Posts Tagged ‘virus’

Adeno-associated virus as a delivery vector for gene therapy of human diseases | Signal Transduction and Targeted … – Nature.com

Wang, D. & Gao, G. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov. Med. 18, 151161 (2014).

PubMed PubMed Central Google Scholar

Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 1121 (2018).

Article CAS PubMed Google Scholar

Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343348 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, D. & Gao, G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov. Med. 18, 6777 (2014).

PubMed PubMed Central Google Scholar

Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig. Transduct. Target. Ther. 6, 53 (2021).

Article CAS Google Scholar

Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754756 (1965).

Article CAS PubMed Google Scholar

Hoggan, M. D., Blacklow, N. R. & Rowe, W. P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc. Natl Acad. Sci. 55, 14671474 (1966).

Article CAS PubMed PubMed Central Google Scholar

Samulski, R. J., Berns, K. I., Tan, M. & Muzyczka, N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl Acad. Sci. 79, 20772081 (1982).

Article CAS PubMed PubMed Central Google Scholar

Laughlin, C. A., Tratschin, J. D., Coon, H. & Carter, B. J. Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23, 6573 (1983).

Article CAS PubMed Google Scholar

Srivastava, A., Lusby, E. W. & Berns, K. I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45, 555564 (1983).

Article CAS PubMed PubMed Central Google Scholar

Samulski, R. J., Chang, L. S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 30963101 (1987).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. 99, 1185411859 (2002).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 63816388 (2004).

Article CAS PubMed PubMed Central Google Scholar

Cheung, A. K., Hoggan, M. D., Hauswirth, W. W. & Berns, K. I. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33, 739748 (1980).

Article CAS PubMed PubMed Central Google Scholar

Laughlin, C. A., Cardellichio, C. B. & Coon, H. C. Latent infection of KB cells with adeno-associated virus type 2. J. Virol. 60, 515524 (1986).

Article CAS PubMed PubMed Central Google Scholar

Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358378 (2019).

Article CAS PubMed PubMed Central Google Scholar

Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

Article PubMed Google Scholar

Keeler, A. M. & Flotte, T. R. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol. 6, 601621 (2019).

Article CAS PubMed PubMed Central Google Scholar

Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136150 (2020).

Article CAS PubMed PubMed Central Google Scholar

Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255272 (2020).

Article CAS PubMed Google Scholar

Tseng, Y. S. & Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol. 5, 9 (2014).

Article PubMed PubMed Central Google Scholar

Sonntag, F., Schmidt, K. & Kleinschmidt, J. A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl Acad. Sci. 107, 1022010225 (2010).

Article CAS PubMed PubMed Central Google Scholar

Kelsic, E. D., Ogden, P. J., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 11391143 (2019).

Article PubMed PubMed Central Google Scholar

Lusby, E., Fife, K. H. & Berns, K. I. Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA. J. Virol. 34, 402409 (1980).

Article CAS PubMed PubMed Central Google Scholar

Gao, G. et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl Acad. Sci. 100, 60816086 (2003).

Article CAS PubMed PubMed Central Google Scholar

Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381390 (2009).

Article PubMed Google Scholar

Bashirians, G. et al. Global seroprevalence of neutralizing antibodies against adeno-associated virus (AAV) serotypes of relevance to gene therapy. Blood 140, 1066810670 (2022).

Article Google Scholar

Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938945 (1998).

Article CAS PubMed Google Scholar

Xiao, X., Li, J. & Samulski, R. J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 22242232 (1998).

Article CAS PubMed PubMed Central Google Scholar

McCarty, D. M. Jr., Young, S. M. & Samulski, R. J. Integration of adeno-associated viruS (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38, 819845 (2004).

Article CAS PubMed Google Scholar

Servellita, V. et al. Adeno-associated virus type 2 in US children with acute severe hepatitis. Nature 617, 17 (2023).

Article Google Scholar

Morfopoulou, S. et al. Genomic investigations of unexplained acute hepatitis in children. Nature 617, 564573 (2023).

Article CAS PubMed PubMed Central Google Scholar

Ho, A. et al. Adeno-associated virus 2 infection in children with non-AE hepatitis. Nature 617, 555563 (2023).

Article CAS PubMed Google Scholar

Tacke, F. Severe hepatitis outbreak in children linked to AAV2 virus. Nature 617, 471472 (2023).

