Posts Tagged ‘management’

Cell Therapy Technologies market is projected to grow at a CAGR of 10.7% by 2034: Visiongain – GlobeNewswire

Visiongain has published a new report entitled Cell Therapy Technologies Market Report 2024-2034: Forecasts by Product (Sera, Media, Reagent, Cell Engineering Product, Cell Culture Vessels, Equipment, Systems and Software, Others), by Cell Type (T-Cells, Stem Cells, Other Cells), by Process (Cell Processing, Cell Preservation, Distribution, and Handling, Process Monitoring and Quality Control), by End-users (Biopharmaceutical & Biotechnology Companies, CROs, Research Institutes and Cell Banks) AND Regional and Leading National Market Analysis PLUS Analysis of Leading Companies AND COVID-19 Impact and Recovery Pattern Analysis.

The cell therapy technologies market is estimated at US$7,041.3 million in 2024 and is projected to grow at a CAGR of 10.7% during the forecast period 2024-2034.

The rise in chronic diseases like cancer, cardiovascular issues, and autoimmune disorders has created a pressing need for effective treatments. Supportive regulatory frameworks have encouraged the development & commercialization of cell therapies. Additionally, increased awareness and acceptance of these therapies among healthcare professionals and patients are driving demand further. Advancements in cell therapies offer lucrative opportunities for market players. Companies are focusing on enhancing the efficacy & safety of these therapies to provide better disease management outcomes for patients.

Download Exclusive Sample of Report https://www.visiongain.com/report/cell-therapy-technologies-market-2024/#download_sampe_div

How has COVID-19 had a Significant Impact on the Cell Therapy Technologies Market?

The COVID-19 pandemic has affected the market for cell therapy technologies market significantly. The pandemic initially caused significant disruptions to the manufacturing and supply chains of numerous industries, including the biotechnology sector. As a result, there were delays in cell therapy clinical trials, regulatory approvals, and commercialization initiatives. Furthermore, the shift in healthcare resources towards the management of the pandemic led to a reduction in funding and attention for medical research unrelated to COVID-19, such as the development of cell therapies.

However, the pandemic also made clear how crucial cutting-edge medical innovations like cell therapies are to solving the world's health crises. Consequently, there has been a surge in interest and funding for the study and advancement of cell therapy as a means of treating not only COVID-19 but also other chronic illnesses and infectious diseases. Additionally, the pandemic's adoption of telemedicine and remote monitoring has sped up the acceptance of decentralised clinical trials, which could advance cell therapy technologies by lowering trial costs and increasing patient access. The COVID-19 pandemic has, in the long run, created opportunities for innovation, collaboration, and growth, even though it initially presented challenges to the cell therapy technology market. The cell therapy sector is positioned to have a significant impact on how healthcare and illness management are provided in the future, even as the globe struggles to cope with the pandemic's aftermath.

How will this Report Benefit you?

Visiongains 305-page report provides 109 tables and 173 charts/graphs. Our new study is suitable for anyone requiring commercial, in-depth analyses for the cell therapy technologies market, along with detailed segment analysis in the market. Our new study will help you evaluate the overall global and regional market for Cell Therapy Technologies. Get financial analysis of the overall market and different segments including product, cell type, process, end-users and capture higher market share. We believe that there are strong opportunities in this fast-growing cell therapy technologies market. See how to use the existing and upcoming opportunities in this market to gain revenue benefits in the near future. Moreover, the report will help you to improve your strategic decision-making, allowing you to frame growth strategies, reinforce the analysis of other market players, and maximise the productivity of the company.

What are the Current Market Drivers?

Rise in Prevalence of Chronic & Degenerative Diseases

The healthcare sector faces numerous challenges from chronic illnesses like cancer, heart disease, neurological ailments, and autoimmune disorders. The management or cure of many disorders is frequently only partially successful with conventional therapeutic options.

