Scientists are developing novel therapeutics for the treatment of cardiovascular diseases using cardiac-derived stem cells in mice and large-animal models. Three current projects are studying:

ExosomesOur researchers are isolating exosomes from specialized human cardiac-derived stem cells and finding that they have the same beneficial effects as other types of stem cells. In mice models, our research shows that exosomes produce the same post-surgery benefits, such as decreasing scar size, increasing healthy heart tissue and reducing levels of chemicals that lead to inflammation. This research suggests that exosomes convey messages that reduce cell death, promote growth of new heart muscle cells and encourage the development of healthy blood vessels.

Mechanisms of Heart Regeneration by Cardiosphere-Derived CellsInvestigators seek to understand the basic mechanisms of coronary artery disease in preclinical disease models. We hope to gather novel mechanistic insights, enabling us to boost the efficacy of stem cell-based treatments by bolstering the regeneration of injured heart muscle.

Biological PacemakersUsing an engineered virus carrying T-box (TBx18), Cedars-Sinai researchers are reprogramming heart muscle cells (cardiomyoctes) into induced sinoatrial node cells in pigs. Cedars-Sinai research shows that these new cells generate electrical impulses spontaneously and are indistinguishable from sinoatrial node or native pacemaker cells. Investigators believe this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications.

Researchers hope to someday incorporate therapeutic regeneration as a regular treatment option for a broad range of cardiovascular disorders, such as myocardial infarctions, heart failure, refractory angina and peripheral vascular disease. Through the Regenerative Medicine Clinic at the Cedars-Sinai Heart Institute, several cardiac stem cell trials are underway. They include:

More here:
Cardiac Stem Cells – Cedars-Sinai

Stem Cells Repair Heart in First-Ever Study – webmd.com

Nov. 14, 2011 — The first use of heart stem cells in humans looks like a major breakthrough for people suffering heart failure after heart attacks.

It’s early — results are in for only the first 16 patients — but the results already are drawing praise from experts not easily impressed by first reports.

“This is a groundbreaking study of extreme importance,” Joshua Hare, MD, director of the University of Miami’s Interdisciplinary Stem Cell Institute, tells WebMD via email. Hare was not involved in the study.

“The reported benefits are of an unexpected magnitude,” writes Gerd Heusch, MD, PhD, chair of the Institute of Pathophysiology at the University of Essen, Germany, in an editorial in the Nov. 14 online issue of The Lancet.

Study researcher John H. Loughran, MD, of the University of Louisville, Ky., could barely contain his excitement in an interview with WebMD.

“The improvement we have seen in patients is quite encouraging,” he says. “Michael Jones, our first patient, could barely walk 30 feet [before treatment]. I saw him this morning. He says he plays basketball with his granddaughter, works on his farm, and gets on the treadmill for 30 minutes three times a week. It is stories like that that makes these results really encouraging.”

The breakthrough comes just as researchers were becoming discouraged by studies in which bone-marrow stem cells failed to heal damaged hearts.

Instead of getting stem cells from the bone marrow, the new technique harvests stem cells taken from the patients’ own hearts during bypass surgery. Just 1 gram of heart tissue — about 3.5 hundredths of an ounce — is taken.

Using a technique invented by Brigham & Women’s Hospital researchers Piero Anversa, MD, and colleagues, heart stem cells are taken from the tissue and grown in the lab. These adult stem cells already are committed to becoming heart cells, but they can transform into any of the three different kinds of heart tissues.

It’s the first time tissue-specific stem cells, other than bone-marrow cells, have been tested in humans, Hare says.

In the study, about a million of the cells were infused into each patient’s heart with a catheter. Calculations suggest that each of these infused cells could generate 4 trillion new heart cells.

The study was designed to show whether the technique was safe. It was: No harmful effects have been seen. But to the researchers’ surprise, the relatively small number of cells infused into patients had a major effect.

Of the 14 patients analyzed so far, heart function improved dramatically. And in the eight patients seen one year after treatment, improvement appears to have continued. Moreover, the scars on patients hearts — areas of dead tissue killed during their heart attacks — are healing.

And patients aren’t just doing better on measures of heart function. Like Michael Jones, they report vastly improved quality of life and ability to perform daily tasks.

“Now this is an open-label trial, so patients know they are treated. This means we have to take what they say with a grain of salt,” Loughran says. “But we see these patients not only are feeling better but doing more.”

The only downside of this early success is that the ongoing study already has enrolled all 20 of the patients who will be treated. The experimental treatment simply will not be available to other patients in the near future. A larger, phase II study is planned.

“All the patients that call in to us, and there are quite a few interested, we encourage them to maintain close contact with their doctors,” Loughran says. “Lifestyle changes and medical management are the most important things for them right now. We will be working very hard to get new trials under way.”

The findings were reported at the American Heart Associations Scientific Sessions meeting in Orlando, Fla., and in the Nov. 14 online edition of The Lancet.

SOURCES:

John H. Loughran, MD, fellow in cardiovascular medicine, University of Louisville, Ky.

Joshua Hare, MD, director, Interdisciplinary Stem Cell Institute, University of Miami.

Bolli, R. The Lancet, published online Nov. 14, 2011.

Heusch, G. The Lancet, published online Nov. 14, 2011.

Traverse, J.H. Journal of the American Medical Association, published online Nov. 14, 2011.

Hare, J. Journal of the American Medical Association, published online Nov. 14, 2011.

Here is the original post:
Stem Cells Repair Heart in First-Ever Study – webmd.com

About Stem Cells

Stem cells are found in the early embryo, the foetus, amniotic fluid, the placenta and umbilical cord blood. After birth and for the rest of life, stem cells continue to reside in many sites of the body, including skin, hair follicles, bone marrow and blood, brain and spinal cord, the lining of the nose, gut, lung, joint fluid, muscle, fat, and menstrual blood, to name a few.In the growing body, stem cells are responsible for generating new tissues, and once growth is complete, stem cells are responsible for repair and regeneration of damaged and ageing tissues. The question that intrigues medical researchers is whether you can harness the regenerative potential of stem cells and be able to grow new cells for treatments to replace diseased or damaged tissue in the body.

To find out more about how stem cells are used in research and in the development of new treatments download a copy of The Australian Stem Cell Handbook or visit Stem Cell Clinical Trials to find out more about the latest clinical research using stem cells.

Stem cells can be divided into two broad groups:tissue specific stem cells(also known as adult stem cells) andpluripotent stem cells(including embryonic stem cells and iPS cells).

To learn more about the different types of stem cells visit our frequently asked questions page.

Read the original here:
About Stem Cells

Stem Cell Factor Tied to Reduced Risk of Cardiac Events, Death – Anti Aging News

High levels of stem cell factor (SCF) are associated with reduced risk of mortality and cardiovascular events, according to a study published online Aug. 26 in theJournal of Internal Medicine.

(HealthDay News) — High levels of stem cell factor (SCF) are associated with reduced risk of mortality and cardiovascular events, according to a study published online Aug. 26 in theJournal of Internal Medicine.

Harry Bjrkbacka, Ph.D., from Lund University in Sweden, and colleagues examined the correlation between circulating levels of SCF and risk for development of cardiovascular events and death. SCF was analyzed from plasma from 4,742 participants in the Malm Diet and Cancer Study; participants were followed for a mean of 19.2 years.

The researchers found that participants with high baseline levels of SCF had lower cardiovascular and all-cause mortality and reduced risk of heart failure, stroke, and myocardial infarction. There was a correlation for smoking, diabetes, and high alcohol consumption with lower levels of SCF. After adjustment for traditional cardiovascular risk factors, the highest versus the lowest SCF quartile remained independently associated with lower risk of cardiovascular (hazard ratio, 0.59; 95 percent confidence interval, 0.43 to 0.81) and all-cause mortality (hazard ratio, 0.68; 95 percent confidence interval, 0.57 to 0.81) and with lower risk of heart failure (hazard ratio, 0.5; 95 percent confidence interval, 0.31 to 0.8) and stroke (hazard ratio, 0.66; 95 percent confidence interval, 0.47 to 0.92) but not myocardial infarction (hazard ratio, 0.96; 95 percent confidence interval, 0.72 to 1.27).

“The findings provide clinical support for a protective role of SCF in maintaining cardiovascular integrity,” the authors write.

The possibilities that stem cell therapies present in the prevention, regeneration, and treatment of many health conditions seem to be still untouched. If course, stem cell research is still ongoing and no one is complete stem cell expert yet, but maybe thats a good approach to take. I am not so sure I would be comfortable in this modern area of easily accessible information with a physician that still doesnt consider his or her self a student. Whether your doctor is 65 or 38 I hope they are still open to learning, stated Dr. Ronald Klatz, President of the A4M.

See the rest here:
Stem Cell Factor Tied to Reduced Risk of Cardiac Events, Death – Anti Aging News

Cardiac Stem Cells May Be Fountain of Youth – Top Secret Writers

Scientists around the world are researching ways to reverse the aging process. There have been a few scientific breakthroughs in the last years, such as a March 2013, Science report. The report discussed how a team of scientists at the University of New South Wales had successfully reversed the aging process in mice with a NAD+ booster, NMN that stimulated the natural repair processes in cells (1).

In August 2017, a different technique was reported. According to ScienceDaily. its being touted as a possible fountain of youth. The ability to rejuvenate the heart and even reverse aging is the claim of a recent study (2).

The European Heart Journal published the study where researchers injected cardiac stem cells taken from the hearts of newborn lab rats into the hearts of old rats (22 months old, which is considered old for a rat lifespan). The result was a reversal in their aging hearts. The paper claims that the old rats appeared newly invigorated after receiving their injections.

In fact, the researchers noticed a 20% increase in the old rats exercising ability. Certainly, the scientists anticipated that this treatment would improve the old rats hearts, what they didnt expect were other benefits, such as the rat fur (shaved away for the surgery) growing back faster than normal.