Article CAS PubMed Google Scholar

Lisowski, L., Tay, S. S. & Alexander, I. E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharmacol. 24, 5967 (2015).

Article CAS PubMed Google Scholar

Issa, S. S., Shaimardanova, A. A., Solovyeva, V. V. & Rizvanov, A. A. Various AAV Serotypes and their applications in gene therapy: an overview. Cells 12, 785 (2023).

Article CAS PubMed PubMed Central Google Scholar

Verdera, H. C., Kuranda, K. & Mingozzi, F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol. Ther. 28, 723746 (2020).

Article CAS PubMed PubMed Central Google Scholar

Pillay, S. et al. Adeno-associated Virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. J. Virol. 91, e0039117 (2017).

Article CAS PubMed PubMed Central Google Scholar

Dudek, A. M. et al. GPR108 is a highly conserved AAV entry factor. Mol. Ther. 28, 367381 (2020).

Article CAS PubMed Google Scholar

Dhungel, B. P., Bailey, C. G. & Rasko, J. E. J. Journey to the center of the cell: tracing the path of AAV transduction. Trends Mol. Med. 27, 172184 (2021).

Article CAS PubMed Google Scholar

Woodard, K. T., Liang, K. J., Bennett, W. C. & Samulski, R. J. Heparan sulfate binding promotes accumulation of intravitreally delivered adeno-associated viral vectors at the retina for enhanced transduction but weakly influences tropism. J. Virol. 90, 98789888 (2016).

Article CAS PubMed PubMed Central Google Scholar

Shen, S., Bryant, K. D., Brown, S. M., Randell, S. H. & Asokan, A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J. Biol. Chem. 286, 1353213540 (2011).

Article CAS PubMed PubMed Central Google Scholar

Pillay, S. et al. An essential receptor for adeno-associated virus infection. Nature 530, 108112 (2016).

Article CAS PubMed PubMed Central Google Scholar

Dudek, A. M. et al. An alternate route for adeno-associated virus (AAV) entry independent of AAV receptor. J. Virol. 92, e02213e02217 (2018).

Article PubMed PubMed Central Google Scholar

Berry, G. E. & Asokan, A. Cellular transduction mechanisms of adeno-associated viral vectors. Curr. Opin. Virol. 21, 5460 (2016).

Article CAS PubMed PubMed Central Google Scholar

Schultz, B. R. & Chamberlain, J. S. Recombinant adeno-associated virus transduction and integration. Mol. Ther. 16, 11891199 (2008).

Article CAS PubMed Google Scholar

Sonntag, F., Bleker, S., Leuchs, B., Fischer, R. & Kleinschmidt, J. A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 80, 1104011054 (2006).

Article CAS PubMed PubMed Central Google Scholar

Xiao, P. J. & Samulski, R. J. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J. Virol. 86, 1046210473 (2012).

Article CAS PubMed PubMed Central Google Scholar

Nicolson, S. C. & Samulski, R. J. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J. Virol. 88, 41324144 (2014).

Article PubMed PubMed Central Google Scholar

Kelich, J. M. et al. Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol. Ther. Methods Clin. Dev. 2, 15047 (2015).

Article PubMed PubMed Central Google Scholar

Excerpt from:
Adeno-associated virus as a delivery vector for gene therapy of human diseases | Signal Transduction and Targeted ... - Nature.com

Adeno-associated virus: The gene therapy revolution faces manufacturing and safety hurdles – News-Medical.Net

In a recent review published in Signal Transduction and Targeted Therapy, researchers presented recombinant adeno-associated virus (rAAV)-based genetic applications to treat human diseases.

Study:Adeno-associated virus as a delivery vector for gene therapy of human diseases. Image Credit:Gorodenkoff/Shutterstock.com

Adeno-associated virus (AAV) is a crucial component of clinical gene therapy due to its low pathogenicity and capacity to generate long-term gene expression in various tissues. Recombinant AAV (rAAV) is designed to increase specificity and can cure several illnesses.

However, concerns persist concerning the safety of high-dose viral therapy in people, as well as immune responses and side effects. Researchers prefer AAV vectors due to their broad tissue tropism, high safety profile, and adaptability in manufacturing procedures.

In the present review, researchers explored AAV-vectored genetic treatment of human disorders.

