Posts Tagged ‘japan’

Genomic insights into familial adenomatous polyposis: unraveling a rare case with whole APC gene deletion and … – Nature.com

Familial adenomatous polyposis (FAP) is an autosomal dominant disorder resulting from germline mutations in the APC gene. The APC gene, comprising 15 exons and encoding a protein with 2843 amino acids, is implicated in ~80% of FAP cases1. Extensive genetic analysis has revealed germline variants in FAP patients, and most APC mutations are found in the 5 half of the coding region. Genotypephenotype correlations have been reported for small-nucleotide alterations, including frameshift and nonsense mutations2,3. Large genomic deletions and duplications have been identified using multiplex ligation-dependent probe amplification (MLPA)4. Whole-genome array comparative genomic hybridization (aCGH) was used to identify a large deletion involving the middle portion of the long arm of chromosome 55. Here, we report a case of an FAP patient with intellectual disability that was attributed to a large deletion involving 5q22.2.

The proband was a 28-year-old female who was referred to the emergency hospital with acute abdominal pain. Computed tomography (CT) demonstrated perforation of the descending colon, multiple colorectal polyps, multiple liver metastases and lymph node swelling. She underwent left hemicolectomy, and the subsequent histological diagnosis was moderately differentiated adenocarcinoma (pT4a, pStage IVa). Chemotherapy was selected for treatment of the residual metastasis. Colonoscopy revealed advanced colon cancer with multiple adenomatous polyps (>100). Head CT revealed an osteoma in her skull, and the phenotype was subsequently defined as Gardners syndrome.

The patient had slight intellectual disability without developmental delay or neurogenic abnormalities. She and her mother requested comprehensive genomic panel (CGP) analysis (OncoGuideTM NCC oncopanel, Sysmex, Hyogo, Japan) of surgically resected colon cancer tissue after providing informed consent. This test can detect mutations in 124 genes and differentiate between germline and somatic mutations. The pathogenic mutations detected were KRAS G13D, PIC3CA H1047R, and TP53 M169fs*2, but no targeted therapy was recommended by the expert panel. No germline findings were reported, but whole APC gene deletion was suspected due to the low amplicon depth of the APC gene in both the tumor tissue and blood samples (Fig. S1).

According to her familial history (Fig. 1), her mother (II-3) was treated for sporadic colon cancer. She refused genetic testing due to receiving cancer chemotherapy. Her son (IV-1), whose intelligence was slightly low, had a single-parent history because his father was not identified.

The arrow indicates the patients who underwent genetic counseling. A closed circle indicates an individual with colorectal cancer. Colorectal polyposis was observed in the proband (III-1) but not in her ancestors.

After genetic counseling, aCGH (GenetiSure Dx Postnatal Assay, Agilent, Tokyo, Japan) was performed for further genetic testing. Notably, aCGH revealed the loss of chromosome 5 (chr5) q22.1-q22.2 (Fig. 2), the loss of chr3 p24.1-p23, and the gain of chr15 q15.3. The chr5 deletion included the entire APC gene (chr5:112043195-112181936 in GRCh37) located at 5q22.2 (Fig. S2), according to the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER, https://www.deciphergenomics.org).

A heterozygous 5q22 deletion was detected. The minimal and maximal deletion positions in GRCh37 (start_stop) were 111143360_112213143 and 111118900_112239978, respectively.

This case in which the entire APC gene was deleted, as determined by aCGH, is rare. Chromosome 5p22.1-22.2 deletion causes 1Mb of heterozygous loss, including the APC gene, which was reported as a cytogenetically detected deletion in previous reports. Previously, karyotyping and fluorescence in situ hybridization were used to detect large submicroscopic genomic deletions, and aCGH was used to detect high-resolution copy number variants in whole chromosomes6. aCGH is sensitive and comprehensive, allowing detection of multiple variations, and annotations by specialists are needed. DECIPHER catalogs common copy number changes, enabling the identification of potentially pathogenic variants. aCGH can also be used for sequencing targeted genes. For FAP patients, germline APC variants are identified by direct sequencing using next-generation sequencing (NGS) and MLPA5. Sequencing has been used to detect APC gene variants, but ~20% of FAP patients do not carry these variants. MLPA is useful for detecting whole or large APC gene copy number variants in mutation-negative FAP patients. There are several case reports in which germline variants of FAP were examined via aCGH7,8,9,10.