In addition, the scientists noticed that the rats telomeres had changed. Instead shrinking, the common effect of aging, the telomers in the treated rats actually lengthened. This was an astounding side-effect of the cardiac stem cell injections.

Telomeres are repetitive nucleotide sequences that are found along the ends of chromosomes and become like protective caps. They prevent the ends of the chromosomes from deteriorating, as well as fusing with other chromosomes. Unfortunately, this protection begins to wear away with age and the length of the telomeres shorten as the body ages (3).To discover that the rats telomeres grew longer along with other systemic rejuvenating effects, the primary investigator on the research and director of the Cedars-Sinai Heart Institute Dr Eduardo Marbn proclaimed that it was like discovering, an unexpected fountain of youth.

Dr Marbns team completed the worlds first cardiac stem cell infusion in 2009. Dr Marbn developed the process of growing cardiac-derived stem cells when he was at John Hopkins University. Hes continued his research at Cedars-Sinai.

Conducting research in various heart-related cell therapy for more than 12 years, some of that research included using cardiosphere-derived cells.

According to Life Map Discovery, Cardiosphere-derived cells are isolated from atrial or ventricular biopsy specimens of patients undergoing heart surgery. The tissues are processed and cultured until a fibroblast-like cell layer forms. In this process, some cells migrate to this layer and techs can use them to further isolate and culture to create cardiospheres (4).

A March 2012 publication by the Journal of the American College of Cardiology (JACC) discussed the injection of cardiosphere-derived cells (CDCs) into infarcted mouse hearts. The injections resulted in superior improvement of cardiac function. (5)

According to Dr Marbn, Our previous lab studies and human clinical trials have shown promise in treating heart failure using cardiac stem cell infusions.

In the teams latest study, they used a specific type of stem cells taken from the newborn rats. Instead of stem cells, anther group received a placebo treatment consisting of saline injections. Each group was then compare to a group of four-month-old rats.

ScienceDaily reported that Dr Marbn stated that the cardiac stem cells secrete, tiny vesicles that are chock-full of signaling molecules such as RNA and proteins. Apparently, its the vesicles found in the young cells that, contain all the needed instructions to turn back the clock.

With these latest results, he said, Now we find that these specialized stem cells could turn out to reverse problems associated with aging of the heart.

The team is underway with more research, such as the ability to recreate the same results by administering the stem cells via IV (Intravenous) or with non-newborn cardiac stem cells. According to co-primary investigator and the first author of the study Lilian Grigorian-Shamagian, MD, PhD, their study didnt measure whether receiving the cardiosphere-derived cells extended lifespans. This will be another area the team plans to investigate.

References & Image Credits:(1) How NASA Anti-aging Drug Works(2) Science Daily(3) Wikipedia(4) LifeMapSC(5) OnlineJACC

Continued here:
Cardiac Stem Cells May Be Fountain of Youth – Top Secret Writers

Damaged hearts being repaired with stem cells – FOX 13 News, Tampa Bay

TAMPA (FOX 13) – Repairing a damaged heart has become much more than opening clogged arteries in the Cardiac Catheterization Lab at Pepin Heart Hospital in Tampa.

Dr. Charles Lambert and his team are injecting stem cells directly into specific areas in the walls of damaged hearts.

“We know where viable tissue is, what part of the heart is contracting and has live cells there,” he explains.

Finding that living tissue begins with creating a color-coded map of the heart identifying areas where blood flow is maximized.

“We go back after mapping with a needle that comes out of the catheter and we do roughly twenty injections in viable tissue area,” Lambert says.

It’s all part of an experimental clinical trial Shiela Allen hopes will help her failing heart recover. Less than two hours after welcoming her youngest grandchild into this world, her grandson drove her to the emergency room.

“I couldn’t breathe,” she recalled.

Sheila was shocked when doctors told her that her heart was pumping at less than half of what it should.

“Now that I look back, I can figure out I had all the symptoms but I was just putting it off because I’m busy, I’m old, I’m a little bit overweight,” she admits.

Like many women, Sheila ignored warning signs like fatigue, coughing and shortness of breath – especially when lying down.

“The coughing was odd to me because I was not congested, I could not lay flat in bed so I was propped up on four or five pillows,” she says.

Similar to a balloon filled with too much water, the cardiac muscle is overstretched, thin, and weak. So weak, it can only pump a fraction of the blood inside its chambers to the rest of the body. That causes fluid to back up into the lungs and other parts of the body like the legs.

For about a decade, cardiologists have tried using stem cells to strengthen the muscle with mixed results. This study is hoping a new twist, will make it more successful.

Along with using the heart map to direct the injections, the stem cells are also different. Instead of taking them from the patient, syringes like these are filled with stem cells from donors.

“These trial cells are taken from healthy volunteers that are actually medical students, not here in town, but actually up in the northeast,” he explains.

Another key difference in the study is the product’s maker, Mesoblast. It is allowing people like Sheila, who have heart failure from unknown causes, to also enter the study. The clinical trial using the younger cells is now in 50 centers across the world.

“They’re preserved so when we randomize a patient we take it off the shelf, treat it, warm it, the cells are perfectly alive and healthy and then administer it to the patients,” Lambert says.

Side effects in earlier studies included a drop in blood pressure, bleeding, and fluid accumulation around the heart.

“It was basically like I was having another heart catheterization,” Sheila says her side effects were minimal. “Three days after the procedure I was on a plane going on a trip.”

She’s not sure if she got a placebo or the actual cells, but as she completes her cardiac rehabilitation therapy, she says she is feeling better, “I’ve had a little more energy I dont know if it’s related to that.”

Energy allowing her to spend time with her family, and watch her youngest grandchild grow.

See original here:
Damaged hearts being repaired with stem cells – FOX 13 News, Tampa Bay

Stem Cell Factor Tied to Reduced Risk of Cardiac Events, Death – Doctors Lounge

Category: Cardiology | Internal Medicine | Pathology | Pulmonology | Journal

Back to Journal Articles

High levels of SCF linked to lower cardiovascular and all-cause mortality, heart failure, stroke

Comments: (0)

Tell-a-Friend

THURSDAY, Aug. 31, 2017 (HealthDay News) — High levels of stem cell factor (SCF) are associated with reduced risk of mortality and cardiovascular events, according to a study published online Aug. 26 in the Journal of Internal Medicine.

Harry Bjrkbacka, Ph.D., from Lund University in Sweden, and colleagues examined the correlation between circulating levels of SCF and risk for development of cardiovascular events and death. SCF was analyzed from plasma from 4,742 participants in the Malm Diet and Cancer Study; participants were followed for a mean of 19.2 years.

The researchers found that participants with high baseline levels of SCF had lower cardiovascular and all-cause mortality and reduced risk of heart failure, stroke, and myocardial infarction. There was a correlation for smoking, diabetes, and high alcohol consumption with lower levels of SCF. After adjustment for traditional cardiovascular risk factors, the highest versus the lowest SCF quartile remained independently associated with lower risk of cardiovascular (hazard ratio, 0.59; 95 percent confidence interval, 0.43 to 0.81) and all-cause mortality (hazard ratio, 0.68; 95 percent confidence interval, 0.57 to 0.81) and with lower risk of heart failure (hazard ratio, 0.5; 95 percent confidence interval, 0.31 to 0.8) and stroke (hazard ratio, 0.66; 95 percent confidence interval, 0.47 to 0.92) but not myocardial infarction (hazard ratio, 0.96; 95 percent confidence interval, 0.72 to 1.27).

“The findings provide clinical support for a protective role of SCF in maintaining cardiovascular integrity,” the authors write.

AbstractFull Text (subscription or payment may be required)

View original post here:
Stem Cell Factor Tied to Reduced Risk of Cardiac Events, Death – Doctors Lounge

Providing Leading-edge Cardiovascular Care – The Lane Report

SPECIAL ADVERTISING REPORT

HOWEVER, THERE ARE OTHER components of KentuckyOne Health Heart and Vascular Care that make it the critical statewide resource it is today. Research, community outreach and support of advocacy organizations are all important aspects of our mission to be the states leader in cardiovascular care.

Innovative Care

KentuckyOne provides patients with a full spectrum of cardiovascular care, with treatments for common problems as well as complex cardiovascular conditions. Our surgeons, nursing staff and other health care professionals utilize the latest diagnostic and therapeutic techniques to treat any type of patient with any type of condition.

Whether youre in need of heart attack care; heart rhythm care for cardiac arrhythmia; transplant (Louisville only) or mechanical device care for advanced heart failure; minimally invasive treatment for a disease like aortic stenosis or mitral regurgitation; vascular care for an aneurysm or artery disease; cardiac rehabilitation at one of our Healthy Lifestyle Centers; or some other type of heart and vascular service, KentuckyOne Health is the place to go.

Having access to the best equipment and newest treatments is only part of the equation, said Nezar Falluji, MD, MPH, interventional cardiologist with KentuckyOne Health Cardiology Associates and director of cardiovascular services for the KentuckyOne Health Lexington market at Saint Joseph Hospital. The teamwork and collaboration between cardiologists, cardiovascular surgeons, anesthesiologists, nurses and other staff and physicians is what sets us apart.

Groundbreaking Research

Through a partnership with the University of Louisville and its physicians, KentuckyOne Health, and specifically Jewish Hospital and University of Louisville Hospital, is the site for groundbreaking research across many disciplines. Jewish Hospital is the primary site in Louisville for cardiovascular research.

The University of Louisville offers access to academic research and innovation that may be effectively applied in clinical settings, said Mark Slaughter, MD, professor and chair of the Department of Cardiovascular and Thoracic Surgery at the University of Louisville and executive director of cardiovascular services for the KentuckyOne Health Louisville market. Through this research component, Jewish Hospital, the University of Louisville and KentuckyOne Health are leading the way in developing next-generation cardiovascular therapies.

Roberto Bolli, MD, chief of the Division of Cardiovascular Medicine at the University of Louisville, is a renowned researcher whose stem cell therapy work has garnered worldwide attention.