AAV-1, 4, and 7,8 originate from non-human primates (NHP), while AAV-2, 3, 5, 6, and 9 originate from humans. Primary receptors for cellular attachment include N-linked sialic acid, O-linked sialic acid, HSPG, and galactose.

Co-receptors for cellular attachment include fibroblast growth factor receptor 1 (FGFR1), hepatocyte growth factor receptor (HGFR), laminin receptor (LamR), a cluster of differentiation 9 (CD9), tetraspanin, platelet-derived growth factor receptor (PDGFR), and epidermal growth factor receptor (EGFR).

Receptors for post-attachment for AAVs include the adeno-associated virus receptor (AAVR) and G protein-coupled receptor 108 (GPR108).

AAVs localize in the skeletal muscle, central nervous system (CNS), lungs, retina, liver, pancreas, kidney, and heart.

Natural AAV mutants are isolated from non-human primates and humans using high-cycle polymerase chain reaction (PCR) with high-throughput genetic sequencing. Rational design entails altering amino acid molecules in AAV capsids to boost transduction capabilities or elude immune surveillance.

The directed evolution engineering strategy is used to create unique AAV variations with specificity. In silico techniques, known as AAV capsid sequences, they are used to rebuild ancestral sequences of the virus.

Machine learning uses mutagenized AAV-transduced data to predict the link between AAV genome sequences, packing capacities, and site tropism.

Viral infection and transfection platforms are primarily used to manufacture rAAVs. Plasmid temporary transfection of the human embryonic kidney 293 (HEK293) cell lines continues to be the most often used approach; however, stable cellular lines and systems using baculovirus (BV) or herpes simplex virus (HSV) provide scalable options for scalable manufacturing.

TESSA, a transfection-free system of helper viruses, was designed to generate high-yield recombinant AAVs.

All-in-one producer cells that can be induced pharmaceutically might be the best production platform to obtain recombinant AAV-based pharmaceuticals in the future.

Recombinant AAV gene therapy is effective in treating a wide range of human diseases, including ocular (X-linked retinoschisis pigmentosa, choroideremia, Leber hereditary optic neuropathy), neurological (Alzheimers disease, Parkinsons disease, Huntingtons disease), metabolic (glycogen storage disease, mucopolysaccharidosis, Pompe disease, and Fabry disease), hematological (Hemophilia A, B), neuromuscular (Duchenne muscular dystrophy), cardiovascular (ischemic cardiomyopathy, dilated cardiomyopathy, and congestive heart failure), and gastric cancer.

The ocular immune-privileged condition and tiny volume make it ideal for gene therapy, with various delivery options available. FDA-approved rAAV gene treatments for neurological diseases employ stereotactic, physically limited delivery or extensive CNS transduction by intravenous (IV) administration.

In cellular hematologic circumstances, bone marrow stem cells dilute the rAAV genome, releasing acellular components into the circulation. Recombinant AAV has shown promise in preclinical cancer investigations, but its application to individuals is restricted.

Anti-tumor techniques based on rAAV provide advantages such as regulating or inhibiting gene expression.

Delivery routes determine the performance of rAAV capsids, including intravascular, direct intra-tissue injection, and distribution into pre-existing body cavities or fluid spaces. Each route and capsid is selected based on the ailment, target location, organ system, and patient age.

Intravascular injection enables extensive transduction, although large dosages are necessary. The intra-tissue injection is invasive and confined, whereas intra-cavity administration is distributed in an already established space but may be limited. Intra-fluid delivery has drawbacks, including long vector transit distances.

Recombinant AAV administration, including serotypes, promoters, and enhancers, can cause side effects such as genotoxicity, carcinogenesis, liver damage, thrombotic microangiopathy, and microvascular thrombosis.

Intravenous administration can result in hepatotoxicity, increased liver enzymes, and drug-induced liver damage. Intravenous treatment may result in dorsal root ganglion toxicity, immune cell infiltration, and nerve cell body degeneration.

Edema, inflammation, gliosis, and immunological infiltration are observed on brain magnetic resonance imaging (MRI) scans following intrathecal and intraparenchymal rAAV injections.

The review highlights rAAV-based gene therapy applications for human illnesses. Early success in treating monogenic disorders demonstrated its safety and efficacy.