Our young patient with advanced colon cancer derived from multiple colorectal polyposis was diagnosed with FAP according to the clinical features. A CGP was performed using NGS for cancer precision medicine in this patient. Because metastatic colon cancer is treated by chemotherapy, somatic genomic analysis with CGP was also conducted to determine the optimal chemotherapy regimen. Next, we used NGS to determine the sequence of 100bp amplicons of 124 cancer-related genes from cancer tissue and peripheral blood. A large APC deletion was not detected by this targeted sequence, although both the somatic and germline amplicon depths of the APC gene were slightly low. A large number of APC variants have already been deposited in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). For several FAP patients in which germline APC variants were not found, investigations of copy number variations have been performed. The genotypephenotype correlation of patients with chromosome 5q deletions has been discussed10. A classical FAP phenotype is associated with a mutation in codons 1681250 or codons 14001580. A severe phenotype is caused by a mutation in codons 12501464. A more attenuated form is associated with mutations in three regions: the 5 region of the APC gene, the alternative splicing region in exon 9, and the extreme 3 end of the gene11.

Whole or partial APC gene deletions can be detected with recently developed genetic techniques9,10,12. MLPA and aCGH are candidates for confirming large deletions or duplications, and the latter genetic test was chosen for our patient. In our patient, two chromosomal losses and one gain were detected. The advantage of chromosomal analysis is that it can reveal unexpected genetic changes even in separate chromosomes. The CGH database includes some patients with large deletions in chromosomal region 5q22, including the APC gene. In a very recent case report, aCGH was utilized to identify a large 19.85Mb deletion12. A case series with a literature review described a patient with intellectual disability and a colon neoplasm with an interstitial deletion of 5q identified by aCGH. Colorectal cancers are observed in some patients with 5q deletions, yet examination of colorectal polyposis in this context is limited. Among the primary dysmorphisms and symptoms linked to 5q deletions, the predominant manifestation identified in the analysis of 12 patients was mental retardation12. The cases documented in both the literature and the DECIPHER database are characterized by common clinical features, including predisposition to cancer, intellectual disability, and neurodevelopmental delay. Patients with these congenital changes should undergo genetic testing, including G-band, fluorescence in situ hybridization (FISH), and aCGH. aCGH offers high resolution, allowing for the detection of changes at the chromosomal level. This high sensitivity is particularly valuable when conventional methods, such as karyotyping or FISH, may not provide detailed information about genomic alterations. Moreover, this approach allows researchers and clinicians to explore potential genetic factors beyond the well-known APC genes. In the near future, long-read sequencing of large deletions may enable us to obtain detailed genomic information13. Additional clinical information is needed to establish the genotypephenotype correlations associated with the 5q22.2 deletion that includes the whole APC gene. The published cases have raised the question of whether whole APC deletion induces colorectal polyposis. Casper et al. reported a case of Gardner syndrome attributable to a substantial interstitial deletion of chromosome 5q, offering a comprehensive review of published cases9. Until 2014, 16 patients with FAP resulting from chromosome 5q deletions were documented, with all but one patient presenting with classic adenomatous polyposis rather than the profuse form. Most of these deletions were de novo alterations, consistent with our reported case in which the patients mother (II-3) exhibited sporadic colon cancer without polyposis. In the familial lineage (Fig. 1), our patients son (IV-1) carried a deletion in the 5q22.1-22.2 region, mirroring the genomic alteration of his mother (III-1). However, the genetic inheritance pattern of this large deletion is unclear. Meticulous follow-up of the young boy is important for addressing this issue.

In conclusion, this study describes a rare FAP patient characterized by a large deletion of chromosome 5q22.1-22.2 identified through comprehensive genomic analysis. The genetic variant was suspected by CGP and eventually identified by aCGH. These findings emphasize the importance of advanced genetic techniques in identifying complex genomic variations and suggest a need for additional research to elucidate the specific features associated with whole-APC gene deletions.