Dr. Bolli has become a world leader in using patients own stem cells, growing them in tissue culture and then infusing them back into the injured heart, as a way to repopulate the heart with cardiac cells that will grow and heal. He is doing truly leading-edge cardiac stem cell work right here in Kentucky.

Many of the vascular diseases are silent and often go unnoticed until they eventually lead to major problems, said Stephen Self, MD, vascular surgeon at KentuckyOne Health Vascular Surgery Associates. Its crucial that people are aware of the risk factors and become proactive about their health.

Knowing the Risk Factors

Despite the sly nature of many vascular diseases, there are some controllable and uncontrollable risk factors you should know about, including:

Age People 50 and older are at greatest risk.

Smoking Smoke inhalation increases vascular damage.

Lack of exercise Contributes to fat storage, muscle loss and low energy.

Obesity A common sign of poor vascular health

Unhealthy diet Poor diets can increase bad cholesterol levels and high blood pressure.

Genetics Your family medical history can help define your risk.

Protecting Yourself

I recommend people with increased risk of vascular disease, such as those who smoke or have high blood pressure or high cholesterol, and anyone over the age of 50, get vascular screenings, said Steve Lin, MD, who specializes in vein care at KentuckyOne Health Cardiology Associates. They are completely painless, inexpensive and can ultimately save your life.

See original here:
Providing Leading-edge Cardiovascular Care – The Lane Report

Young cardiac cells rejuvenate hearts, in animal study – The San Diego Union-Tribune

Cardiac predecessor cells appear to rejuvenate the hearts of older animals, according to a recent study from Cedars-Sinai Heart Institute that may lead to tests in humans.

Signs of rejuvenation in rats included a 20 percent increase in exercise capacity, faster regrowth of hair, and lengthening of the protective caps of chromosomes.

The study used cardiosphere-derived cells, or CDCs, which are like stem cells, but can only develop into heart cells. These cells are already being used in a human clinical trial to repair damage from heart attacks. The trial is being conducted by Beverly Hills-based Capricor in several hospitals, including Scripps La Jolla.

Since these cells have already been found to be safe, it should be fairly straightforward to extend testing from repairing heart damage in people to rejuvenation, said study leader Dr. Eduardo Marbn. Hes director of the Los Angeles Institute, part of Cedars-Sinai Medical Center. Marbn is also a co-founder of Capricor, publicly traded on Nasdaq.

However, a researcher not involved in the study said that while it was well done, the history of stem cell treatments indicates that proving efficacy in people promises to be far more difficult.

The study used cells taken from newborn rats, injected into the hearts of older, senescent rats. It was published Aug. 14 in the European Heart Journal.

The study is exceptional in both its scope and breadth, said Dr. Richard Schatz, a Scripps Clinic cardiologist involved in the Capricor trial at Scripps La Jolla.

It examines an extraordinary number of variables rarely seen in such studies to ask the question of the impact of CDC (specialized stem cells) on cardiac aging in rats, Schatz said by email. Every parameter of how aging might be studied moved in the right direction, meaning there might be a biologic effect of their cells throughout the body.

Schatz cautioned that scientific excellence doesnt equal clinical success.

The technologys muscle-improving effectiveness could also help patients with Duchenne muscular dystrophy, Marbn said. That use is in clinical testing by Capricor. Early results in patients have been promising enough that more studies are planned.

Capricor clinical trial information is available at http://capricor.com/clinical-trials.

Marbn said the study adds to growing evidence that progenitor cells exert their healing power by secreting chemicals that stimulate repair, not by permanently incorporating themselves into the body. The chemicals are enclosed in tiny vesicles called exosomes that the cells shed.

Until fairly recently, exosomes were dismissed as cellular debris, but are now being appreciated for their role in cell signaling, Marbn said.

There’s a staggering number, something like 100 billion to a trillion exosomes per drop of blood, per drop of cerebrospinal fluid, Marbn said. They are plentiful in breast milk. The only thing we know right now is that there is a complex signaling system.

These exosomes travel far beyond the heart to reach skeletal muscle, which is weakened in Duchenne muscular dystrophy, he said.

Schatz said the study provides evidence that the cells exert many different effects beyond those in a single target organ, through the exosomes, seen in humans as well.

This is very good news if you are a rat, but the obvious limitation is how will this play out in humans, Schatz said.

Previous clinical trials of stem cells have been successful in Phase 1 and 2, Schatz said, but fail in Phase 3. So the researchers face a daunting road ahead to demonstrate usefulness in people.

This does not take away from the brilliant science behind this exceptional group of investigators, Schatz said. They should be congratulated for a very thoughtful and expansive look at a fascinating subject, the clinical relevance of which remains to be seen.

The rejuvenation effects to some degree resemble cells created when adult cells are reprogrammed back to being stem cells, Marbn said.

Certain factors are turned on that regress the cells to act like embryonic stem cells. These are called induced pluripotent stem cells, because they can become nearly any cell in the body, a property called pluripotency.

Something like this might be happening through exosome-mediated reprogramming.

We have a suspicion that even though we didn’t go about trying to activate those factors, some of them may in fact be turned on by the therapy, Marbn said.

Understanding precisely what is going on will take much more work to sort out, he said. For example, lengthening the protective caps of chromosomes, or telomeres, is presumably caused by production of telomerase, an enzyme that makes them longer. But how?

Knowing the exosomes are involved doesnt narrow it down very much, he said.

We think that there’s thousands and thousands of different bioactive molecules within exosomes. And so I can’t right now point to, let’s say, these five RNAs and say, they’re the ones that we think are doing the trick, Marbn said. But somewhere in the genetic instructions in the exosomes are signals that cause telomerase to be activated and elongation of the telomeres.

Even without understanding the precise mechanism, the demonstrated results have been promising enough for Capricor to continue clinical testing in Duchenne muscular dystrophy, Marbn said, even though its outside the companys initial focus on heart disease.

The heart attack research gave mixed messages, he said. Capricor isnt abandoning it, but has given priority to the muscular dystrophy program.

Duchenne muscular dystrophy patients and their parents are more interested in increasing skeletal muscle function than heart function, he said. The disease virtually exclusively affects males, and they often die when quite young.

Go here to read the rest:
Young cardiac cells rejuvenate hearts, in animal study – The San Diego Union-Tribune

‘Beating Heart’ Patch Offers New Hope for Desperately Ill Patients – NBCNews.com

Let our news meet your inbox.

From clot-busting drugs to bypass surgery, cardiologists have many options for treating the 700,000-plus Americans who suffer a heart attack each year. But treatment options remain limited for the 5.7 million or so Americans who suffer from heart failure, an often debilitating condition in which damage to the heart (often resulting from a heart attack) compromises its ability to pump blood.

Severe heart damage can pretty much incapacitate people, says Dr. Timothy Henry, director of cardiology at the Cedars-Sinai Medical Center in Los Angeles. You cant climb a flight of stairs, youre fatigued all the time, and youre at risk of sudden cardiac arrest.

Medication is available to treat heart failure, but its no panacea. And some heart failure patients undergo heart transplantation, but it remains an iffy proposition even 50 years after the first human heart was transplanted in 1967.

But soon, there may be another option.

A patch for the heart

Researchers are developing a new technology that would restore normal cardiac function by covering scarred areas with patches made of beating heart cells. The tiny patches would be grown in the lab from patients own cells and then surgically implanted.

The patches are now being tested in mice and pigs at Duke University, the University of Wisconsin and Stanford University. Researchers predict they could be tried in humans within five years with widespread clinical use possibly coming within a decade.

The hope is that patients will be again to live more or less normally again without having to undergo heart transplantation which has some serious downsides. Since donor hearts are in short supply, many patients experiencing heart failure die before one becomes available. And to prevent rejection of the new heart by the immune system, patients who do receive a new heart typically must take high doses of immunosuppressive drugs.

Heart transplants also require bypass machines which entails some risk and complications, says Dr. Timothy Kamp, co-director of the University of Wisconsins Stem Cell and Regenerative Medicine Center and one of the researchers leading the effort to create heart patches. Putting a patch on doesnt require any form of bypass, because the heart can continue to pump as it is.

To create heart patches, doctors first take blood cells and then use genetic engineering techniques to reprogram them into so-called pluripotent stem cells. These jack-of-all-trade cells, in turn, are used to create the various types of cells that make up heart muscle. These include cardiomonocytes, the cells responsible for muscle contraction; fibroblasts, the cells that give heart tissue its structure; and endothelial cells, the cells that line blood vessels.

These cells are then grown over a tiny scaffold that organizes and aligns them in a way that they become functional heart tissue. Since the patches would be made from the patients own blood cells, there would be no chance of rejection by the patients immune system.

Once the patch tissue matures, MRI scans of the scarred region of the patients heart would be used to create a digital template for the new patch, tailoring it to just the right size and shape. A 3D printer would then be used to fabricate the extracellular matrix, the pattern of proteins that surround heart muscle cells.

The fully formed patch would be stitched into place during open-heart surgery, with blood vessel grafts added to link the patch with the patients vascular system.

In some cases, a single patch would be enough. For patients with multiple areas of scarring, multiple patches could be used.

Inserting patches will be delicate business, in part because scarring can render heart walls thin and susceptible to rupture. Researchers anticipate that heart surgeons will look at each case individually and decide whether it makes more sense to cut out the scarred area and cover the defect with a patch or simply affix the patch over the scarred area and hope that, over time, the scars will go away.

Another challenge will be making sure the patches contract and relax in synchrony with the hearts onto which theyre grafted. We think this will happen because cells of the same type like to seek each other out and connect over time, Kamp says. We anticipate that if the patch couples with the native heart tissue, the electrical signals which pass through the heart muscle like a wave and tell it to contract, will drive the new patch to contract at the same rate.

How much would it cost to patch a damaged heart? Researchers put the price tag at about $100,000. Thats far less than the $500,000 or so it costs give a patient a heart transplant. And regardless of the cost, researchers are upbeat about the possibility of having a new way to treat heart failure.