Challenges include effective delivery, overcoming physical constraints, and understanding rAAV immunogenicity. Strategies for regulating immune responses are critical for patient safety.

Understanding rAAV integration aids in predicting tumor growth, hepatotoxicity, neurotoxicity, and adverse consequences. Further research could assess vector immunogenicity, dosage optimization, and long-term safety.

View original post here:
Adeno-associated virus: The gene therapy revolution faces manufacturing and safety hurdles - News-Medical.Net

Penn scientist Jim Wilson’s iECURE can start testing gene therapy in infants – The Philadelphia Inquirer

A company started by University of Pennsylvania scientist Jim Wilson has received FDA approval to test a form of gene editing in infants for the first time in the United States, the company said Thursday.

The Plymouth Meeting company, iECURE, is developing a treatment for babies whose livers are unable to make a crucial enzyme.

Infants born with a severe form of the illness can lapse into a coma within a day or two of birth, their brains damaged by a buildup of ammonia. Some die soon thereafter; the rest have little recourse beyond a liver transplant.

This is the same disease that Wilson was studying in a high-profile test that resulted in a patient death in 1999. The patient in that case, Jesse Gelsinger, had a mild form of the disease. The 18-year-old died after his body rejected the virus used to deliver the treatment.

In Wilsons new approach with iECURE, the gene is delivered with a different type of virus that does not trigger the immune system a delivery method that he already has licensed for use in several other drugs.

The treatment had previously been approved for testing in the United Kingdom and Australia, iECURE said. The company is enrolling boys up to 9 months old.

This milestone is the culmination of over 8 years of pre-clinical research in my laboratory addressing gene editing strategies for severe rare liver metabolic diseases, Wilson said in a news release.

Founded in 2022, iECURE raised $65 million from venture capitalists in late 2022. That was during a period of waning investor enthusiasm for cell and gene therapy companies.

Both Penn and Wilson have an unspecified financial interest in iECURE.

See original here:
Penn scientist Jim Wilson's iECURE can start testing gene therapy in infants - The Philadelphia Inquirer

Seven diseases that CRISPR technology could cure – Labiotech.eu

CRISPR technology offers the promise to cure human genetic diseases with gene editing. This promise became a reality when the worlds first CRISPR therapy was approved by regulators to treat patients with sickle cell disease and beta-thalassemia last year.

American biopharma Vertex Pharmaceuticals CASGEVY works by turning on the BCL11A gene, which codes for fetal hemoglobin. While this form of hemoglobin is produced before a baby is born, the body begins to deactivate the gene after birth. As both sickle cell disease and beta-thalassemia are blood disorders that affect hemoglobin, by switching on the gene responsible for fetal hemoglobin production, CASGEVY presents a curative, one-time treatment for patients.

As CASGEVYs clearance is a significant milestone, the technology has come a long way. CRISPR/Cas9 was first used as a gene-editing tool in 2012. Over the years, the technology exploded in popularity thanks to its potential for making gene editing faster, cheaper, and easier than ever before.

CRISPR is short for clustered regularly interspaced short palindromic repeats. The term makes reference to a series of repetitive patterns found in the DNA of bacteria that form the basis of a primitive immune system, defending them from viral invaders by cutting their DNA.

Using this natural process as a basis, scientists developed a gene-editing tool called CRISPR/Cas that can cut a specific DNA sequence by simply providing it with an RNA template of the target sequence. This allows scientists to add, delete, or replace elements within the target DNA sequence. Slicing a specific part of a genes DNA sequence with the help of the Cas9 enzyme, aids in DNA repair.

This system represented a big leap from previous gene-editing technologies, which required designing and making a custom DNA-cutting enzyme for each target sequence rather than simply providing an RNA guide, which is much simpler to synthesize.

CRISPR gene editing has already changed the way scientists do research, allowing a wide range of applications across multiple fields. Here are some of the diseases that scientists aim to tackle using CRISPR/Cas technology, testing its possibilities and limits as a medical tool.

Cancer is a complex, multifactorial disease, and a cure remains elusive. There are hundreds of different types of cancer, each with a unique mutation signature. CRISPR technology is a game-changer for cancer research and treatment as it can be used for many things, including screening for cancer drivers, identifying genes and proteins that can be targeted by cancer drugs, cancer diagnostics, and as a treatment.