Link:
Genomic insights into familial adenomatous polyposis: unraveling a rare case with whole APC gene deletion and ... - Nature.com

Genetic Analysis Market Size to Attain Around USD 23.60 BN by 2033 – BioSpace

The global genetic analysis market was evaluated at USD 10.55 billion in 2023 and is expected to attain around USD 23.60 billion by 2033, growing at a CAGR of 8.39% from 2024 to 2033. The increasing demand for genetic testing services is driving growth within the genetic analysis market.

Market Overview

The genetic analysis market is experiencing significant transformation due to advances in genetic technology, which are fundamentally changing perceptions and practices within the healthcare industry. At the heart of this transformation lies the process of genetic analysis, which involves the examination of DNA samples to identify mutations that may influence disease susceptibility or treatment response. This analysis is pivotal for understanding the structure and function of genes, with techniques such as gene cloning playing a crucial role in isolating and replicating specific genes for detailed examination.

Get report sample pages@ https://www.precedenceresearch.com/sample/3922

One notable aspect of genetic analysis is its diverse clinical applications. It serves as a diagnostic tool, aiding in the confirmation of diagnoses in symptomatic individuals, while also facilitating the monitoring of disease prognosis and treatment response. Additionally, genetic analysis enables predictive or predisposition testing, allowing for the identification of individuals at risk of developing certain diseases before symptoms manifest.

The emergence of predictive genetic testing is creating new market opportunities, as it enables proactive disease prevention strategies and early interventions. As perceptions regarding genetic testing continue to evolve, the market for genetic analysis is expected to witness sustained growth, driven by its potential to revolutionize patient care and improve health outcomes.

Key Insights

Get full access of this report@ https://www.precedenceresearch.com/checkout/3922

North America to sustain its position in the upcoming years with the U.S. being largest contributor

In 2023, North America emerged as the dominant force in the genetic analysis market, particularly in the United States. The US showcased a robust infrastructure with 200 laboratories actively conducting 37,124 clinical tests, underscoring the region's significant investment and adoption of genetic analysis technologies. Notably, 29 laboratories specialized in whole exome sequencing (WES), while 17 laboratories focused on whole genome sequencing (WGS), indicating a wide array of genetic testing capabilities available within the country.

The United States exhibits a proactive approach towards healthcare, as evidenced by mandatory newborn screening programs targeting a specific set of genetic diseases. Although the exact set of diseases screened may vary from state to state, the emphasis remains on conditions where early diagnosis is crucial for effective treatment or prevention strategies. This regulatory framework underscores the importance placed on leveraging genetic analysis for proactive healthcare management and disease prevention initiatives.

Beyond clinical applications, genetic analysis in North America extends to ecological and environmental contexts. The presence of invasive species such as Phragmites australis subsp. australis poses ecological challenges across multiple regions. The co-occurrence of this invasive subspecies with native counterparts and instances of hybridization necessitates precise differentiation methods for effective management strategies. Genetic analysis plays a pivotal role in distinguishing between phragmites subspecies or haplotypes, facilitating targeted management efforts to mitigate ecological harm and preserve native ecosystems.

Asia Pacific to witness lucrative opportunities in the upcoming years

Asia Pacific emerges as a pivotal region poised for substantial growth in the genetic analysis sector, driven by dynamic developments in genetic counselling and genome mapping initiatives. Forecasts indicate that Asia Pacific will experience the fastest growth rate in the genetic analysis market during the forecast period, underscoring the region's significance in shaping the future of genetic healthcare services.

A recent milestone in the region's genetic counselling landscape is the establishment of the Professional Society of Genetic Counsellors in Asia (PSGCA). Formed as a special interest group of the Asia Pacific Society of Human Genetics, PSGCA aims to spearhead the advancement and integration of the genetic counselling profession across Asia. With a vision to become the premier organization driving genetic counselling mainstream adoption in the region, PSGCA endeavors to ensure equitable access to genetic counselling services for individuals. Its mission centers on elevating standards of practice, curriculum, research, and continuing education to promote quality genetic counselling services throughout Asia.

The rapid evolution of genetic and genomic technologies has significantly transformed healthcare services in low- and middle-income countries (LMICs) across the Asia-Pacific region. Initially focused on population-based disease prevention strategies, genetic services have transitioned towards clinic-based and therapeutics-oriented approaches. Notably, the region's genetic diversity, exemplified by populous and genetically varied countries such as China, India, Japan, and Indonesia, positions them as prime candidates for genome mapping research endeavors.