Using these patches to repair the damaged muscle is likely to be very effective, says Henry. Were not quite there yet itll be a few years before you see the first clinical trials. But this technology may really provide a whole new avenue of hope for people with these conditions who badly need new treatment options.

FOLLOW NBC MACH ON TWITTER, FACEBOOK, AND INSTAGRAM.

Let our news meet your inbox.

Originally posted here:
‘Beating Heart’ Patch Offers New Hope for Desperately Ill Patients – NBCNews.com

VistaGen’s cell production methods receive US patent boost – BioPharma-Reporter.com

VistaGen Therapeutics has received a notice of allowance for a stem cell production patent, which the firm says could be used in autoimmune disorder and cancer treatments.

The US Patent and Trademark Office (USPTO) issued VistaStem a subsidiary of VistaGen the notice for patent no. 14/359,517, which covers methods for producing hematopoietic precursor stem cells usually found in red blood marrow.

These are stem cells that give rise to all of the blood cells and most of the bone marrow cells in the body, with potential to impact both direct and supportive therapy for autoimmune disorders and cancer, said VistaGen VP Mark McPartland.

With CAR-T cell applications and foundational technology, McPartland said he believed the technology will provide approaches for producing bone marrow stem cells for bone marrow transfusions.

Business opportunities

In December last year, VistaGen signed an exclusive sublicense agreement with stem cell research firm BlueRock Therapeutics, under which the latter paid VistaGen $1.25m (1.06m) upfront for its cardiac stem cell production technologies.

McPartland said he expects this recent notice of allowance to also create potential opportunities for additional regenerative medicine transactions.

IP portfolio growth

VistaGen told us it plans to secure IP protection in multiple domains and international jurisdictions.

We intend to grow our IP portfolio in a manner that emphasises platform protection and maximises opportunities for commercialisation and out-licensing, McPartland said.

The rest is here:
VistaGen’s cell production methods receive US patent boost – BioPharma-Reporter.com

Id genes play surprise role in cardiac development – Medical Xpress – Medical Xpress

Dr. Alexandre R. Colas is an assistant professor at SBP. Credit: James Short

Researchers from Sanford Burnham Prebys Medical Discovery Institute (SBP), the Cardiovascular Institute at Stanford University and other institutions were surprised to discover that the four genes in the Id family play a crucial role in heart development, telling undifferentiated stem cells to form heart tubes and eventually muscle. While Id genes have long been known for their activity in neurons and blood cells, this is the first time they’ve been linked to heart development. These findings give scientists a new tool to create large numbers of cardiac cells to regenerate damaged heart tissue. The study was published in the journal Genes & Development.

“It has always been unclear what intra-cellular mechanism initiates cardiac cell fate from undifferentiated cells,” says Alexandre Colas, Ph.D., assistant professor in the Development, Aging and Regeneration Program at SBP and corresponding author on the paper. “These genes are the earliest determinants of cardiac cell fate. This enables us to generate unlimited amounts of bona fide cardiac progenitors for regenerative purposes, disease modeling and drug discovery.”

The international team, which included researchers from the International Centre for Genetic Engineering and Biotechnology in Italy, University Pierre and Marie Curie in France and the University of Coimbra in Portugal, combined CRISPR-Cas9 gene editing, high-throughput microRNA screening and other techniques to identify the role Id genes play in heart development.

In particular, CRISPR played a crucial role, allowing them to knock out all four Id genes. Previous studies had knocked out some of these genes, which led to damaged hearts. However, removing all four genes created mouse embryos with no hearts at all. This discovery comes after a decades-long effort to identify the genes responsible for heart development.

“This is a completely unanticipated pathway in making the heart,” says co-author Mark Mercola, Ph.D., professor of Medicine at Stanford and adjunct professor at SBP. “People have been working for a hundred years to figure out how the heart is specified during development. Nobody in all that time had ever implicated the Id protein.”

Further study showed Id genes enable heart formation by turning down the Tcf3 and Foxa2 proteins, which inhibit the process, and turning up Evx1, Grrp1 and Mesp1, which support the process.

In addition to contributing a new chapter in the understanding of heart development, this study illuminates a powerful technique to screen for protein function in complex phenotypical assays, which was previously co-developed by Colas and Mercola. This technology could have wide-spread impact throughout biology.

“On a technical level, this project succeeded because it combined high-throughput approaches with stem cells to functionally scan the entire proteome for individual proteins involved in making heart tissue,” says Mercola. “It shows that we can effectively walk through the genome to find genes that control complex biology, like making heart cells or causing disease.”

Understanding this pathway could ultimately jumpstart efforts to use stem cells to generate heart muscle and replace damaged tissue. In addition, because Id proteins are the earliest known mechanism to control cardiac cell fate, this work is an important milestone in understanding cardiovascular developmental biology.

“We’ve been influenced by the skeletal muscle development field, which found the regulator of myogenic lineage, or myoD,” says Colas. “For decades, we have been trying to find the cardiac equivalent. The fact that Id genes are sufficient to direct stem cells to differentiate towards the cardiac lineage, and that you don’t have a heart when you ablate them from the genome, suggests the Id family collectively is a candidate for cardioD.”

Explore further: Discovery of a key regulatory gene in cardiac valve formation

More information: Thomas J. Cunningham et al, Id genes are essential for early heart formation, Genes & Development (2017). DOI: 10.1101/gad.300400.117

Read more from the original source:
Id genes play surprise role in cardiac development – Medical Xpress – Medical Xpress

Where Do Heart Cells Come From? – Newswise (press release)

Newswise La Jolla, Calif., August 22, 2017 Researchers from Sanford Burnham Prebys Medical Discovery Institute (SBP), the Cardiovascular Institute at Stanford University and other institutions were surprised to discover that the four genes in the Id family play a crucial role in heart development, telling undifferentiated stem cells to form heart tubes and eventually muscle. While Id genes have long been known for their activity in neurons and blood cells, this is the first time theyve been linked to heart development. These findings give scientists a new tool to create large numbers of cardiac cells to regenerate damaged heart tissue. The study was published in the journal Genes & Development.

It has always been unclear what intra-cellular mechanism initiates cardiac cell fate from undifferentiated cells, says Alexandre Colas, Ph.D., assistant professor in the Development, Aging and Regeneration Program at SBP and corresponding author on the paper. These genes are the earliest determinants of cardiac cell fate. This enables us to generate unlimited amounts of bona fide cardiac progenitors for regenerative purposes, disease modeling and drug discovery.

The international team, which included researchers from the International Centre for Genetic Engineering and Biotechnology in Italy, University Pierre and Marie Curie in France and the University of Coimbra in Portugal, combined CRISPR-Cas9 gene editing, high-throughput microRNA screening and other techniques to identify the role Id genes play in heart development.

In particular, CRISPR played a crucial role, allowing them to knock out all four Id genes. Previous studies had knocked out some of these genes, which led to damaged hearts. However, removing all four genes created mouse embryos with no hearts at all. This discovery comes after a decades-long effort to identify the genes responsible for heart development.

This is a completely unanticipated pathway in making the heart, says co-author Mark Mercola, Ph.D., professor of Medicine at Stanford and adjunct professor at SBP. People have been working for a hundred years to figure out how the heart is specified during development. Nobody in all that time had ever implicated the Id protein.

Further study showed Id genes enable heart formation by turning down the Tcf3 and Foxa2 proteins, which inhibit the process, and turning up Evx1, Grrp1 and Mesp1, which support the process.

In addition to contributing a new chapter in the understanding of heart development, this study illuminates a powerful technique to screen for protein function in complex phenotypical assays, which was previously co-developed by Colas and Mercola. This technology could have widespread impact throughout biology.

On a technical level, this project succeeded because it combined high-throughput approaches with stem cells to functionally scan the entire proteome for individual proteins involved in making heart tissue, says Mercola. It shows that we can effectively walk through the genome to find genes that control complex biology, like making heart cells or causing disease.

Understanding this pathway could ultimately jumpstart efforts to use stem cells to generate heart muscle and replace damaged tissue. In addition, because Id proteins are the earliest known mechanism to control cardiac cell fate, this work is an important milestone in understanding cardiovascular developmental biology.

Weve been influenced by the skeletal muscle development field, which found the regulator of myogenic lineage, or myoD, says Colas. For decades, we have been trying to find the cardiac equivalent. The fact that Id genes are sufficient to direct stem cells to differentiate towards the cardiac lineage, and that you dont have a heart when you ablate them from the genome, suggests the Id family collectively is a candidate for cardioD.

About SBPSanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare childrens diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs about 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

View post:
Where Do Heart Cells Come From? – Newswise (press release)

Study: Cardiac Stem Cell Injections Reverse Effects of Aging – Study Finds

LOS ANGELES In the fight against cardiovascular disease, a new super-weapon is now even closer to deployment and its capabilities are turning out to be beyond expectations.

One of the most notorious killers facing humanity, cardiovascular disease, is responsible for about about 1 in every 3 deaths in the U.S., according to the American Heart Association. A new study aimed at combating the disease finds that stem cells, the controversial darlings of modern biomedical research, are not only showing promise in treating heart failure, but in rats are actually reversing problems associated with old age.

The way the cells work to reverse aging is fascinating, says Dr. Eduardo Marbn,one of the studys primary investigators, in a press release. They secrete tiny vesicles that are chock-full of signaling molecules such as RNA and proteins. The vesicles from young cells appear to contain all the needed instructions to turn back the clock.

Marbn, who serves as director of the Cedars-Sinai Heart Institute, explains this latest study builds on previous lab work and human trials which have shown promise in treating heart failure using cardiac stem cell infusions.

The specific type of stem cells used in the study are known as cardiosphere-derived cells or CDCs. The process to grow these cells was initially developed when Marbn was part of the Johns Hopkins University faculty.

