Posts Tagged ‘scholar’

CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy | Cancer Gene Therapy – Nature.com

Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:13748.

Article CAS PubMed Google Scholar

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:118.

Article Google Scholar

Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023;9:eadf3700.

Article CAS PubMed PubMed Central Google Scholar

Lemoine J, Ruella M, Houot R. Born to survive: how cancer cells resist CAR T cell therapy. J Hematol Oncol. 2021;14:199.

Article PubMed PubMed Central Google Scholar

Rodrigo S, Senasinghe K, Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med Oncol. 2023;40:81.

Article CAS PubMed PubMed Central Google Scholar

Tomasik J, Jasiski M, Basak GW. Next generations of CAR-T cells - new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707.

Article CAS PubMed PubMed Central Google Scholar

Zhu X, Li Q, Zhu X. Mechanisms of CAR T cell exhaustion and current counteraction strategies. Front Cell Dev Biol. 2022;10:1034257.

Article PubMed PubMed Central Google Scholar

Ren P, Zhang C, Li W, Wang X, Liang A, Yang G, et al. CAR-T therapy in clinical practice: technical advances and current challenges. Adv Biol (Weinh). 2022;6:e2101262.

Article PubMed Google Scholar

Verma NK, Wong BHS, Poh ZS, Udayakumar A, Verma R, Goh RKJ, et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine. 2022;83:104216.

Article CAS PubMed PubMed Central Google Scholar

Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-Generation CAR T-cell therapies. Cancer Discov. 2022;12:162533.

Article CAS PubMed PubMed Central Google Scholar

Shen C, Zhang Z, Zhang Y. Chimeric antigen receptor T cell exhaustion during treatment for hematological malignancies. Biomed Res Int. 2020;2020:8765028.

Article PubMed PubMed Central Google Scholar

McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:45795.

Article CAS PubMed Google Scholar

Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell. 2017;31:31125.

Article CAS PubMed PubMed Central Google Scholar

Cheng H, Ma K, Zhang L, Li G. The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells. Cancer Lett. 2021;506:5566.

Article CAS PubMed Google Scholar

Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941.

Article CAS PubMed PubMed Central Google Scholar

Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone Is sufficient to drive CD8+ T cell exhaustion. J Immunol. 2009;182:6697708.

Article CAS PubMed Google Scholar

Yin Z, Bai L, Li W, Zeng T, Tian H, Cui J. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. J Exp Clin Cancer Res. 2019;38:403.

Article PubMed PubMed Central Google Scholar

Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 2020;78:101933.

Article CAS PubMed PubMed Central Google Scholar

Peng HY, Lucavs J, Ballard D, Das JK, Kumar A, Wang L, et al. Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol. 2021;12:652687.

Article CAS PubMed PubMed Central Google Scholar

Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Invest. 2022;132:e148549.

Article CAS PubMed PubMed Central Google Scholar

Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00017.

Wang S, Wu J, Shen H, Wang J. The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis. BMC Cancer. 2020;20:471.

Article CAS PubMed PubMed Central Google Scholar

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:12144.

Article CAS PubMed PubMed Central Google Scholar

Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, et al. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol. 2022;13:979116.

Article CAS PubMed PubMed Central Google Scholar

Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol. 2023;44:23144.

Article CAS PubMed Google Scholar

Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:4929.

Article CAS PubMed Google Scholar

Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining T cell exhaustion . Nat Rev Immunol. 2019;19:66574.

Article CAS PubMed PubMed Central Google Scholar

Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15:1.

Article PubMed PubMed Central Google Scholar

Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T Cell Exhaustion. Front Immunol. 2015;6:310.

Article PubMed PubMed Central Google Scholar

Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol. 2022;15:38.

Article CAS PubMed PubMed Central Google Scholar

Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol. 2017;102:60115.

Article CAS PubMed PubMed Central Google Scholar

Seo H, Chen J, Gonzlez-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc Natl Acad Sci USA. 2019;116:124105.

Article CAS PubMed PubMed Central Google Scholar

Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications. Front Immunol. 2023;14:1104771.

Article CAS PubMed PubMed Central Google Scholar

Fujiwara Y, Kato T, Hasegawa F, Sunahara M, Tsurumaki Y. The past, present, and future of clinically applied chimeric antigen receptor-T-cell therapy. Pharm (Basel). 2022;15:207.

CAS Google Scholar

Watanabe N, Mo F, McKenna MK. Impact of manufacturing procedures on CAR T cell functionality. Front Immunol. 2022;13:876339.

Article CAS PubMed PubMed Central Google Scholar

Zhang Y, Xu Y, Dang X, Zhu Z, Qian W, Liang A, et al. Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chin Med J (Engl). 2023;136:26979.