China spearheaded the first in-human clinical trials using CRISPR/Cas9 as a cancer treatment. The study tested the use of CRISPR to modify immune T cells extracted from a patient with late-stage lung cancer. The gene-editing technology was used to remove the gene that encodes for a protein called PD-1 that some tumor cells can bind to to block the immune response against cancer. This protein found on the surface of immune cells is the target of some cancer drugs termed checkpoint inhibitors.

CRISPR technology has also been applied to improve the efficacy and safety profiles of cancer immunotherapy, such as CAR-T cell and natural killer cell therapies. In the U.S., CRISPR Therapeutics is one of the leading companies in this space, developing off-the-shelf, gene-edited T cell therapies using CRISPR, with two candidates targeting CD19 and CD70 proteins in clinical trials.

In 2022, the FDA granted Orphan Drug designation to Intellia Therapeutics CRISPR/Cas9-gene-edited T cell therapy for acute myeloid leukemia (AML). Currently, Vor BioPharmas VOR33 is undergoing phase 2 trials to treat AML, and the CRISPR trial is one to watch, according to a report published by Clinical Trials Arena earlier this year.

However, CRISPR technology still has limitations, including variable efficiency in the genome-editing process and off-target effects. Some experts have recommended that the long-term safety of the approach remain under review. Others have suggested using more precise gene-editing approaches such as base editing, an offshoot of CRISPR that hit the clinic in the U.S. last year.

There are several ways CRISPR could help us in the fight against AIDS. One is using CRISPR to cut the viral DNA that the HIV virus inserts within the DNA of immune cells. This approach could be used to attack the virus in its hidden, inactive form, which is what makes it impossible for most therapies to completely get rid of the virus.

The first ever patient with HIV was dosed with a CRISPR-based gene-editing therapy in a phase 1/2 trial led by Excision Biotherapeutics and researchers at the Lewis Katz School of Medicine at Temple University in Philadelphia back in 2022.

The decision to move the therapy to the clinic was bolstered by the success of an analog of the drug EBT-101 called EBT-001 in rhesus macaques infected with simian immunodeficiency virus (SIV). In a phase 1/2 study, EBT-101 was found to be safe.

Another approach could make us resistant to HIV infections. A small percentage of the worlds population is born with a natural resistance to HIV, thanks to a mutation in a gene known as CCR5, which encodes for a protein on the surface of immune cells that HIV uses as an entry point to infect the cells. The mutation changes the structure of the protein so that the virus is no longer able to bind to it.

This approach was used in a highly controversial case in China in 2018, where human embryos were genetically edited to make them resistant to HIV infections. The experiment caused outrage among the scientific community, with some studies pointing out that the CRISPR babies might be at a higher risk of dying younger.

The general consensus seems to be that more research is needed before this approach can be used in humans, especially as recent studies have pointed out this practice can have a high risk of unintended genetic edits in embryos.

Cystic fibrosis is a genetic disease that causes severe respiratory problems. Cystic fibrosis can be caused by multiple different mutations in the target gene CFTR more than 700 of which have been identified making it difficult to develop a drug for each mutation. With CRISPR technology, mutations that cause cystic fibrosis can be individually edited.

In 2020, researchers in the Netherlands used base editing to repair CFTR mutations in vitro in the cells of people with cystic fibrosis without creating damage elsewhere in their genetic code. Moreover, aiming to strike again with yet another win is the duo Vertex Pharmaceuticals and CRISPR Therapeutics, which have collaborated to develop a CRISPR-based medicine for cystic fibrosis. However, it might be a while until it enters the clinic as it is currently in the research phase.

Duchenne muscular dystrophy is caused by mutations in the DMD gene, which encodes for a protein necessary for the contraction of muscles. Children born with this disease experience progressive muscle degeneration, and existing treatments are limited to a fraction of patients with the condition.

Research in mice has shown CRISPR technology could be used to fix the multiple genetic mutations behind the disease. In 2018, a group of researchers in the U.S. used CRISPR to cut at 12 strategic mutation hotspots covering the majority of the estimated 3,000 different mutations that cause this muscular disease. Following this study, Exonics Therapeutics was spun out to further develop this approach, which was then acquired by Vertex Pharmaceuticals for approximately $1 billion to accelerate drug development for the disorder. Currently, Vertex is in the research stage, and is on a mission to restore dystrophin protein expression by targeting mutations in the dystrophin gene.