While the latest research involving CDCs indicates possibilities that have previously been in the realm of science fiction, the scientists leading the charge urge restraint in face of the excitement.

This study didnt measure whether receiving the cardiosphere-derived cells extended lifespans, so we have a lot more work to do, says Dr. Lilian Grigorian-Shamagian, the studys first author. We have much to study, including whether CDCs need to come from a young donor to have the same rejuvenating effects and whether the extracellular vesicles are able to reproduce all the rejuvenating effects we detect with CDCs.

Nevertheless, the latest results of stem cell infusions in rats are startling. Not only did rats that received the CDCs experience improved heart function, they also had lengthened heart cell telomeres.

Telomeres, the protective caps at the ends of chromosomes, normally shrink with age. As telomere shrinkage is one of the most studied and least understood phenomenons associated with aging, the effect of CDCs on them is especially fascinating.

LIKE STUDIES? FOLLOW STUDYFINDS.ORG ON FACEBOOK!

Whats more, the researchers said the rats who received the treatment also had their exercise capacity increase by about 20 percent. They also regrew hair faster than rats that didnt receive the cells.

With these thrilling results only the latest in recent stem cell headlines, researchers caution the public that most treatments are still not ready for prime time.

Indeed, a recent Reuters article warned that stem cell therapy still is not approved to treat heart failure in the U.S., yet many unscrupulous clinics are offering questionable services anyway and charging tens of thousands of dollars for it. In some cases, researchers quoted in the article said these labs may not even be injecting stem cells, but rather a useless and dangerous mix of cellular debris.

The article also noted two patients died and another went blind after stem cell injection procedures in Florida clinics.

Still, the legitimate doctors and scientists working to push the frontier of medicine forward are very optimistic about the real possibilities of the therapy. The Cedars-Sinai team said they are also studying the use of stem cells in treating patients with Duchenne muscular dystrophy and patients with heart failure with preserved ejection fraction, a condition that affects more than 50 percent of all heart failure patients.

Their research on CDCs effects on aging was published this month in the European Heart Journal.

Read the rest here:
Study: Cardiac Stem Cell Injections Reverse Effects of Aging – Study Finds

In World First, Scientists Reverse Aging in Old Hearts by Injecting Younger Cells – Wall Street Pit

How long do you expect to live?

Thats a question that can make a lot of people feel suddenly lost for an answer.

In fact, its not a question that anybody would like to answer.

However, for scientific, socio-economic, and other legitimate reasons, average life expectancy per region are being documented. According to the World Factbook by the Central Intelligence Agency, the average life expectancy at birth of the following countries as of 2016 are as follows:

The rest of the world has an average life expectancy of 80 years downwards, with Chad ranking the lowest at 50.20 years.

Life is short, too short.

Its the reason why the pursuit of anything and everything under the sun that can stop aging is mankinds obsession.

We want to live longer; if possible, forever.

Forever is definitely too, too far away. But, longer, yes. Its more probable.

Heres the latest news on anti-aging, and this time its about stem cells. Stem cells from a young heart may help in regaining vitality which we lose as we grow old.

Researchers from the Cedars-Sinai Heart Institute have recently discovered that upon application of Cardiosphere-derived cells (CDC), which they took from newborn mice and injected into the hearts of 22-month-old mice, had resulted to better heart functionality, hair regrowth at a faster rate, 20 percent longer exercise endurance, and longer cardiac telomeres.

The findings on the effect of CDC cells on telomeres is very significant since these compound structures located at the tip of chromosomes function as the cells time-keepers. In fact, another study is focusing on methods to lengthen telomeres to fight the effects of progeria and help prolong life.

Our previous lab studies and human clinical trials have shown promise in treating heart failure usingcardiac stem cell infusions, saidCedars-Sinai Heart Institute and lead researcher Eduardo Marbn, MD, PhD, Now we find that these specialized stem cells could turn out to reverse problems associated with aging of the heart.

According to Dr. Marban, the CDC cells work on reversing the aging process by secreting very small vesicles that are full of signaling molecules like proteins and ribonucleic acid (RNA). The vesicles appear to have all the necessary information in producing cardiac and systemic rejuvenation.

In 2009, the LA-based team achieved the worlds first stem cell infusion which they hope to use in treating patients with Duchenne muscular dystrophy and cases of heart failure with preserved ejection fraction. However, this was the first time that they have observed this kind of rejuvenating effects of CDC cells.

Nevertheless, Dr. Marban and his team acknowledge that they still have a lot to do and figure out. They havent determined yet if the CDC cells could lengthen life, or just produce a younger heart in an aged physique. They also have to find out if the cells must come from younger hearts for the stem cell treatment to be effective.They will obviously need more time and tests to find the right answers to these very important questions.

But, if Dr. Marban and his team succeed, CDC cells may be a key to restoring youth and vigor. It will also help globally the large number of people who suffer from cardiovascular diseases-heart disease is the worlds number 1 killer and accounts for 17.3 million deaths per year.

The study was published on theEuropean Heart Journal.

View original post here:
In World First, Scientists Reverse Aging in Old Hearts by Injecting Younger Cells – Wall Street Pit

Are cardiac stem cells a ‘fountain of youth’? – Genetic Literacy Project

Cardiac stem cells derived from young hearts helped reverse the signs of aging when directly injected into the old hearts of elderly rats, astudypublished Monday in the European Heart Journal demonstrated.

The old rats appeared newly invigorated after receiving their injections. As hoped, the cardiac stem cells improved heart function yet also provided additional benefits. The rats fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

Its extremely exciting, said Dr. Eduardo Marbn, primary investigator on the research and director of the Cedars-Sinai Heart Institute. Witnessing the systemic rejuvenating effects, he said, its kind of like an unexpected fountain of youth.

The working hypothesis is that the cells secrete exosomes, tiny vesicles that contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue, Marbn said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he explained.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Unexpected fountain of youth found in cardiac stem cells, says researcher

Related Stories

Read the original post:
Are cardiac stem cells a ‘fountain of youth’? – Genetic Literacy Project

Researcher: Unexpected fountain of youth found in …

LONDON Cardiac stem cells derived from young hearts helped reverse the signs of aging when directly injected into the old hearts of elderly rats, a studypublished Monday in the European Heart Journal demonstrated.

The old rats appeared newly invigorated after receiving their injections.

As hoped, the cardiac stem cells improved heart function yet also provided additional benefits.

The rats fur fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

The old rats receiving the cardiac stem cells also had increased stamina overall, exercising more than before the infusion.

Its extremely exciting, said Dr. Eduardo Marban, primary investigator on the research and director of the Cedars-Sinai Heart Institute.

Witnessing the systemic rejuvenating effects, he said, its kind of like an unexpected fountain of youth.

Weve been studying new forms of cell therapy for the heart for some 12 years now, Marban said.

Some of this research has focused on cardiosphere-derived cells.

Theyre progenitor cells from the heart itself, Marban said.

Progenitor cells are generated from stem cells and share some, but not all, of the same properties.

For instance, they can differentiate into more than one kind of cell like stem cells, but unlike stem cells, progenitor cells cannot divide and reproduce indefinitely.

From hisown previous research, Marban discovered that cardiosphere-derived cells promote the healing of the heart after a condition known as heart failure with preserved ejection fraction, which affects more than 50 percent of all heart failure patients.

Since heart failure with preserved ejection fraction is similar to aging, Marban decided to experiment on old rats, ones that suffered from a type of heart problem thats very typical of what we find in older human beings: The hearts stiff, and it doesnt relax right, and it causes fluid to back up some.

He and his team injected cardiosphere-derived cells from newborn rats into the hearts of 22-month-old rats thats elderly for a rat.

Similar old rats received a placebo injection of saline solution. Then, Marban and his team compared both groups to young rats that were 4 months old. After a month, they compared the rats again.

Even though the cells were injected into the heart, their effects were noticeable throughout the body, Marban said

The animals could exercise further than they could before by about 20 percent, and one of the most striking things, especially for me (because Im kind of losing my hair) the animals regrew their fur a lot better after theyd gotten cells compared with the placebo rats, Marban said.

The rats that received cardiosphere-derived cells also experienced improved heart function and showed longer heart cell telomeres.

The working hypothesis is that the cells secrete exosomes, tiny vesicles that contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue, Marban said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he said.

Looking to the future, Marban said hes begun to explore delivering the cardiac stem cells intravenously in a simple infusion instead of injecting them directly into the heart, which would be a complex procedure for a human patient and seeing whether the same beneficial effects occur.

Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, said the study is very comprehensive.

Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems, said Gerstenblith, who did not contribute to the new research.

The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.

Todd Herron, director of the University of Michigan Frankel Cardiovascular Centers Cardiovascular Regeneration Core Laboratory, said Marban, with his previous work with cardiac stem cells, has led the field in this area.

The novelty of this bit of work is, they started to look at more precise molecular mechanisms to explain the phenomenon theyve seen in the past, said Herron, who played no role in the new research.

One strength of the approach here is that the researchers have taken cells from the organ that they want to rejuvenate, so that makes it likely that the cells stay there in that tissue, Herron said.

He believes more extensive study, beginning with larger animals and including long-term followup, is needed before this technique could be used in humans.

We need to make sure theres no harm being done, Herron said, adding that extending the lifetime and improving quality of life amounts to a tradeoff between the potential risk and the potential good that can be done.

Capicor, the company that grows these special cells, is focused solely on therapies for muscular dystrophy and heart failure with ongoing clinical trials involving human patients, Marbn said.

Capicor hasnt announced any plans to do studies in aging, but the possibility exists.

After all, the cells have been proven completely safe in over 100 human patients, so it would be possible to fast-track them into the clinic, Marban explained: I cant tell you that there are any plans to do that, but it could easily be done from a safety viewpoint.

Original post:
Researcher: Unexpected fountain of youth found in …

Cardiac stem cells rejuvenate rats’ aging hearts, study says – CNN

The old rats appeared newly invigorated after receiving their injections. As hoped, the cardiac stem cells improved heart function yet also provided additional benefits. The rats’ fur fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

The old rats receiving the cardiac stem cells also had increased stamina overall, exercising more than before the infusion.