Article CAS PubMed Google Scholar

Zhou Z, Tao C, Li J, Tang JCO, Chan ASC, Zhou Y. Chimeric antigen receptor T cells applied to solid tumors. Front Immunol. 2022;13:984864.

Article CAS PubMed PubMed Central Google Scholar

Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022;19:77590.

Article PubMed PubMed Central Google Scholar

Hosseinkhani N, Derakhshani A, Kooshkaki O, Abdoli Shadbad M, Hajiasgharzadeh K, Baghbanzadeh A, et al. Immune checkpoints and CAR-T cells: the pioneers in future cancer therapies? Int J Mol Sci. 2020;21:8305.

Article CAS PubMed PubMed Central Google Scholar

Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett. 2018;423:95104.

Article CAS PubMed Google Scholar

Gonzlez Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int J Mol Sci. 2021;22:10355.

Article PubMed PubMed Central Google Scholar

Gonzlez-Romero E, Martnez-Valiente C, Garca-Ruiz C, Vzquez-Manrique RP, Cervera J, Sanjuan-Pla A. CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 2019;104:88193.

Article PubMed PubMed Central Google Scholar

Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014;5:43.

Article PubMed PubMed Central Google Scholar

Hirakawa MP, Krishnakumar R, Timlin JA, Carney JP, Butler KS. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep. 2020;40:BSR20200127.

Article CAS PubMed PubMed Central Google Scholar

Khan A, Sarkar E. CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat Res Commun. 2022;33:100641.

Article PubMed Google Scholar

Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367:7365.

Article Google Scholar

Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26:73240.

Article CAS PubMed Google Scholar

Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, et al. Novel CRISPRCas systems: an updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 24 mars. 2021;22:3327.

Article CAS Google Scholar

Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:35361.

PubMed PubMed Central Google Scholar

Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283:121831.

Article CAS PubMed Google Scholar

Pickar-Oliver A, Gersbach CA. The next generation of CRISPRCas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490507.

Read the original here:
CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy | Cancer Gene Therapy - Nature.com

Addition of ruxolitinib to standard graft-versus-host disease prophylaxis for allogeneic stem cell transplantation in … – Nature.com

Georges GE, Doney K, Storb R. Severe aplastic anemia: allogeneic bone marrow transplantation as first-line treatment. Blood Adv. 2018;2:20208.

Article CAS PubMed PubMed Central Google Scholar

Zhao J, Ma L, Zheng M, Su L, Guo X. Meta-analysis of the results of haploidentical transplantation in the treatment of aplastic anemia. Ann Hematol. 2023;102:256587.

Article CAS PubMed Google Scholar

Esteves I, Bonfim C, Pasquini R, Funke V, Pereira NF, Rocha V, et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: a multicenter retrospective study. Bone Marrow Transplant. 2015;50:6859.

Article CAS PubMed Google Scholar

Xu LP, Jin S, Wang SQ, Xia LH, Bai H, Gao SJ, et al. Upfront haploidentical transplant for acquired severe aplastic anemia: registry-based comparison with matched related transplant. J Hematol Oncol. 2017;10:25.

Article PubMed PubMed Central Google Scholar

Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799807.

Article CAS PubMed PubMed Central Google Scholar

Mart-Carvajal AJ, Anand V, Sol I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015;2015:CD010298.

PubMed PubMed Central Google Scholar

Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:383242.

Article CAS PubMed Google Scholar

Schroeder MA, Choi J, Staser K, DiPersio JF. The role of Janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol Blood Marrow Transplant. 2018;24:112534.

Article CAS PubMed Google Scholar

Hechinger AK, Smith BA, Flynn R, Hanke K, McDonald-Hyman C, Taylor PA, et al. Therapeutic activity of multiple common -chain cytokine inhibition in acute and chronic GVHD. Blood. 2015;125:57080.

Article CAS PubMed PubMed Central Google Scholar

Choi J, Ziga ED, Ritchey J, Collins L, Prior JL, Cooper ML, et al. IFNR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120:4093103.

Article CAS PubMed PubMed Central Google Scholar

Carniti C, Gimondi S, Vendramin A, Recordati C, Confalonieri D, Bermema A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015;21:37409.

Article CAS PubMed Google Scholar

Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med. 2020;382:180010.

Article PubMed Google Scholar

Zeiser R, Polverelli N, Ram R, Hashmi SK, Chakraverty R, Middeke JM, et al. Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease. N Engl J Med. 2021;385:22838.

Article CAS PubMed Google Scholar

Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:20628.

Article CAS PubMed PubMed Central Google Scholar

Krger N, Shahnaz Syed Abd Kadir S, Zabelina T, Badbaran A, Christopeit M, Ayuk F. et al. Peritransplantation ruxolitinib prevents acute graft-versus-host disease in patients with myelofibrosis undergoing allogenic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24:21526.

Article PubMed Google Scholar

Gooptu M, Antin JH. GVHD prophylaxis 2020. Front Immunol. 2021;12:605726.

