Posts Tagged ‘project’

Gene Therapy Is Halting Cancer. Can It Work Against Brain Tumors? – UC San Francisco

A type of gene therapy called CAR-T that has extended survival for thousands of patients with leukemia and other blood cancers is being adapted at UC San Francisco to treat people with glioblastoma, the most common and deadly adult brain tumor.

This new more powerful version of CAR-T employs a novel technology developed at UCSF called synthetic notch (synNotch) that both protects healthy tissue from damage and enables the treatment to work more effectively.

Remove this text and use the embed button to add an image.

Approximately 12,000 Americans are diagnosed each year, with an average survival of just 15 months.

UCSF opened enrollment this week for a clinical trial that is using the technology for the first time in people. A second trial, also at UCSF, is slated for 2025.

Approximately 12,000 Americans are diagnosed each year with glioblastoma. Patients survive on average for just 15 months after their diagnosis, and new treatments are urgently needed.

This project is a prime example of bench-to-bed translation within UCSF, representing the strengths in basic and clinical science, said Hideho Okada, MD, PhD, a physician-scientist and director of the UCSF Brain Tumor Immunotherapy Center. We have a truly home-grown project here.

Okada has received up to $11 million for the first trial from the California Institute for Regenerative Medicine (CIRM), which funds stem cell and gene therapy research for incurable diseases and disorders through all stages of clinical trial development.

Initial funding for the second trial is provided by the National Cancer Institute Specialized Programs of Research Excellence (NCI SPORE).

We hope that the treatment will prolong lives for patients with glioblastoma, said Okada, who is a professor of neurosurgery at UCSF and a member of the Weill Institute for Neurosciences. However, the primary goal of the current phase 1 study is to ensure safety and characterize any toxicities.

When tested in mice, Okada said the therapy provided a robust and long-lasting result that was more remarkable than anything he had encountered during 30 years of brain tumor research.

The CIRM-funded trial will be led by principal investigator Jennifer Clarke, MD, MPH. It is open to patients with newly diagnosed glioblastoma, who have completed standard-of-care treatment. Tumors must have a mutation found in approximately 20% of glioblastomas, and that can be identified by the UCSF500 cancer gene panel test.

The second study will be open to glioblastoma patients whether or not they have the mutation.

CAR-T refers to chimeric antigen receptor T-cells, which are cancer-killing immune cells that have been extracted from the patient and genetically modified to recognize and destroy antigens that appear on the surface of cancer cells. These supercharged CAR-T cells are then infused back into the body to attack tumor cells.

For many patients with leukemia and other blood cancers, CAR-T has demonstrated long-term remission, but the approach hasnt worked against brain tumors. Glioblastoma cells are more diverse than blood cancer cells, and they can evade CAR-T. Many of the antigens made by the tumors are also found in healthy tissue, leaving them open to attack.

To overcome these obstacles, Okada drew from the synNotch system developed by Wendell Lim, PhD, director of the UCSF Cell Design Institute and professor in the UCSF Department of Cellular and Molecular Pharmacology.

The technology allowed scientists to program CAR-T cells to target specific antigens on tumor cells, without touching those found in healthy tissue. They also do not succumb to T-cell exhaustion, a common problem with CAR-T therapies, because they are more metabolically stable and use less energy to fight cancer longer.

Weve created a system that is flexible and thorough and addresses the major concerns weve had about using CAR-T cells against solid tumors, Lim said. These cells act like computers: integrating multiple units of information and making complex decisions.

About the California Institute for Regenerative Medicine (CIRM): AtCIRM, we never forget that we were created by the people of California to accelerate stem cell treatments to patients with unmet medical needs, and act with a sense of urgency to succeed in that mission. To meet this challenge, our team of highly trained and experienced professionals actively partners with both academia and industry in a hands-on, entrepreneurial environment to fast track the development of todays most promising stem cell technologies. With $5.5 billion in funding and more than 150 active stem cell programs in our portfolio,CIRMis one of the worlds largest institutions dedicated to helping people by bringing the future of cellular medicine closer to reality.

Read the rest here:
Gene Therapy Is Halting Cancer. Can It Work Against Brain Tumors? - UC San Francisco

New Genetic Analysis Tool Tracks Risks Tied to CRISPR Edits – University of California San Diego

The new Integrated Classifier Pipeline system uses genetic fingerprints to identify unintended bystander CRISPR edits. A confocal microscope image of an early blastoderm-stage nucleus in aDrosophila(fruit fly) embryo uses colorful fluorescent markers to highlight the homothorax gene undergoing transcription from two separate parental chromosomes (two distinct signal clusters). Credit: Bier Lab, UC San Diego

The ICP system can cleanly establish whether a given individual insect has inherited specific genetic components of the CRISPR machinery from either their mothers or fathers since maternal versus paternal transmission result in totally different fingerprints, said Bier, a professor in the UC San Diego School of Biological Sciences.

The ICP can help untangle complex biological issues that arise in determining the mechanisms behind CRISPR. While developed in insects, ICP carries vast potential for human applications.

There are many parallel applications of ICP for analyzing and following CRISPR editing outcomes in humans following gene therapy or during tumor progression, said study first author Li. This transformative flexible analysis platform has many possible impactful uses to ensure safe application of cutting-edge next-generation health technologies.

ICP also offers help in tracking inheritance across generations in gene drive systems, which are new technologies designed to spread CRISPR edits in applications such as stopping the transmission of malaria and protecting agricultural crops against pest destruction. For example, researchers could select a single mosquito from the field where a gene-drive test is being conducted and use ICP analysis to determine whether that individual had inherited the genetic construct from its mother or its father, and whether it had inherited a defective element lacking the defining visible markers of that genetic element.

The CRISPR editing system can be more than 90 percent accurate, said Bier, but since it edits over and over again it will eventually make a mistake. The bottom line is that the ICP system can give you a very high-resolution picture of what can go wrong.

In addition to Li and Bier, coauthors included Lang You and Anita Hermann. Prior Bier lab member Kosman also made important intellectual contributions to this project.

Funding for the study was provided primarily by an award from the Bill and Melinda Gates Foundation.

Competing interest disclosure: Bier has equity interest in two companies he co-founded: Agragene Inc. and Synbal Inc., which may potentially benefit from the research results. He also serves on Synbals board of directors and the scientific advisory boards for both companies.

Read this article:
New Genetic Analysis Tool Tracks Risks Tied to CRISPR Edits - University of California San Diego

Archives