“It’s extremely exciting,” said Dr. Eduardo Marbn, primary investigator on the research and director of the Cedars-Sinai Heart Institute. Witnessing “the systemic rejuvenating effects,” he said, “it’s kind of like an unexpected fountain of youth.”

“We’ve been studying new forms of cell therapy for the heart for some 12 years now,” Marbn said.

Some of this research has focused on cardiosphere-derived cells.

“They’re progenitor cells from the heart itself,” Marbn said. Progenitor cells are generated from stem cells and share some, but not all, of the same properties. For instance, they can differentiate into more than one kind of cell like stem cells, but unlike stem cells, progenitor cells cannot divide and reproduce indefinitely.

Since heart failure with preserved ejection fraction is similar to aging, Marbn decided to experiment on old rats, ones that suffered from a type of heart problem “that’s very typical of what we find in older human beings: The heart’s stiff, and it doesn’t relax right, and it causes fluid to back up some,” Marbn explained.

He and his team injected cardiosphere-derived cells from newborn rats into the hearts of 22-month-old rats — that’s elderly for a rat. Similar old rats received a placebo injection of saline solution. Then, Marbn and his team compared both groups to young rats that were 4 months old. After a month, they compared the rats again.

Even though the cells were injected into the heart, their effects were noticeable throughout the body, Marbn said

“The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because I’m kind of losing my hair) the animals … regrew their fur a lot better after they’d gotten cells” compared with the placebo rats, Marbn said.

The rats that received cardiosphere-derived cells also experienced improved heart function and showed longer heart cell telomeres.

Why did it work?

The working hypothesis is that the cells secrete exosomes, tiny vesicles that “contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue,” Marbn said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he explained.

Looking to the future, Marbn said he’s begun to explore delivering the cardiac stem cells intravenously in a simple infusion — instead of injecting them directly into the heart, which would be a complex procedure for a human patient — and seeing whether the same beneficial effects occur.

Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, said the new study is “very comprehensive.”

“Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems,” said Gerstenblith, who did not contribute to the new research. “The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.”

Todd Herron, director of the University of Michigan Frankel Cardiovascular Center’s Cardiovascular Regeneration Core Laboratory, said Marbn, with his previous work with cardiac stem cells, has “led the field in this area.”

“The novelty of this bit of work is, they started to look at more precise molecular mechanisms to explain the phenomenon they’ve seen in the past,” said Herron, who played no role in the new research.

One strength of the approach here is that the researchers have taken cells “from the organ that they want to rejuvenate, so that makes it likely that the cells stay there in that tissue,” Herron said.

He believes that more extensive study, beginning with larger animals and including long-term followup, is needed before this technique could be used in humans.

“We need to make sure there’s no harm being done,” Herron said, adding that extending the lifetime and improving quality of life amounts to “a tradeoff between the potential risk and the potential good that can be done.”

Capicor hasn’t announced any plans to do studies in aging, but the possibility exists.

After all, the cells have been proven “completely safe” in “over 100 human patients,” so it would be possible to fast-track them into the clinic, Marbn explained: “I can’t tell you that there are any plans to do that, but it could easily be done from a safety viewpoint.”

See the article here:
Cardiac stem cells rejuvenate rats’ aging hearts, study says – CNN

‘Unexpected fountain of youth’ found in cardiac stem cells, says researcher – fox6now.com

Cardiac stem cells derived from young hearts helped reverse the signs of aging when directly injected into the old hearts of elderly rats, astudypublished Monday in the European Heart Journal demonstrated.

The old rats appeared newly invigorated after receiving their injections. As hoped, the cardiac stem cells improved heart function yet also provided additional benefits. The rats fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

The old rats receiving the cardiac stem cells also had increased stamina overall, exercising more than before the infusion.

Its extremely exciting, said Dr. Eduardo Marbn, primary investigator on the research and director of the Cedars-Sinai Heart Institute. Witnessing the systemic rejuvenating effects, he said, its kind of like an unexpected fountain of youth.

Weve been studying new forms of cell therapy for the heart for some 12 years now, Marbn said.

Some of this research has focused on cardiosphere-derived cells.

Theyre progenitor cells from the heart itself, Marbn said. Progenitor cells are generated from stem cells and share some, but not all, of the same properties. For instance, they can differentiate into more than one kind of cell like stem cells, but unlike stem cells, progenitor cells cannot divide and reproduce indefinitely.

From hisown previous research, Marbn discovered that cardiosphere-derived cells promote the healing of the heart after a condition known as heart failure with preserved ejection fraction, which affects more than 50% of all heart failure patients.

Since heart failure with preserved ejection fraction is similar to aging, Marbn decided to experiment on old rats, ones that suffered from a type of heart problem thats very typical of what we find in older human beings: The hearts stiff, and it doesnt relax right, and it causes fluid to back up some, Marbn explained.

He and his team injected cardiosphere-derived cells from newborn rats into the hearts of 22-month-old rats thats elderly for a rat. Similar old rats received a placebo injection of saline solution. Then, Marbn and his team compared both groups to young rats that were 4 months old. After a month, they compared the rats again.

Even though the cells were injected into the heart, their effects were noticeable throughout the body, Marbn said

The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because Im kind of losing my hair) the animals regrew their fur a lot better after theyd gotten cells compared with the placebo rats, Marbn said.

The rats that received cardiosphere-derived cells also experienced improved heart function and showed longer heart cell telomeres.

The working hypothesis is that the cells secrete exosomes, tiny vesicles that contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue, Marbn said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he explained.

Looking to the future, Marbn said hes begun to explore delivering the cardiac stem cells intravenously in a simple infusion instead of injecting them directly into the heart, which would be a complex procedure for a human patient and seeing whether the same beneficial effects occur.

Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, said the new study is very comprehensive.

Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems, said Gerstenblith, who did not contribute to the new research. The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.

Todd Herron, director of the University of Michigan Frankel Cardiovascular Centers Cardiovascular Regeneration Core Laboratory, said Marbn, with his previous work with cardiac stem cells, has led the field in this area.

The novelty of this bit of work is, they started to look at more precise molecular mechanisms to explain the phenomenon theyve seen in the past, said Herron, who played no role in the new research.

One strength of the approach here is that the researchers have taken cells from the organ that they want to rejuvenate, so that makes it likely that the cells stay there in that tissue, Herron said.

He believes that more extensive study, beginning with larger animals and including long-term followup, is needed before this technique could be used in humans.

We need to make sure theres no harm being done, Herron said, adding that extending the lifetime and improving quality of life amounts to a tradeoff between the potential risk and the potential good that can be done.

Capicor, the company that grows these special cells, is focused solely on therapies for muscular dystrophy and heart failure with ongoing clinical trials involving human patients, Marbn said.

Capicor hasnt announced any plans to do studies in aging, but the possibility exists.

After all, the cells have been proven completely safe in over 100 human patients, so it would be possible to fast-track them into the clinic, Marbn explained: I cant tell you that there are any plans to do that, but it could easily be done from a safety viewpoint.

See the rest here:
‘Unexpected fountain of youth’ found in cardiac stem cells, says researcher – fox6now.com

Scientists discovered how to rejuvenate rats by injecting stem cells … – Pulse Headlines

On Monday, a group of scientists at Cedars-Sinai Heart Institute in Los Angeles, CA, discovered througha world-first experimenta form to rejuvenate elder rats old hearts by injecting cardiac stem cells from much younger rats with healthier hearts. They hope this process might eventually become useful to humans.

The first time an experiment like this was carried out was in 2009 by the same Los Angeles-based team. Now, they also proved the possibility of reversing aging in old hearts.

Heart failure is a typical cause of death in humans. Around 48 percent of women and 46 percent of men die a year from heart attacks and other heart-related diseases. They are the first reason of death worldwide, and a leading cause of death in the United States, killing over 375,000 Americans a year. Nearly half of all African-American population suffers from heart diseases.

Researchers took stem cells from the hearts of 4-month-old rats, shaped them into cardiosphere-derived cells and injected them into the hearts of other rats of 22 monthsold, an age that makes them be considered as old. They carried out a similar process to another group of rats but injected saline instead. Scientists later compared both groups.

After receiving the stem cells injection, researchers noted a significant change in the way old rats continued to live. They turned much more active and improved their functionalities. Not just their heart rates got better and faster, but also the way they ran and breathed. Their hair started to grow faster, their chromosomal telomeres which commonly shrink with age lengthened, plus other benefits. The rodents began to progressively improve their capacity of exercise along with their stamina overall.

The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because Im kind of losing my hair) the animals regrew their fur a lot better after theyd gotten cells compared with the placebo rats, said Dr Eduardo Marbn, director of the Cedars-Sinai Heart Institute and lead author, who is also extremely excited for having witnessed the unexpected fountain of youth.

In 2009, his team successfully repaired the damaged heart of a man who had suffered a heart attack, using his own heart tissue.

Stem cells are a really basic type of cells that can be molded and converted into other much-specialized cells through a process called differentiation, which is basicallyshaping them into any kind of body cell.They form in embryos like embryonic stem cells -, which help in the growth process of babies, along with the millions of other different cell types they need before their birth.

One of many cells scientists generated from stem cells is called progenitor cell, which shares some of the same properties. But unlike the original cells, progenitor cells are not able to divide and reproduce indefinitely. Dr. Marbn also said they discovered cardiosphere-derived cells, which tend to promote the healing of a condition that affects more than 50 percent of patients suffering from heart failure.

Our previous lab studies and human clinical trials have shown promise in treating heart failure using cardiac stem cell infusions, said Dr Marbn. Now we find that these specialized stem cells could turn out to reverse problems associated with aging of the heart.