However, a CRISPR trial run by the Boston non-profit Cure Rare Disease targeting a rare DMD mutation resulted in the death of a patient owing to toxicity back in November 2022. Further research is needed to ensure the safety of the drug to treat the disease.

Huntingtons disease is a neurodegenerative condition with a strong genetic component. The disease is caused by an abnormal repetition of a certain DNA sequence within the huntingtin gene. The higher the number of copies, the earlier the disease will manifest itself.

Treating Huntingtons can be tricky, as any off-target effects of CRISPR in the brain could have very dangerous consequences. To reduce the risk, scientists are looking at ways to tweak the genome-editing tool to make it safer.

In 2018, researchers at the Childrens Hospital of Philadelphia revealed a version of CRISPR/Cas9 that includes a self-destruct button. A group of Polish researchers opted instead for pairing CRISPR/Cas9 with an enzyme called nickase to make the gene editing more precise.

More recently, researchers at the University of Illinois Urbana-Champaign used CRISPR/Cas13, instead of Cas9, to target and cut mRNA that codes for the mutant proteins responsible for Huntingtons disease. This technique silences mutant genes while avoiding changes to the cells DNA, thereby minimizing permanent off-target mutations because RNA molecules are transient and degrade after a few hours.

In addition, a 2023 study published in Nature went on to prove that treatment of Huntingtons disease in mice delayed disease progression and that it protected certain neurons from cell death in the mice.

With CASGEVYs go-ahead to treat transfusion-dependent beta-thalassemia and sickle cell disease in patients aged 12 and older, this hints that CRISPR-based medicines could even be a curative therapy to treat other blood disorders like hemophilia.

Hemophilia is caused by mutations that impair the activity of proteins that are required for blood clotting. Although Intellia severed its partnership with multinational biopharma Regeneron to advance its CRISPR candidate for hemophilia B a drug that was recently cleared by the FDA to enter the clinic the latter will take the drug ahead on its own.

As hemophilia B is caused by mutations in the F9 gene, which encodes a clotting protein called factor IX (FIX), Regenerons drug candidate uses CRISPR/Cas9 gene editing to place a copy of the F9 gene in cells in order to get the taps running for FIX production.

The two biopharmas will continue their collaboration in developing their CRISPR candidate to treat hemophilia A, which manifests as excessive bleeding because of a deficit of factor VIII. The therapy is currently in the research phase.

While healthcare companies were creating polymerase chain reaction (PCR) tests to screen for COVID-19 in the wake of the pandemic, CRISPR was also being put to use for speedy screening. A study conducted by researchers in China in 2023, found that the CRISPR-SARS-CoV-2 test had a comparable performance with RT-PCR, but it did have several advantages like short assay time, low cost, and no requirement for expensive equipment, over RT-PCRs.

To add to that, the gene editing tool could fight COVID-19 and other viral infections.

For instance, scientists at Stanford University developed a method to program a version of the gene editing technology known as CRISPR/Cas13a to cut and destroy the genetic material of the virus behind COVID-19 to stop it from infecting lung cells. This approach, termed PAC-MAN, helped reduce the amount of virus in solution by more than 90 percent.

Another research group at the Georgia Institute of Technology used a similar approach to destroy the virus before it enters the cell. The method was tested in live animals, improving the symptoms of hamsters infected with COVID-19. The treatment also worked on mice infected with influenza, and the researchers believe it could be effective against 99 percent of all existing influenza strains.

As European, U.S., and U.K. regulators have given their stamp of approval for the first-ever CRISPR-based drug to treat patients, who is to say we wont see another CRISPR-drug hitting this milestone in the near future.

And apart from the diseases mentioned, CRISPR is also being studied to treat other conditions like vision and hearing loss. In blindness caused by mutations, CRISPR gene editing could eliminate mutated genes in the DNA and replace them with normal versions of the genes. Researchers have also demonstrated how getting rid of the mutations in the Atp2b2 and Tmc1 genes helped partially restore hearing.

However, one of the biggest challenges to turn CRISPR research into real cures is the many unknowns regarding the potential risks of CRISPR therapy. Some scientists are concerned about possible off-target effects as well as immune reactions to the gene-editing tool. But as research progresses, scientists are proposing and testing a wide range of approaches to tweak and improve CRISPR in order to increase its efficacy and safety.