With the ability to replace, regenerate, or repair damaged tissues or organs, cell therapy presents a viable substitute. Much emphasis has been paid to cell treatments' capacity to treat diseases at their root and encourage long-term healing.

Notable advancements in cell treatment technologies have been made over time to address degenerative and chronic illnesses. For example, developments in stem cell research have made it possible to identify and isolate several types of stem cells, each with a unique therapeutic potential. In order to create novel cell-based therapeutics, researchers are looking into the utilisation of hematopoietic stem cells, induced pluripotent stem cells, and mesenchymal stem cells.

Rigorous Efforts by Companies Towards Development of Proprietary & Supportive Technologies Anticipated to Boost Industry Growth

In regenerative medicine, cell therapy, which employs living cells to treat or cure diseases, has emerged as a promising area of study. Nevertheless, the efficacy of cell therapies is contingent upon the accessibility of cutting-edge technologies that facilitate the production, characterization, and transportation of cells.

Significant investments are being made by companies in the cell therapy industry in research and development of proprietary technologies that improve the safety, effectiveness, and scalability of cell therapies. The technologies in question comprise an extensive array of domains, such as tools for cell characterization, cell isolation and expansion techniques, and cryopreservation methods.

The advancement of cell culture systems is a primary area of emphasis. Organisations are currently engaged in the development and refinement of culture media, growth factors, and bioreactors that establish an optimal milieu for cellular proliferation while preserving the viability and functionality of the cells. The primary objectives of these proprietary culture systems are to increase cell yields, decrease production expenses, and facilitate the scalable production of cell therapies.

Considerable interest is being devoted to supportive technologies that affect cell isolation and purification. Innovative methods are being developed by businesses to isolate particular cell populations from complex mixtures, thereby ensuring the quality and purity of cells used in therapies. These technologies reduce the possibility of contamination or undesired cell populations while facilitating the efficient isolation of therapeutic cell types.

Cryopreservation technologies are indispensable for the transportation and long-term storage of cells. Organisations are presently preoccupied with the advancement of cryopreservation techniques that preserve the genetic stability, viability, and functionality of cells throughout the freezing and thawing processes.

These developments guarantee the presence of viable cells during therapy administration, notwithstanding the logistical obstacles that may arise from cell storage and transportation.

The development of proprietary and supportive technologies will therefore likely contribute to the expansion of the global market for cell therapy technologies.

Get Detailed ToC https://www.visiongain.com/report/cell-therapy-technologies-market-2024/

Where are the Market Opportunities?

Emerging nations present a substantial potential for the progression and integration of cell therapy technologies. These countries are currently experiencing notable advancements in their healthcare systems, as significant financial resources are being allocated to accommodate the growth of their populations. Concurrent with this growth, developing nations are confronted with an increasing prevalence of chronic and non-communicable ailments as a result of urbanisation, alterations in lifestyles, and the ageing of their populations. Cell therapy technologies are of particular relevance in these regions due to the innovative solutions they offer to address these urgent medical needs.

Moreover, in comparison to developed countries, the execution of clinical trials in emerging economies frequently demonstrates greater cost-effectiveness, predominantly attributable to reduced labour and operational expenditures. The financial benefits associated with this incentive motivate pharmaceutical companies and research institutions to investigate and advance cell therapies in these areas. Furthermore, numerous developing nations provide favourable regulatory structures and incentives in order to promote the progress and acceptance of cutting-edge medical technologies, such as cell therapies. The convergence of these elements renders developing nations an optimal setting for the proliferation and integration of cell therapy technologies, holding the potential to yield substantial advantages for healthcare providers and patients.

Competitive Landscape

The major players operating in the cell therapy technologies market are Thermo Fisher Scientific Inc., Novartis AG, Gilead Sciences, Inc., Merck KGaA, Danaher Corporation, Bristol-Myers Squibb Company, Sartorius AG, FUJIFILM Diosynth Biotechnologies, Lonza, GE Healthcare, Terumo BCT, Avantor, Inc., Bio-Techne Corporation, and Corning Incorporated among others. These major players operating in this market have adopted various strategies comprising M&A, investment in R&D, collaborations, partnerships, regional business expansion, and new product launch.