According to Dr. Marbn, stem cells secrete exosomes, tiny vesicles which contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injuries, and the way genes are expressed in the tissue. They are placed into the heart, and act to transform it into a better organ, helping it at the same time to improve exercise capacity and hair regrowth, he explained.

Now, Dr. Marbn is exploring a much easier way to deliver the stem cells intravenously, instead of injecting them directly into the heart. Thus avoiding surgeries, which tend to be more complicated and expensive for the patient.

Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems, said Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, who did not contribute to the new research. The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.

Now, scientistsneed to make more extensive studies before using the technique in humans.

Source: CNN

The rest is here:
Scientists discovered how to rejuvenate rats by injecting stem cells … – Pulse Headlines

‘Unexpected fountain of youth’ found in cardiac stem cells, says researcher – CNN

The old rats appeared newly invigorated after receiving their injections. As hoped, the cardiac stem cells improved heart function yet also provided additional benefits. The rats’ fur fur, shaved for surgery, grew back more quickly than expected, and their chromosomal telomeres, which commonly shrink with age, lengthened.

The old rats receiving the cardiac stem cells also had increased stamina overall, exercising more than before the infusion.

“It’s extremely exciting,” said Dr. Eduardo Marbn, primary investigator on the research and director of the Cedars-Sinai Heart Institute. Witnessing “the systemic rejuvenating effects,” he said, “it’s kind of like an unexpected fountain of youth.”

“We’ve been studying new forms of cell therapy for the heart for some 12 years now,” Marbn said.

Some of this research has focused on cardiosphere-derived cells.

“They’re progenitor cells from the heart itself,” Marbn said. Progenitor cells are generated from stem cells and share some, but not all, of the same properties. For instance, they can differentiate into more than one kind of cell like stem cells, but unlike stem cells, progenitor cells cannot divide and reproduce indefinitely.

Since heart failure with preserved ejection fraction is similar to aging, Marbn decided to experiment on old rats, ones that suffered from a type of heart problem “that’s very typical of what we find in older human beings: The heart’s stiff, and it doesn’t relax right, and it causes fluid to back up some,” Marbn explained.

He and his team injected cardiosphere-derived cells from newborn rats into the hearts of 22-month-old rats — that’s elderly for a rat. Similar old rats received a placebo injection of saline solution. Then, Marbn and his team compared both groups to young rats that were 4 months old. After a month, they compared the rats again.

Even though the cells were injected into the heart, their effects were noticeable throughout the body, Marbn said

“The animals could exercise further than they could before by about 20%, and one of the most striking things, especially for me (because I’m kind of losing my hair) the animals … regrew their fur a lot better after they’d gotten cells” compared with the placebo rats, Marbn said.

The rats that received cardiosphere-derived cells also experienced improved heart function and showed longer heart cell telomeres.

Why did it work?

The working hypothesis is that the cells secrete exosomes, tiny vesicles that “contain a lot of nucleic acids, things like RNA, that can change patterns of the way the tissue responds to injury and the way genes are expressed in the tissue,” Marbn said.

It is the exosomes that act on the heart and make it better as well as mediating long-distance effects on exercise capacity and hair regrowth, he explained.

Looking to the future, Marbn said he’s begun to explore delivering the cardiac stem cells intravenously in a simple infusion — instead of injecting them directly into the heart, which would be a complex procedure for a human patient — and seeing whether the same beneficial effects occur.

Dr. Gary Gerstenblith, a professor of medicine in the cardiology division of Johns Hopkins Medicine, said the new study is “very comprehensive.”

“Striking benefits are demonstrated not only from a cardiac perspective but across multiple organ systems,” said Gerstenblith, who did not contribute to the new research. “The results suggest that stem cell therapies should be studied as an additional therapeutic option in the treatment of cardiac and other diseases common in the elderly.”

Todd Herron, director of the University of Michigan Frankel Cardiovascular Center’s Cardiovascular Regeneration Core Laboratory, said Marbn, with his previous work with cardiac stem cells, has “led the field in this area.”

“The novelty of this bit of work is, they started to look at more precise molecular mechanisms to explain the phenomenon they’ve seen in the past,” said Herron, who played no role in the new research.

One strength of the approach here is that the researchers have taken cells “from the organ that they want to rejuvenate, so that makes it likely that the cells stay there in that tissue,” Herron said.

He believes that more extensive study, beginning with larger animals and including long-term followup, is needed before this technique could be used in humans.

“We need to make sure there’s no harm being done,” Herron said, adding that extending the lifetime and improving quality of life amounts to “a tradeoff between the potential risk and the potential good that can be done.”

Capicor hasn’t announced any plans to do studies in aging, but the possibility exists.

After all, the cells have been proven “completely safe” in “over 100 human patients,” so it would be possible to fast-track them into the clinic, Marbn explained: “I can’t tell you that there are any plans to do that, but it could easily be done from a safety viewpoint.”

Read the rest here:
‘Unexpected fountain of youth’ found in cardiac stem cells, says researcher – CNN

Stem Cells in the Treatment of Heart Failure MyHeart

The use of stem cells in the treatment of heart failure cases is currently being investigated. Cardiovascular disease is the #1 killer in the United States accounting forone third ofall deaths.Heart disease kills more people than cancer, HIV, diabetesor trauma. Many advances in medical and surgical treatment of heart disease have contributed to a growing number of patients in their 70s and 80s with congestive heart failure. An estimated 1% of the Western world has congestive heart failure, including over 5 million Americans with an additional 550,000 new cases each year. Patients with advanced heart failure who require hospitalization, have a 50% mortality within the first fiveyears.

The patients with significant coronary artery disease can sometimes undergo coronary artery bypass surgery or percutaneous coronary intervention to open up blocked arteries. In addition, current medical treatment of patients with congestive heart failure include proven beneficial medicine such as beta-blockers, ACE inhibitors, angiotensinIIreceptor blockers, angiotensin IIreceptor blocker Neprilysin inhibitors and diuretics. When appropriate, resynchronization of the right and left ventricles can be accomplished with special types of pacemaker. However, even after following all of these guideline proven therapies, some patients still run out of options and continue to have severe and debilitating congestive heart failure. Heart transplant is a last resort for end stage heart disease.There is a very low number of donor hearts and transplant programs have very restricted eligibility criteria leaving a large number patients with very few options.

An example of a normal LV-gram.

An example of a normal echocardiogram.

There are reasons to believe that regenerative therapy could really help patients with congestive heart failure. Multi-potent cardiac stem cells exist in the heart and participate in the normal turnover of heart muscle cells and small blood vessels.A heart attack kills heart muscle which is made of millions of heart cells. The question is: Would regenerative therapy be able to replace those heart cells or cardiac myocytes?

Thousands of patients have been enrolled in clinical trials to address this question. Regenerative or stem cell therapy has been shown to be safe. Modest benefits have been demonstrated but the mechanism has not been completely elucidated. So far, there is no evidence that cells regenerate from the transplanted stem cells. Animal studies have shown that only 1% of the stem cells injected into the heart tissue are detectable after 1 month. The clinical benefits observed appeared to be due to arelease of growth factors which triggers endogenous repair of the heart cells and inhibits cell death and fibrosis resulting in increased performance of the heart muscle.

An example of an abnormal LV-gram.

An example of an abnormal echocardiogram.

Adult stem cells derived from the bone marrow of healthyyoung donors have been used in clinical trials of heart failure. In the Dream-HF clinical trial, we are using immuno-selected mesenchymalstem cells from healthy adult allogeneic donors. The cells are obtained from their bone marrow, expandedin a manufacturing facility and arecryopreserved until use. These cells are shipped to clinical sites and used for the study.

Allogeneic mesenchymal stem cells have been evaluated in multiple nonclinical and clinical studies, several of which were initiated by Mesoblast, the phase 3 study sponsor. Therapeutic indications under evaluation included heart failure, myocardial infarction, rheumatoid arthritis and graft versus host disease. Currently, results from clinical studies suggest that allogeneic stem cells are generally well tolerated. Moreover,in a phase 2 study ofpatients with heart failure, mesenchymal precursor cell therapy was associated withimprovement inreduction in heart failure hospitalization events and improvementsin functional exercise capacity.

Stem cells from healthy normal volunteers are administered as a 1 time dose of 150 million cells. Myocardial locations are defined within the left ventricle byLeft Ventriculogram (LV-gram)imaging and electromechanical mapping as viable for cell delivery. The cells are administered via a trans-endocardial injection at 15-20 sites inside the heart cavity using a Myostar injection catheter and a NOGA cardiac mapping system. Dr Mendelsohn is the interventional cardiologist performing the injections at BBH Princeton hospital. Only he knows which patients received the stem cells, and he doesnt follow them. The other heart failure specialists follow the patients in the research clinic.

The patients that are injected with stem cells are compared to a group of patient who undergo a Sham or placebo treatment. The treatment arm is not known to the patient or to the heart failure specialist such as myself. This is the only way to find out whether the treatment with stem cells really works. All the patients will be followed by their study team and will be monitored for the clinical effects of stem-cell treatment in patients with congestive heart failure.

No matter how many cases of congestive heart failure we treat, I am still captivated by each and every persons story. One such patient, is a young lady that was treated for heart failure and had a defibrillator placed in 2009. She sought our help and was inquiring about stem cell treatment for her heart. She was only in her early 40s and was desperate to try something new. She was on maximal medical therapy and did not qualify at that time because she was stable. In 2015 however, a clinical deterioration lead to several cardiac procedures including ablation of ventricular arrhythmias and an upgrade of her pacemaker/defibrillator. I thought we were going to lose her. At some point, she was going into incessant ventriculartachycardias and required several prolonged hospitalizations. We referred her to a transplant center and she was evaluated by the transplant team. At the same time, she enrolled in our stem cell research Dream-HF program at the end of 2015.Because she is still part of the research study, I am not sure whether she received stem cells or not. She is amongst one of the many patients that are participating ina stem cell research program that is evaluating cutting edge technology in heart failure. The Dream-HF study is still enrolling patients with chronic systolic heart failure of either ischemic or nonischemic etiology.