Hopes are high that CRISPR technology will soon provide a way to address complex diseases such as cancer and AIDS, and even target genes associated with mental health disorders.

New technologies related to CRISPR research:

This article was originally published in June 2018, and has since been updated by Roohi Mariam Peter.

Read more here:
Seven diseases that CRISPR technology could cure - Labiotech.eu

How CRISPR-Cas genome editing could be used to cure HIV – Cosmos

One of the most significant challenges in treating HIV is the virus ability to integrate its genome into the hosts DNA. This means that lifelong antiretroviral therapy is essential as latent HIV can reactivate from reservoirs as soon as treatment ends.

One potential technique being developed to address this problem is the use of gene editing technology to cut out and incapacitate HIV from infected cells. Currently, there is a Phase I/II Clinical Trial underway in people with HIV-1 (the most common strain of HIV)

Now, new research from another team shows that gene editing can be used to eliminate all traces of the HIV virus from infected cells in the laboratory.

The research is being presented early ahead of the European Congress of Clinical Microbiology and Infectious Diseases, which will be held from 27-30 April in Barcelona, Spain. Its been carried out by scientists from the Amsterdam Medical University in the Netherlands, and the Paul Ehrlich Institute in Germany, and has not yet been submitted for peer review.

Our aim is to develop a robust and safe combinatorial CRISPR-Cas regimen, striving for an inclusive HIV cure for all that can inactivate diverse HIV strains across various cellular contexts, they write in a conference abstract submitted ahead of ECCMID.

CRISPR-Cas gene editing technology acts like molecular scissors to cut DNA and either delete unwanted genes or introduce new genetic material, while guidance RNA (gRNA) tells CRISPR-Cas exactly where to cut at designated spots on the genome.

In this research, the authors used 2 gRNAs that target conserved parts of the viral genome this means they remain the same or conserved across all known HIV strains. This genetic sequence does not have a match in human genes, to prevent the system going off target and causing mutations elsewhere in the human genome.

The hope is to one day provide a broad-spectrum therapy capable of combating multiple HIV variants effectively. But before this dream can become a reality, the researchers had to address a number of issues with getting the CRISPR-Cas reagents into the right cells.

To delivered CRISPR components into cells in the body a viral vector, containing genes that code for the CRISPR-Cas proteins and gRNA, is used. This is the vehicle that delivers into the host cell the instructions to make all necessary components, but these instructions need to be kept as simple and short as possible.

Another issue is making sure the viral vector enters HIV reservoir cells specifically cells that express the receptors CD4+ and CD32a+ on their surface.

They found that in one system, saCas9, the vector size was minimised, which enhanced its delivery to HIV-infected cells. They also included proteins that target the CD4+ and CD32a+ receptors specifically in the vector.

This system showed outstanding antiviral performance, managing to completely inactivate HIV with a single guide RNA (gRNA) and excise (cut out) the viral DNA with two gRNAs in cells in the lab.

We have developed an efficient combinatorial CRISPR-attack on the HIV virus in various cells and the locations where it can be hidden in reservoirs and demonstrated that therapeutics can be specifically delivered to the cells of interest, the authors write.

These findings represent a pivotal advancement towards designing a cure strategy.

But the researchers stress that, while these preliminary findings are very encouraging, it is premature to declare that there is a functional HIV cure on the horizon.

See the original post:
How CRISPR-Cas genome editing could be used to cure HIV - Cosmos

Gene therapy offers hope for giant axonal neuropathy patients – UT Southwestern

Co-author Steven Gray, Ph.D., is Associate Professor of Pediatrics, Molecular Biology, Neurology, and in the Eugene McDermott Center for Human Growth and Development at UTSouthwestern.

DALLAS March27, 2024 A gene therapy developed by researchers at UTSouthwestern Medical Center for a rare disease called giant axonal neuropathy (GAN) was well tolerated in pediatric patients and showed clear benefits, a new study reports. Findings from the phase one clinical trial, published in the New England Journal of Medicine, could offer hope for patients with this rare condition and a host of other neurological diseases.

This trial was the first of its kind, for any disease, using an approach to broadly deliver a therapeutic gene to the brain and spinal cord by an intrathecal injection, said co-author Steven Gray, Ph.D., Associate Professor of Pediatrics, Molecular Biology, Neurology, and in the Eugene McDermott Center for Human Growth and Development at UTSouthwestern. Even with the relatively few patients in the study, there were clear and statistically significant benefits demonstrated in patients that persisted for years.