Recent Developments

To access the data contained in this document please emailcontactus@visiongain.com. Avoid missing out by staying informed order our report now.

To find more Visiongain research reports on the Pharma sector, click on the following links:

Do you have any custom requirements we can help you with?Any need for a specific country, geo region, market segment or specific company information? Contact us today, we can discuss your needs and see how we can help:contactus@visiongain.com

About Visiongain

Visiongain is one of the fastest-growing and most innovative independent market intelligence providers around, the company publishes hundreds of market research reports which it adds to its extensive portfolio each year. These reports offer in-depth analysis across 18 industries worldwide. The reports, which cover 10-year forecasts, are hundreds of pages long, with in-depth market analysis and valuable competitive intelligence data. Visiongain works across a range of vertical markets with a lot of synergies. These markets include automotive, aviation, chemicals, cyber, defence, energy, food & drink, materials, packaging, pharmaceutical and utilities sectors. Our customised and syndicatedmarket research reportsoffer a bespoke piece of market intelligence customised to your very own business needs.

Contact

Visiongain Reports Limited Telephone: +44 (0) 20 7336 6100 Email:contactus@visiongain.com Web:www.visiongain.com

Visit link:
Cell Therapy Technologies market is projected to grow at a CAGR of 10.7% by 2034: Visiongain - GlobeNewswire

Long-Term Ovarian Function Assessment After Haematopoietic Stem Cell Transplantation in Female Sickle Cell … – Cureus

Specialty

Please choose I'm not a medical professional. Allergy and Immunology Anatomy Anesthesiology Cardiac/Thoracic/Vascular Surgery Cardiology Critical Care Dentistry Dermatology Diabetes and Endocrinology Emergency Medicine Epidemiology and Public Health Family Medicine Forensic Medicine Gastroenterology General Practice Genetics Geriatrics Health Policy Hematology HIV/AIDS Hospital-based Medicine I'm not a medical professional. Infectious Disease Integrative/Complementary Medicine Internal Medicine Internal Medicine-Pediatrics Medical Education and Simulation Medical Physics Medical Student Nephrology Neurological Surgery Neurology Nuclear Medicine Nutrition Obstetrics and Gynecology Occupational Health Oncology Ophthalmology Optometry Oral Medicine Orthopaedics Osteopathic Medicine Otolaryngology Pain Management Palliative Care Pathology Pediatrics Pediatric Surgery Physical Medicine and Rehabilitation Plastic Surgery Podiatry Preventive Medicine Psychiatry Psychology Pulmonology Radiation Oncology Radiology Rheumatology Substance Use and Addiction Surgery Therapeutics Trauma Urology Miscellaneous

Read more here:
Long-Term Ovarian Function Assessment After Haematopoietic Stem Cell Transplantation in Female Sickle Cell ... - Cureus

Addition of ruxolitinib to standard graft-versus-host disease prophylaxis for allogeneic stem cell transplantation in … – Nature.com

Georges GE, Doney K, Storb R. Severe aplastic anemia: allogeneic bone marrow transplantation as first-line treatment. Blood Adv. 2018;2:20208.

Article CAS PubMed PubMed Central Google Scholar

Zhao J, Ma L, Zheng M, Su L, Guo X. Meta-analysis of the results of haploidentical transplantation in the treatment of aplastic anemia. Ann Hematol. 2023;102:256587.

Article CAS PubMed Google Scholar

Esteves I, Bonfim C, Pasquini R, Funke V, Pereira NF, Rocha V, et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: a multicenter retrospective study. Bone Marrow Transplant. 2015;50:6859.

Article CAS PubMed Google Scholar

Xu LP, Jin S, Wang SQ, Xia LH, Bai H, Gao SJ, et al. Upfront haploidentical transplant for acquired severe aplastic anemia: registry-based comparison with matched related transplant. J Hematol Oncol. 2017;10:25.