Read the original here:
Stem Cells in the Treatment of Heart Failure MyHeart

Stem cell therapy for heart failure gets a gold-standard trial – Salon

In the days after a heart attack, surviving patients and their loved ones can breathe a sigh of relief that the immediate danger is over but the scar tissue that forms during the long healing process can inflict lasting damage. Too often it restricts the hearts ability to fill properly between beats, disrupting rhythm and ultimately leading to heart failure. Yet a new possible treatment may help to revitalize an injured ticker.

A cadre of scientists and companies is now trying to prevent or reverse cardiac damage by infusing a cocktail of stem cells into weakened hearts. One company, Melbourne, Australiabased Mesoblast, is already in late-stage clinical trials, treating hundreds of chronic heart failure patients with stem cell precursors drawn from healthy donors hip bones. A randomized trial that includes a placebo group is scheduled to complete enrollment next year.

Mesoblasts earlier-stage trials, published in 2015 inCirculation Research, found that patients who received injections of its cell mixture had no further problems related to heart failure.

Promising results from the new trial would be a major step forward for a field that has long been criticized for studies that are poorly designed, incomplete or lack control-group comparisons, as well as for the peddling of unproved therapies in many clinics worldwide.

Another company, Belgium-based TiGenix, hopes to attack scar tissue before it forms by treating patients with a mixture of heart stem cells within seven days of a heart attack. This approach has just completed phase II trials, but no findings have yet been published.

There are still many unanswered questions about how stem cells typically derived from bones could help heal the heart. Leading theories suggest they may help fight inflammation, revitalize existing heart cells, or drive those cells to divide or promote new blood-vessel growth, says Richard Lee, leader of the cardiovascular program at the Harvard Stem Cell Institute. Other stem cell scientists, including Joshua Hare, who conducted earlier-stage Mesoblast research and directs the Interdisciplinary Stem Cell Institute at the University of Miami, say the cells may work in multiple ways to heal scar tissue. According to Hare, the stem cells could ultimately be a truly regenerative treatment.

More:
Stem cell therapy for heart failure gets a gold-standard trial – Salon

Texas Heart Institute Awarded Grant to Study Sex Differences in Cardiac Repair – Texas Medical Center (press release)

Earlier this year, Texas Heart Institute received Alpha Phi Foundations 2017 Heart to Heart Grant. The $100,000 grant will fund research led by Doris Taylor, Ph.D., director of the Regenerative Medicine Research and the Center for Cell and Organ Biotechnology at the Texas Heart Institute, to study cardiac repair in women at the cellular level.

Were just really passionate about these projects that have long-term clinical relevancy, as a women-driven organization and being committed to womens heart health, said Colleen Sirhal, vice chair of the Alpha Phi Foundation.

The study will explore sex differences in blood, bone marrow and stem cells of patients enrolled in cell therapy clinical trials.

While bone marrow cell therapy has been used to treat cardiovascular disease in clinical trials, very few studies have been conducted to assess the sex differences in efficacy and outcomes. By performing a proteomic analysis of the samples and evaluating the proteins that cells produce and secrete, the results could shed light on unanswered questions related to critical sex-specific differences in cardiovascular disease, potentially leading to improved cell therapies.

Its about time that were paying attention to sex differences, Taylor said. Were not just small men. The biology is different.

Heart disease remains the No. 1 cause of death in both men and women in the United States, yet theres a limited understanding in the scientific community as to why it affects men and women differently. For example, women 45 years old and younger have a higher likelihood than men of dying within a year of their initial heart attack.

In addition, women have a higher risk of developing small vessel disease, in which the walls of tiny vessels within the heart muscle become blocked rather than larger arteries, causing heart-related chest pain. Because the major coronary arteries may look normal, women with small vessel disease can have a heart attack go undiagnosed and untreated.

We know heart disease happens differently in men and women, Taylor said. More young women than men die of heart disease. Why is that? Is there something that happens early? If we only look at these women who are older, are we missing something major? By looking at healthy, normal younger women, were going to be able to do comparisons across time, comparisons by disease, and comparisons by sex. I think thats really exciting.

Historically, women and minorities have largely been underrepresented in research and clinical trials, especially pertaining to cardiovascular disease.

Dr. Taylors colleague at the Texas Heart Institute, Stephanie Coulter, M.D., a cardiologist and the director of the Center for Womens Heart and Vascular Health at Texas Heart Institute and a recipient of the 2013 Heart to Heart Grant, is actively recruiting younger women to participate in her research registry.

Since women are typically affected by heart disease a decade or more later than men, age may also have played a role in this underrepresentation, Coulter said. Our Womens Center research is focusing on women age 18 and older to address this very issue.

Coulter added that trials focusing on prevention in women, such as the Womens Health Initiative and Womens Health Study, have, in fact, had clinical impact. However, the percentage of women enrolling in clinical trials continues to be disproportionate to the prevalence of cardiovascular disease in women, but we are seeing improvements thanks to multiple initiatives in the U.S. that continue to address the issue of women in clinical trials.

Its easy for people to assume that if you study men, itll apply to women, but it seems anathema to people to assume that if you study women it might benefit men, Taylor said. At the end of the day, when it comes time to look at the data and ask, How does this treatment work in women? How does this treatment work in men?, oftentimes there arent enough women enrolled in the trials to split that out. Statistically, youd be doing yourself a disservice.

Taylor has spent nearly two decades studying key contributors to cardiac repair at the cellular level, specifically looking at proteins cells produce and secrete based on gender as a new frontier in cell therapy.

Early on in Taylors career, she studied how bone marrow cells behaved based on gender. She extracted cells from male mice and administered them to female mice and vice versa, allowing her to track the Y chromosome. The results showed that only the males treated with female cells improved. This phenomenon raised the question of whether or not the bone marrow cells were the same.

After measuring the bone marrow cells that were present in males and females, Taylor discovered that the cells were inherently different: In the male mice, there were more inflammatory cells, fewer progenitor and stem cells and a different number of immune cells than in the female mice. In addition, when the bone marrow cells were placed in a petri dish, the female cells produced more growth factors responsible for recruiting repair cells after an injury.

Taylor conducted follow-up experiments in which she gave female and male cells to both female and male mice. The results confirmed her hunch: The only cells that were reparative were the female cells.

It made me realize a critical detail for the first time:Every time we take bone marrow from a different person with the intention of delivering it back to them as a therapy, if we look at the cells present in the marrow, theyd be different, Taylor said. Which means, every time were doing an autologous cell therapytrial, in which you take bone marrow and deliver it back to an individual, you are giving each person a completely different or unique drug in that trial.

Through the Heart to Heart grant, the data from Taylors research will allow her to build upon her early research on sex differences and, hopefully, identify a way to optimize cell therapy.

Already cells are as good as some drugs. If we optimize them and choose the right cells for the right patient at the right time, maybe well hit the home run, Taylor said.

Read more:
Texas Heart Institute Awarded Grant to Study Sex Differences in Cardiac Repair – Texas Medical Center (press release)

Techshot system headed to space – Evening News and Tribune

GREENVILLE Onboard the next SpaceX cargo spacecraft launching to the International Space Station (ISS) from Pad 39A at the Kennedy Space Center will be a commercial research system owned and operated by Techshot Inc. The equipment will conduct regenerative medicine experiments onboard the station before returning to Earth in the same capsule for a splashdown off the coast of Southern California approximately 30 days later.

Techshots ADvanced Space Experiment Processor (ADSEP) is a device approximately the size of a microwave oven that contains three separate modules, each of which simultaneously can process experiments in three separate on-orbit replaceable automated mini-laboratory cassettes. Two of the three cassettes on the mission will conduct research for a team led by Robert Schwartz, Ph.D., from the University of Houston.

Funded by the Center for the Advancement of Science in Space (CASIS), the study will evaluate a new approach to growing human tissue for transplant. The microgravity environment onboard the ISS could improve cell growth and development and 3D tissue formation, enabling discoveries that will advance translational disease treatments. Previous studies on Earth by Schwartz and his collaborators at the Texas Heart Institute and the Baylor College of Medicine have found that low gravity environments help specially programmed stem cells move toward becoming new heart muscle cells, which may be used to repair damaged hearts on Earth.

The third cassette contains an experiment conducted by and for Techshot itself. The company is developing a 3D bioprinter for the ISS known as the Techshot BioFabrication Facility (BFF), which it expects to launch to the station near the end of 2018. Critical to the success of the printer will be the ability to provide nutrients and mechanical stress for organs and tissues it manufactures in space strengthening them and keeping them viable for transplantation back on Earth.

Approximately 36 hours prior to launch, Techshot scientists in a laboratory at the Kennedy Space Center will 3D print a one centimeter thick construct consisting of stem cells and heart muscle cells. Theyll then place it inside the prototype BFF cell culturing subsystem, which for this mission is temporarily housed inside an ADSEP cassette. The printer used in the lab will be the same modified nScrypt unit that was the first to 3D print cardiac constructs with adult human stem cells in microgravity aboard an aircraft in parabolic flight. Video captured inside the cassette during the month-long experiment, and the tissue itself which is expected to have developed its own micro blood vessels will be evaluated for effectiveness after return from space.

Techshots space bioprinting program leverages its terrestrially based technologies for cell isolation and vascular graft development, and its decades long experience culturing cells in space, said Techshot Chief Scientist Eugene Boland, Ph.D., in a news release. Being able to test our novel approach for culturing 3D printed cells more than a year before we fly the whole BFF is invaluable. The data from this mission will get us one step closer toward our goal of helping eliminate organ shortages.

Founded in 1988, Techshot Inc., develops technologies used in the aerospace, defense and medical industries. Through its Space Act Agreement with NASA, and its role as an official CASIS Implementation Partner, the company provides equipment and services that help federal, institutional and industrial customers live and work in space. http://www.Techshot.space

Submitted

More here:
Techshot system headed to space – Evening News and Tribune

Archives