Dr. Gray developed this gene therapy with co-author Rachel Bailey, Ph.D., Assistant Professor in the Center for Alzheimers and Neurodegenerative Diseases and of Pediatrics at UTSW.Dr. Gray is an Investigator in thePeter ODonnell Jr. Brain Institute.

GAN is extraordinarily rare, affecting only about 75 known families worldwide. The disease is caused by mutations in a gene that codes for a protein called gigaxonin. Without normal gigaxonin, axons the long extensions of nerve cells swell and eventually degenerate, leading to cell death. The disease is progressive, typically starting within the first few years of a childs life with symptoms including clumsiness and muscle weakness. Patients later lose the ability to walk and feel sensations in their arms and legs, and many gradually lose hearing and sight and die by young adulthood.

In the clinical trial conducted at the National Institutes of Health (NIH), Drs. Gray and Bailey worked with colleagues from the National Institute of Neurological Disorders and Stroke (NINDS) to administer the therapy to 14 GAN patients from 6 to 14 years old. Using a technique they developed to package the gene for gigaxonin into a virus called adeno-associated virus 9 (AAV-9), the researchers injected it into the intrathecal space between the spinal cord and the thin, strong membrane that protects it. Tested for the first time for any disease, this approach enabled the virus to infect nerve cells in the spinal cord and brain to produce gigaxonin in nerve cells, allowing them to heal the cells axons, which grow throughout the body.

Amanda Grube, 14, one of the trial's participants, has seen improvement in her diaphragm and other muscles associated with breathing, her mother says. However, many of Amanda's other functions, including her mobility, did not benefit. (Photo credit: McKee family)

After one injection, the researchers followed the patients over a median of nearly six years to determine whether the treatment was safe and effective. Only one serious adverse event was linked to the treatment fever and vomiting that resolved in two days suggesting it was safe. Over time, some patients showed significant recovery on an assessment of motor function. Other measurements revealed that several of the patients improved in how their nerves transmitted electrical signals.

One of the trials participants, 14-year-old Amanda Grube, has experienced improvement in her diaphragm and other muscles associated with breathing, according to her mother, Katherine McKee. However, many of Amandas other functions did not benefit including her mobility.

Thats why I hope theres more to come from the research that can help patients even more,Mrs. McKee said. Amanda has dreams and ambitions. She wants to work with animals, save the homeless, and design clothes for people with disabilities.

Dr. Gray said that in many ways, the study offers a road map to carry out similar types of clinical trials. The findings have broader implications because this study established a general gene therapy treatment approach that is already being applied to dozens more diseases, he said.

Although the phase one results are promising, Dr. Gray said he and other researchers will continue to fine-tune the treatment to improve results in future GAN clinical trials. He is also using this method for delivering gene therapies to treat other neurological diseases at UTSW, where he is Director of the Translational Gene Therapy Core, and at Childrens Health. Work in theGray Labhas already led to clinical trials for diseases including CLN1 Batten disease, CLN5 Batten disease, CLN7 Batten disease, GM2 gangliosidosis, spastic paraplegia type 50, and Rett syndrome.

The GAN study was funded by the National Institute of Neurological Disorders and Stroke (NINDS), Division of Intramural Research, NIH; Hannahs Hope Fund; Taysha Gene Therapies; and Bamboo Therapeutics-Pfizer.

Drs. Bailey and Gray are entitled to royalties from Taysha Gene Therapies. Dr. Gray has also consulted for Taysha and serves as Chief Scientific Adviser.

About UTSouthwestern Medical Center

UTSouthwestern, one of the nations premier academic medical centers, integrates pioneering biomedical research with exceptional clinical care and education. The institutions faculty members have received six Nobel Prizes and include 25 members of the National Academy of Sciences, 21 members of the National Academy of Medicine, and 13 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 3,100 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UTSouthwestern physicians provide care in more than 80 specialties to more than 120,000 hospitalized patients, more than 360,000 emergency room cases, and oversee nearly 5 million outpatient visits a year.

Read the original post:
Gene therapy offers hope for giant axonal neuropathy patients - UT Southwestern

Archives