Page 48«..1020..47484950..6070..»

Archive for the ‘Skin Stem Cells’ Category

Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product

Parma And Modena, Italy (ots/PRNewswire) -

The collaboration between a public excellent research center and a solid private pharmaceutical company allowed to achieve an extraordinary result, entirely "made in Italy": the first medicinal product containing stem cells approved in the Western world

The European Commission has granted a conditional marketing authorization, under Regulation (EC) No 726/2004, to Holoclar(R), an advanced therapy based on autologous stem cells and capable to restore the eyesight of patients with severe cornea damage. Holoclar(R) is manufactured by Holostem Terapie Avanzate (Holostem Advanced Therapies) - a spin-off of the University of Modena and Reggio Emilia - at the Centre for Regenerative Medicine "Stefano Ferrari" (CMR) of the same University.

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-a )

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-b )

(Logo: http://photos.prnewswire.com/prnh/20150223/731609-c )

"Holoclar is the very first medicinal product based on stem cells to be approved and formally registered in the Western world," states Andrea Chiesi, Director of R&D Portfolio Management of Chiesi Farmaceutici S.p.A. and CEO of Holostem Terapie Avanzate. "This record," continues Andrea Chiesi, "shows that the partnership between the public and private sectors is not only possible, but is probably the best strategy for the development of stem cell-based regenerative medicine, particularly when autologous cells are used. Holostem is now considered as a business model to translate into clinics the results obtained by scientific research in this field."

Underlying Holoclar(R) are more than 20 years of excellence in research, conducted by a team of internationally renowned scientists in the field of epithelial stem cell biology aimed at clinical translation. European Directive 1394/2007 substantially equalizes advanced cell therapies to medicines and imposes, among other things, that cell cultures has to be manufactured only in GMP-certified facilities (GMP: Good Manufacturing Practice). Thanks to the investments of Chiesi Farmaceutici, the Centre for Regenerative Medicine in Modena - where Holostem operates - was certified as GMP compliant and continue to follow the path towards the registration of this newly developed advanced therapy.

"The authorization process has been long and complex, but the result achieved today shows that cells can be cultured according to pharmaceutical standards appropriate to guarantee safety and efficacy," adds Professor Michele De Luca, Scientific Director and co-founder of Holostem, as well as Director of the CMR of the University of Modena. "In addition, in a period of great confusion about the real therapeutic possibilities of stem cells, such as the one we are living in, being able to demonstrate that stem cells can be definitely safe and successful in a controlled clinical setting is more important than ever."

To explain how Holoclar(R) works is Professor Graziella Pellegrini, Coordinator of cell therapy at CMR, as well as director of R&D and co-founder of Holostem, who authored, together with Professor De Luca, the research and designed the product development: "After developing cell cultures based on epithelial stem cells for the treatment of various disorders of the stratified epithelia - from the skin for full-thickness burns to the reconstruction of the urethra - we discovered that the stem cells that allow the regeneration of the cornea reside in a small area at the border between the cornea (the transparent part at the center of the eye) and the conjunctiva (the contiguous white part), which is called 'the limbus'. When thermal or chemical burns of the ocular surface damage irreversibly this stem cell reserve, the corneal surface - which in a healthy eye completely renews itself approximately every six/nine months - stops regenerating and the conjunctiva gradually begins to cover the cornea with a white coating, that prevents vision and causes chronic pain and inflammation. If in at least one of the eyes of the patient even a small residue of undamaged limbus is left, we areable to reconstruct in a laboratory the epithelium that covers the corneal surface, thanks to the stem cells harvested through a 1-2mmsquared biopsy. This graft of epithelium - Holoclar(R), precisely - that looks like a kind of contact lens, is then transplanted into the patient and allows to obtain a long-term transparent cornea and a full recovery of visual acuity, without causing any rejection reaction, because it consists of cells of the patient him/herself."

Read the rest here:
Europe Approves Holoclar, the First Stem Cell-Based Medicinal Product

Cambridge university researchers' breakthrough paves way for same sex couple babies

Comments(0)

Researchers from Cambridge University have shown for the first time that it is possible to make human egg and sperm cells using skin from two adults of the same sex.

The scientific breakthrough may lead to a baby being made in a dish from the skin cells of two adults of the same sex, bringing hope to gay people.

The project, funded by the Wellcome Trust, was achieved at Cambridge University with Israels Weizmann Institute of Science.

The scientists used stem cell lines from embryos as well as from the skin of five different adults.

Ten different donor sources have been used so far and new germ-cell lines have been created from all of them, researchers said.

A gene called SOX1 has turned out to be critical in the process of reprogramming human cells, according to a report in a national newspaper.

The details of the technique were published in the journal Cell.

Excerpt from:
Cambridge university researchers' breakthrough paves way for same sex couple babies

Stemologica Review – Try Stemologica To Prevent Appearance Of Wrinkles – Video


Stemologica Review - Try Stemologica To Prevent Appearance Of Wrinkles
Click the link below to get a risk free trial; http://skincarebeautyshop.com/go/have-your-stemologica-free-trial/ Read the Terms and Condition before you ord...