How the genetic analysis market in Asia Pacific

Report Highlights

By Product

The reagents & kits segment asserted dominance in the genetic analysis market in 2023. DNA reagents play a pivotal role in various DNA-related processes and techniques, including sequencing, synthesis, cloning, and mutagenesis. These products encompass a diverse range, such as plasmids, buffers, labeling technology, columns, and comprehensive test kits utilized in DNA testing, including direct-to-consumer (DTC) genetic tests. While offering accessible information about the scientific basis of tests, the usage of DTC genetic tests carries inherent risks due to the absence of personalized guidance concerning the results.

The instruments segment emerged as the fastest-growing sector within the genetic analysis market. Core laboratory instruments constitute essential tools in genetic engineering research, facilitating precise and reliable experimentation. Polymerase Chain Reaction (PCR) machines, also known as thermal cyclers, stand as indispensable equipment in genetic engineering labs, enabling the amplification of specific DNA segments crucial for detailed analysis.

By Test

In 2023, the disease diagnostic testing segment emerged as the dominant force in the genetic analysis market. This segment specializes in identifying whether individuals harbor specific genetic diseases by detecting alterations in particular genes. While these tests excel at pinpointing gene mutations, they often fall short in determining disease severity or age of onset. Thousands of diseases stem from mutations in a single gene, making diagnostic testing pivotal in confirming or ruling out genetic diseases and chromosomal abnormalities. Frequently utilized during pregnancy or when symptomatic, diagnostic genetic testing offers crucial insights for accurate diagnosis and timely intervention.

The prenatal and newborn testing segment emerged as the fastest-growing sector in the genetic analysis market during the forecast period. Prenatal genetic testing provides prospective parents with vital information regarding potential genetic disorders in the fetus. Prenatal screening tests assess the likelihood of fetal aneuploidy and select disorders, while prenatal diagnostic tests definitively ascertain the presence of specific disorders. These tests, conducted on fetal or placental cells obtained through procedures like amniocentesis or chorionic villus sampling (CVS), play a pivotal role in informed decision-making during pregnancy.

Newborn screening, a subset of prenatal and newborn testing, comprises a set of laboratory tests performed on newborns to detect known genetic diseases. Typically conducted via a heel prick within the first few days of life, newborn screening enables early identification and intervention for treatable genetic conditions, thereby improving health outcomes. As the demand for early detection and preventive measures rises, the prenatal and newborn testing segment is poised for continued growth, bolstering the comprehensive landscape of genetic analysis.

By Technology

In 2023, the real-time PCR system segment emerged as the dominant force in the genetic analysis market. Real-time PCR (RT-PCR) systems offer unparalleled capabilities for quantitative genotyping and detection of single nucleotide polymorphisms (SNPs), allelic discrimination, and genetic variations even in samples with minimal mutation carriers. Multiplex PCR systems, a subset of RT-PCR, are gaining prominence, particularly in plant/microbe associations, where standard PCR methods prove inadequate. Multiplex RT-PCR facilitates the identification of multiple genes through the utilization of fluorochromes and analysis of melting curves, providing enhanced accuracy and efficiency in genetic analysis.

The next-generation sequencing (NGS) segment emerged as the fastest-growing sector in the genetic analysis market. NGS technology revolutionizes DNA sequencing and RNA sequencing and variant/mutation detection by enabling high-throughput sequencing of hundreds to thousands of genes or whole genomes within a short timeframe. The sequence variants/mutations detected by NGS hold profound implications for disease diagnosis, prognosis, therapeutic decision-making, and patient follow-up, paving the way for personalized precision medicine initiatives.

By Application

In 2023, the infectious diseases segment asserted dominance in the genetic analysis market, offering molecular genetic tests capable of identifying common viruses or bacteria responsible for respiratory infections and infectious diarrhea. These tests, conducted on samples collected from the nose and throat or a single stool sample, facilitate rapid and accurate diagnosis, enabling timely treatment and containment of infectious outbreaks.

The genetic diseases segment emerged as the fastest-growing sector in the genetic analysis market during the forecast period. The extent to which genes contribute to diseases varies, presenting opportunities for advancements in understanding genetic mechanisms underlying various conditions. This progress facilitates the development of early diagnostic tests, novel treatments, and preventive interventions to mitigate disease onset or severity.