Article PubMed PubMed Central Google Scholar

Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799807.

Article CAS PubMed PubMed Central Google Scholar

Mart-Carvajal AJ, Anand V, Sol I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015;2015:CD010298.

PubMed PubMed Central Google Scholar

Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:383242.

Article CAS PubMed Google Scholar

Schroeder MA, Choi J, Staser K, DiPersio JF. The role of Janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol Blood Marrow Transplant. 2018;24:112534.

Article CAS PubMed Google Scholar

Hechinger AK, Smith BA, Flynn R, Hanke K, McDonald-Hyman C, Taylor PA, et al. Therapeutic activity of multiple common -chain cytokine inhibition in acute and chronic GVHD. Blood. 2015;125:57080.

Article CAS PubMed PubMed Central Google Scholar

Choi J, Ziga ED, Ritchey J, Collins L, Prior JL, Cooper ML, et al. IFNR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120:4093103.

Article CAS PubMed PubMed Central Google Scholar

Carniti C, Gimondi S, Vendramin A, Recordati C, Confalonieri D, Bermema A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015;21:37409.

Article CAS PubMed Google Scholar

Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med. 2020;382:180010.

Article PubMed Google Scholar

Zeiser R, Polverelli N, Ram R, Hashmi SK, Chakraverty R, Middeke JM, et al. Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease. N Engl J Med. 2021;385:22838.

Article CAS PubMed Google Scholar

Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:20628.

Article CAS PubMed PubMed Central Google Scholar

Krger N, Shahnaz Syed Abd Kadir S, Zabelina T, Badbaran A, Christopeit M, Ayuk F. et al. Peritransplantation ruxolitinib prevents acute graft-versus-host disease in patients with myelofibrosis undergoing allogenic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24:21526.

Article PubMed Google Scholar

Gooptu M, Antin JH. GVHD prophylaxis 2020. Front Immunol. 2021;12:605726.

Article CAS PubMed PubMed Central Google Scholar

Borowitz MJ, Craig FE, Digiuseppe JA, Illingworth AJ, Rosse W, Sutherland DR, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytom B Clin Cytom. 2010;78:21130.

Article Google Scholar

Donohue RE, Marcogliese AN, Sasa GS, Elghetany MT, Redkar AA, Bertuch AA, et al. Standardized high-sensitivity flow cytometry testing for paroxysmal nocturnal hemoglobinuria in children with acquired bone marrow failure disorders: a single center US study. Cytom B Clin Cytom. 2018;94:699704.

Article CAS Google Scholar

Zhang Y, Huo J, Liu L, Shen Y, Chen J, Zhang T, et al. Comparison of hematopoietic stem cell transplantation outcomes using matched sibling donors, haploidentical donors, and immunosuppressive therapy for patients with acquired aplastic anemia. Front Immunol. 2022;13:837335.

Article CAS PubMed PubMed Central Google Scholar

Han TT, Xu LP, Liu DH, Liu KY, Wang FR, Wang Y, et al. Recombinant human thrombopoietin promotes platelet engraftment after haploidentical hematopoietic stem cell transplantation: a prospective randomized controlled trial. Ann Hematol. 2015;94:11728.

Article CAS PubMed Google Scholar

Tang B, Huang L, Liu H, Cheng S, Song K, Zhang X, et al. Recombinant human thrombopoietin promotes platelet engraftment after umbilical cord blood transplantation. Blood Adv. 2020;4:382939.

Article CAS PubMed PubMed Central Google Scholar

Chinese Society of Hematology, Chinese Medical Association. [Chinese expert consensus on the management of hemorrhagic complications after hematopoietic stem cell transplantation(2021)]. Zhonghua Xue Ye Xue Za Zhi. 2021;42:27680.