Article CAS PubMed PubMed Central Google Scholar

Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytom B Clin Cytom. 2010;78:21130.

Article Google Scholar

Donohue RE, Marcogliese AN, Sasa GS, Elghetany MT, Redkar AA, Bertuch AA, et al. Standardized high-sensitivity flow cytometry testing for paroxysmal nocturnal hemoglobinuria in children with acquired bone marrow failure disorders: a single center US study. Cytom B Clin Cytom. 2018;94:699704.

Article CAS Google Scholar

Zhang Y, Huo J, Liu L, Shen Y, Chen J, Zhang T, et al. Comparison of hematopoietic stem cell transplantation outcomes using matched sibling donors, haploidentical donors, and immunosuppressive therapy for patients with acquired aplastic anemia. Front Immunol. 2022;13:837335.

Article CAS PubMed PubMed Central Google Scholar

Han TT, Xu LP, Liu DH, Liu KY, Wang FR, Wang Y, et al. Recombinant human thrombopoietin promotes platelet engraftment after haploidentical hematopoietic stem cell transplantation: a prospective randomized controlled trial. Ann Hematol. 2015;94:11728.

Article CAS PubMed Google Scholar

Tang B, Huang L, Liu H, Cheng S, Song K, Zhang X, et al. Recombinant human thrombopoietin promotes platelet engraftment after umbilical cord blood transplantation. Blood Adv. 2020;4:382939.

Article CAS PubMed PubMed Central Google Scholar

Chinese Society of Hematology, Chinese Medical Association. [Chinese expert consensus on the management of hemorrhagic complications after hematopoietic stem cell transplantation(2021)]. Zhonghua Xue Ye Xue Za Zhi. 2021;42:27680.

Wang J, Zhou M, Xu JY, Zhou RF, Chen B, Wan Y. Comparison of antifungal prophylaxis drugs in patients with hematological disease or undergoing hematopoietic stem cell transplantation: a systematic review and network meta-analysis. JAMA Netw Open. 2020;3:e2017652.

Article PubMed PubMed Central Google Scholar

Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:8258.

CAS PubMed Google Scholar

Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11:94556.

Article PubMed Google Scholar

Champlin RE, Horowitz MM, van Bekkum DW, Camitta BM, Elfenbein GE, Gale RP, et al. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood. 1989;73:60613.

Article CAS PubMed Google Scholar

Lin F, Han T, Zhang Y, Cheng Y, Xu Z, Mo X, et al. The incidence, outcomes, and risk factors of secondary poor graft function in haploidentical hematopoietic stem cell transplantation for acquired aplastic anemia. Front Immunol. 2022;13:896034.

Article CAS PubMed PubMed Central Google Scholar

McLornan DP, Hernandez-Boluda JC, Czerw T, Cross N, Joachim Deeg H, Ditschkowski M, et al. Allogeneic haematopoietic cell transplantation for myelofibrosis: proposed definitions and management strategies for graft failure, poor graft function and relapse: best practice recommendations of the EBMT Chronic Malignancies Working Party. Leukemia. 2021;35:244559.

Article PubMed Google Scholar

Li J, Wang Y, Zhang Y, Zhang X, Pang A, Yang D, et al. Haematopoietic stem cell transplantation for hepatitis-associated aplastic anaemia and non-hepatitis-associated aplastic anaemia: a propensity score-matched analysis. Br J Haematol. 2023;201:117991.

Article PubMed Google Scholar

Aggarwal N, Manley AL, Chen J, Groarke EM, Feng X, Young NS. Effects of ruxolitinib on murine regulatory T cells are immune-context dependent. Exp Hematol. 2023;125126:169.

Article PubMed Google Scholar

Xu ZL, Huang XJ. Optimizing outcomes for haploidentical hematopoietic stem cell transplantation in severe aplastic anemia with intensive GVHD prophylaxis: a review of current findings. Expert Rev Hematol. 2021;14:44955.

Article CAS PubMed Google Scholar

Williams L, Cirrone F, Cole K, Abdul-Hay M, Luznik L, Al-Homsi AS. Post-transplantation cyclophosphamide: from HLA-haploidentical to matched-related and matched-unrelated donor blood and marrow transplantation. Front Immunol. 2020;11:636.

Article CAS PubMed PubMed Central Google Scholar

Bourgeois AL, Jullien M, Garnier A, Peterlin P, Bn MC, Guillaume T, et al. Post-transplant cyclophosphamide as sole GHVD prophylaxis after matched reduced-intensity conditioning allotransplant. Clin Transl Med. 2023;13:e1242.