By End Use

In 2023, the research & development laboratories segment emerged as the dominant force in the genetic analysis market, actively driving advancements in genetic disease study and testing technology. These laboratories are pivotal in enhancing clinical patient care by conducting rigorous research and development activities aimed at improving test strategies and introducing novel genetic tests. Board-certified directors and genetic counsellors collaborate closely with laboratory supervisors and technologists to ensure the delivery of accurate and reliable results within stipulated timelines. With a focus on meeting stringent validation standards, approved tests undergo thorough evaluations of methodology and clinical utility. Research programs within these laboratories leverage collective expertise to propel the field of genetics and genetic testing forward.

The diagnostic centers segment is poised for significant growth in the genetic analysis market during the forecast period. Diagnostic centers offer a comprehensive range of testing services crucial for diagnosing diverse medical conditions. By providing accurate and informed diagnoses, diagnostic centers enable physicians to develop effective treatment plans, ultimately enhancing patient outcomes. Leveraging advanced diagnostic technologies and techniques, these centers play a vital role in identifying underlying causes of diseases, monitoring disease progression, and devising personalized treatment approaches. Collaborating with healthcare providers like primary care physicians, specialists, and hospitals, diagnostic centers ensure accurate and timely diagnoses across a spectrum of medical conditions, reinforcing their indispensable role in modern healthcare delivery.

Market Dynamics

Driver: Advances in Genetic Sequencing and Gene Therapy

Significant strides in genetic sequencing, human genome analysis, and medical genetics have revolutionized disease understanding, diagnostic accuracy, and drug development targets. A pivotal breakthrough in medical genetics is the emergence of gene therapy, which involves modifying or replacing genes to treat or prevent diseases. Already applied successfully in treating conditions like inherited blindness and severe combined immunodeficiency (SCID), gene therapy is poised to expand its impact further.

Future projections indicate that gene therapy will play an increasingly vital role in medical genetics, offering treatments for previously untreatable diseases. This trajectory is expected to fuel the growth of the genetic analysis market, as the demand for advanced genetic testing and analysis escalates to support the development and implementation of gene therapy treatments.

Restraint: Privacy Concerns in Genetic Analysis

Privacy concerns poses a major challenge in the genetic analysis domain due to the inherent uniqueness of genomic data, hindering true anonymization efforts. Additionally, security measures are crucial to restrict access to data based on authorized clearance levels, safeguarding against unauthorized breaches. Confidentiality emerges as a key ethical consideration, dictating the responsible sharing of genetic data. These privacy concerns, among others, including consent and data ownership, serve as significant restraints in the genetic analysis market. Addressing these challenges effectively is essential to ensure ethical practices and foster trust among stakeholders, thereby mitigating the barriers to market growth.

Opportunity: Integration of Artificial Intelligence in Genetic Analysis

The integration of artificial intelligence (AI) is revolutionizing clinical genetics, offering unprecedented opportunities for advancement. AI algorithms possess the capability to analyse vast volumes of genetic data rapidly and accurately, facilitating more precise diagnoses and tailored treatment plans. Furthermore, AI empowers predictive analysis of disease risk, enabling the development of proactive disease prevention strategies. In genetic engineering and gene therapy research, AI serves as a powerful tool, aiding in hypothesis generation and experimental techniques. Leveraging AI, researchers can detect hereditary and gene-related disorders with greater efficiency.

Moreover, AI-driven developments hold immense promise for rational drug discovery and design, ultimately impacting humanity's well-being. As AI and machine learning (ML) technologies continue to drive innovation in drug development, genetics emerges as a prime beneficiary, with AI expected to influence every facet of the human experience. This presents a compelling opportunity for the genetic analysis market to capitalize on AI-driven advancements and propel transformative growth.

Recent Developments

Key Players in the Clinical Trials Market

Segments Covered in the Report

By Product

By Test

By Technology

By Application

By End-use

By Geography

Get full access of this report@ https://www.precedenceresearch.com/checkout/3922

Contact Us

Call: USA: +1 650 460 3308 | IND: +91 87933 22019 | Europe: +44 2080772818

Email: sales@precedenceresearch.com

Here is the original post:
Genetic Analysis Market Size to Attain Around USD 23.60 BN by 2033 - BioSpace

Archives