Wang J, Zhou M, Xu JY, Zhou RF, Chen B, Wan Y. Comparison of antifungal prophylaxis drugs in patients with hematological disease or undergoing hematopoietic stem cell transplantation: a systematic review and network meta-analysis. JAMA Netw Open. 2020;3:e2017652.

Article PubMed PubMed Central Google Scholar

Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15:8258.

CAS PubMed Google Scholar

Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11:94556.

Article PubMed Google Scholar

Champlin RE, Horowitz MM, van Bekkum DW, Camitta BM, Elfenbein GE, Gale RP, et al. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood. 1989;73:60613.

Article CAS PubMed Google Scholar

Lin F, Han T, Zhang Y, Cheng Y, Xu Z, Mo X, et al. The incidence, outcomes, and risk factors of secondary poor graft function in haploidentical hematopoietic stem cell transplantation for acquired aplastic anemia. Front Immunol. 2022;13:896034.

Article CAS PubMed PubMed Central Google Scholar

McLornan DP, Hernandez-Boluda JC, Czerw T, Cross N, Joachim Deeg H, Ditschkowski M, et al. Allogeneic haematopoietic cell transplantation for myelofibrosis: proposed definitions and management strategies for graft failure, poor graft function and relapse: best practice recommendations of the EBMT Chronic Malignancies Working Party. Leukemia. 2021;35:244559.

Article PubMed Google Scholar

Li J, Wang Y, Zhang Y, Zhang X, Pang A, Yang D, et al. Haematopoietic stem cell transplantation for hepatitis-associated aplastic anaemia and non-hepatitis-associated aplastic anaemia: a propensity score-matched analysis. Br J Haematol. 2023;201:117991.

Article PubMed Google Scholar

Aggarwal N, Manley AL, Chen J, Groarke EM, Feng X, Young NS. Effects of ruxolitinib on murine regulatory T cells are immune-context dependent. Exp Hematol. 2023;125126:169.

Article PubMed Google Scholar

Xu ZL, Huang XJ. Optimizing outcomes for haploidentical hematopoietic stem cell transplantation in severe aplastic anemia with intensive GVHD prophylaxis: a review of current findings. Expert Rev Hematol. 2021;14:44955.

Article CAS PubMed Google Scholar

Williams L, Cirrone F, Cole K, Abdul-Hay M, Luznik L, Al-Homsi AS. Post-transplantation cyclophosphamide: from HLA-haploidentical to matched-related and matched-unrelated donor blood and marrow transplantation. Front Immunol. 2020;11:636.

Article CAS PubMed PubMed Central Google Scholar

Bourgeois AL, Jullien M, Garnier A, Peterlin P, Bn MC, Guillaume T, et al. Post-transplant cyclophosphamide as sole GHVD prophylaxis after matched reduced-intensity conditioning allotransplant. Clin Transl Med. 2023;13:e1242.

Article CAS PubMed PubMed Central Google Scholar

Prata PH, Eikema DJ, Afansyev B, Bosman P, Smiers F, Diez-Martin JL, et al. Haploidentical transplantation and posttransplant cyclophosphamide for treating aplastic anemia patients: a report from the EBMT Severe Aplastic Anemia Working Party. Bone Marrow Transplant. 2020;55:10508.

Article CAS PubMed Google Scholar

Chang YJ, Zhao XY, Huang XJ. Granulocyte colony-stimulating factor-primed unmanipulated haploidentical blood and marrow transplantation. Front Immunol. 2019;10:2516.

Article CAS PubMed PubMed Central Google Scholar

Yao D, Tian Y, Li J, Li B, Lu J, Ling J, et al. Association between haploidentical hematopoietic stem cell transplantation combined with an umbilical cord blood unit and graft-versus-host disease in pediatric patients with acquired severe aplastic anemia. Ther Adv Hematol. 2022;13:20406207221134409.

Article CAS PubMed PubMed Central Google Scholar

Xu ZL, Huang XJ. Haploidentical transplants with a G-CSF/ATG-based protocol: experience from China. Blood Rev. 2023;62:101035.