Article CAS PubMed PubMed Central Google Scholar

Prata PH, Eikema DJ, Afansyev B, Bosman P, Smiers F, Diez-Martin JL, et al. Haploidentical transplantation and posttransplant cyclophosphamide for treating aplastic anemia patients: a report from the EBMT Severe Aplastic Anemia Working Party. Bone Marrow Transplant. 2020;55:10508.

Article CAS PubMed Google Scholar

Chang YJ, Zhao XY, Huang XJ. Granulocyte colony-stimulating factor-primed unmanipulated haploidentical blood and marrow transplantation. Front Immunol. 2019;10:2516.

Article CAS PubMed PubMed Central Google Scholar

Yao D, Tian Y, Li J, Li B, Lu J, Ling J, et al. Association between haploidentical hematopoietic stem cell transplantation combined with an umbilical cord blood unit and graft-versus-host disease in pediatric patients with acquired severe aplastic anemia. Ther Adv Hematol. 2022;13:20406207221134409.

Article CAS PubMed PubMed Central Google Scholar

Xu ZL, Huang XJ. Haploidentical transplants with a G-CSF/ATG-based protocol: experience from China. Blood Rev. 2023;62:101035.

Article CAS PubMed Google Scholar

Xu LP, Lu DP, Wu DP, Jiang EL, Liu DH, Huang H, et al. Hematopoietic stem cell transplantation activity in China 20202021 during the SARS-CoV-2 pandemic: a report from the Chinese Blood and Marrow Transplantation Registry Group. Transplant Cell Ther. 2023;29:136 e1e7.

Article PubMed Google Scholar

Yoshimi A, Baldomero H, Horowitz M, Szer J, Niederwieser D, Gratwohl A, et al. Global use of peripheral blood vs bone marrow as source of stem cells for allogeneic transplantation in patients with bone marrow failure. JAMA. 2016;315:198200.

Article PubMed Google Scholar

Kennedy GA, Varelias A, Vuckovic S, Le Texier L, Gartlan KH, Zhang P, et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014;15:14519.

Article CAS PubMed Google Scholar

Chen YB, Shah NN, Renteria AS, Cutler C, Jansson J, Akbari M, et al. Vedolizumab for prevention of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019;3:413646.

Article CAS PubMed PubMed Central Google Scholar

Lin Y, Gu Q, Lu S, Pan Z, Yang Z, Li Y, et al. Ruxolitinib improves hematopoietic regeneration by restoring mesenchymal stromal cell function in acute graft-versus-host disease. J Clin Investig. 2023;133:e162201.

Ryu DB, Lim JY, Kim TW, Shin S, Lee SE, Park G, et al. Preclinical evaluation of JAK1/2 inhibition by ruxolitinib in a murine model of chronic graft-versus-host disease. Exp Hematol. 2021;98:3646.e2.

Article CAS PubMed Google Scholar

Hlsdnker J, Ottmller KJ, Neeff HP, Koyama M, Gao Z, Thomas OS, et al. Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood. 2018;131:185869.

Article PubMed PubMed Central Google Scholar

Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122:1192202.

Article CAS PubMed Google Scholar

Sylvine P, Thomas S, Pirayeh E. Infections associated with ruxolitinib: study in the French Pharmacovigilance database. Ann Hematol. 2018;97:9134.

Article PubMed Google Scholar

Abedin S, McKenna E, Chhabra S, Pasquini M, Shah NN, Jerkins J, et al. Efficacy, toxicity, and infectious complications in ruxolitinib-treated patients with corticosteroid-refractory graft-versus-host disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25:168994.

Article CAS PubMed Google Scholar

Hong X, Chen Y, Lu J, Lu Q. Addition of ruxolitinib in graft-versus-host disease prophylaxis for pediatric -Thalassemia major patients after allogeneic stem cell transplantation: a retrospective cohort study. Pediatr Transplant. 2023;27:e14466.

Article CAS PubMed Google Scholar

Zhang B, Chen L, Zhou J, Zu Y, Gui R, Li Z, et al. Ruxolitinib early administration reduces acute GVHD after alternative donor hematopoietic stem cell transplantation in acute leukemia. Sci Rep. 2021;11:8501.

Article CAS PubMed PubMed Central Google Scholar

Zhao Y, Shi J, Luo Y, Gao F, Tan Y, Lai X, et al. Calcineurin inhibitors replacement by ruxolitinib as graft-versus-host disease prophylaxis for patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2020;26:e128e33.

Article CAS PubMed Google Scholar

Morozova EV, Barabanshikova MV, Moiseev IS, Shakirova AI, Barhatov IM, Ushal IE, et al. A prospective pilot study of graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide and ruxolitinib in patients with myelofibrosis. Acta Haematol. 2021;144:15865.

Article CAS PubMed Google Scholar

See the rest here:
Addition of ruxolitinib to standard graft-versus-host disease prophylaxis for allogeneic stem cell transplantation in ... - Nature.com

Archives