Article CAS PubMed Google Scholar

Xu LP, Lu DP, Wu DP, Jiang EL, Liu DH, Huang H, et al. Hematopoietic stem cell transplantation activity in China 20202021 during the SARS-CoV-2 pandemic: a report from the Chinese Blood and Marrow Transplantation Registry Group. Transplant Cell Ther. 2023;29:136 e1e7.

Article PubMed Google Scholar

Yoshimi A, Baldomero H, Horowitz M, Szer J, Niederwieser D, Gratwohl A, et al. Global use of peripheral blood vs bone marrow as source of stem cells for allogeneic transplantation in patients with bone marrow failure. JAMA. 2016;315:198200.

Article PubMed Google Scholar

Kennedy GA, Varelias A, Vuckovic S, Le Texier L, Gartlan KH, Zhang P, et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014;15:14519.

Article CAS PubMed Google Scholar

Chen YB, Shah NN, Renteria AS, Cutler C, Jansson J, Akbari M, et al. Vedolizumab for prevention of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood Adv. 2019;3:413646.

Article CAS PubMed PubMed Central Google Scholar

Lin Y, Gu Q, Lu S, Pan Z, Yang Z, Li Y, et al. Ruxolitinib improves hematopoietic regeneration by restoring mesenchymal stromal cell function in acute graft-versus-host disease. J Clin Investig. 2023;133:e162201.

Ryu DB, Lim JY, Kim TW, Shin S, Lee SE, Park G, et al. Preclinical evaluation of JAK1/2 inhibition by ruxolitinib in a murine model of chronic graft-versus-host disease. Exp Hematol. 2021;98:3646.e2.

Article CAS PubMed Google Scholar

Hlsdnker J, Ottmller KJ, Neeff HP, Koyama M, Gao Z, Thomas OS, et al. Neutrophils provide cellular communication between ileum and mesenteric lymph nodes at graft-versus-host disease onset. Blood. 2018;131:185869.

Article PubMed PubMed Central Google Scholar

Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122:1192202.

Article CAS PubMed Google Scholar

Sylvine P, Thomas S, Pirayeh E. Infections associated with ruxolitinib: study in the French Pharmacovigilance database. Ann Hematol. 2018;97:9134.

Article PubMed Google Scholar

Abedin S, McKenna E, Chhabra S, Pasquini M, Shah NN, Jerkins J, et al. Efficacy, toxicity, and infectious complications in ruxolitinib-treated patients with corticosteroid-refractory graft-versus-host disease after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25:168994.

Article CAS PubMed Google Scholar

Hong X, Chen Y, Lu J, Lu Q. Addition of ruxolitinib in graft-versus-host disease prophylaxis for pediatric -Thalassemia major patients after allogeneic stem cell transplantation: a retrospective cohort study. Pediatr Transplant. 2023;27:e14466.

Article CAS PubMed Google Scholar

Zhang B, Chen L, Zhou J, Zu Y, Gui R, Li Z, et al. Ruxolitinib early administration reduces acute GVHD after alternative donor hematopoietic stem cell transplantation in acute leukemia. Sci Rep. 2021;11:8501.

Article CAS PubMed PubMed Central Google Scholar

Zhao Y, Shi J, Luo Y, Gao F, Tan Y, Lai X, et al. Calcineurin inhibitors replacement by ruxolitinib as graft-versus-host disease prophylaxis for patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2020;26:e128e33.

Article CAS PubMed Google Scholar

Morozova EV, Barabanshikova MV, Moiseev IS, Shakirova AI, Barhatov IM, Ushal IE, et al. A prospective pilot study of graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide and ruxolitinib in patients with myelofibrosis. Acta Haematol. 2021;144:15865.

Article CAS PubMed Google Scholar

See the rest here:
Addition of ruxolitinib to standard graft-versus-host disease prophylaxis for allogeneic stem cell transplantation in ... - Nature.com

Archives