By: Yvan B.

Read more:
Stemologica Review - Try Stemologica To Prevent Appearance Of Wrinkles - Video

Stem cells offer promising key to new malaria drugs: US research

NEW YORK (Thomson Reuters Foundation) - Human stem cells engineered to produce renewable sources of mature, liver-like cells can be grown and infected with malaria to test potentially life-saving new drugs, according to researchers at the Massachusetts Institute of Technology.

The advance comes at a time when the parasitic mosquito-borne disease, which kills nearly 600,000 people every year, is showing increased resistance to current treatment, especially in Southeast Asia, according to the World Health Organization.

The liver-like cells, or hepatocytes, in the MIT study were manufactured from stem cells derived from donated skin and blood samples.

The resulting cells provide a potentially replenishable platform for testing drugs that target the early stage of malaria, when parasites may linger and multiply in the liver for weeks before spreading into the bloodstream.

Sangeeta Bhatia, a biomedical engineer and senior author of the MIT report, told the Thomson Reuters Foundation that the breakthrough study not only showed that these liver-like cells could host a malaria infection but also described a way to mature the young cells so that an adult-like metabolism, necessary for drug development, could be established.

The study is published in the Feb. 5 online issue of Stem Cell Reports.

Stem cells retain the genetic makeup of their donors, affording researchers the potential to test drugs against a large variety of genetic types and a variety of diseases.

"This allows us to explore in depth how different diseases affect different people, in this case malaria," Bob Palay, chairman and CEO of Cellular Dynamics International (CDI), told the Thomson Reuters Foundation.

"This allows you to study it in a dish and find new drugs," he added, noting that CDI uses blood samples for its stem cells.

Before this development, researchers tested new drugs using human liver cells from cadavers and cancerous liver cells.

Read this article:
Stem cells offer promising key to new malaria drugs: US research

Theres a lot to love at The Body Shop

DROPS of Youth Bouncy Sleeping Mask is designed to be left on overnight without washing off. The lightweight, pliable mask molds itself like a second skin, making skin look younger and fresher.

The Body Shop introduces its Drops of Youth, Red Musk Fragrance, and Limited-Edition Forbidden Flower collections.

Drops of Youth, made from edelweiss flower stem cells sourced from the Alps, replenishes your skin in the most natural way. Left on overnight, the lightweight mask is like a second skin. In the morning, skin feels smooth and hydrated, and looks younger and fresher.

Red Musk, The Body Shops most unconventional scent to date, turns up the heat.

The Limited-Edition Forbidden Flower Collection is a body care and fragrance line inspired by the poppy flower.

DROPS of YouthWonderblur is a skin smoother that reduce fine lines and pores for an even, flawless finish.

Known for its thrust in protecting the planet, The Body Shop never tests its products on animals. The line has a Community Fair Trade program, where high-quality natural ingredients are sourced in different parts of the world where small stakeholders and artisans can benefit.

The Drops of Youth and Red Musk collections are available at The Body Shop stores nationwide, while Forbidden Flower Collection is available at selected The Body Shop branches. SM Advantage Card members can now earn and redeem points in all The Body Shop stores.

THE RED Musk Fragrance Collection. I wanted to create a fragrance that wasnt the typical girly girl scent. I wanted to change the rules of fragrance. Instead, I used the sensuality and the warmth of spices blended withmusk to approach femininity differently, says Corinne Cachen, master perfumer.

FORBIDDEN Flower Body Butter gives your skin the pleasure of pure potent moisture.

See more here:
Theres a lot to love at The Body Shop

Stemologica Review – A Harmless Way To Fight Skin Aging Using Stemologica – Video


Stemologica Review - A Harmless Way To Fight Skin Aging Using Stemologica
Click the link below to get a risk free trial; http://skincarebeautyshop.com/go/have-your-stemologica-free-trial/ Read the Terms and Condition before you ord...

By: Yvan B.

See more here:
Stemologica Review - A Harmless Way To Fight Skin Aging Using Stemologica - Video

Human stem cells repair damage caused by radiation therapy for brain cancer in rats

For patients with brain cancer, radiation is a powerful and potentially life-saving treatment, but it can also cause considerable and even permanent injury to the brain. Now, through preclinical experiments conducted in rats, Memorial Sloan Kettering Cancer Center researchers have developed a method to turn human stem cells into cells that are instructed to repair damage in the brain. Rats treated with the human cells regained cognitive and motor functions that were lost after brain irradiation. The findings are reported in the February 5 issue of the journal Cell Stem Cell.

During radiation therapy for brain cancer, progenitor cells that later mature to produce the protective myelin coating around neurons are lost or significantly depleted, and there is no treatment available to restore them. These myelinating cells--called oligodendrocytes--are critical for shielding and repairing the brain's neurons throughout life.

A team led by neurosurgeon Viviane Tabar, MD, and research associate Jinghua Piao, PhD, of the Memorial Sloan Kettering Cancer Center in New York City, wondered whether stem cells could be coaxed to replace these lost oligodendrocyte progenitor cells. They found that this could be achieved by growing stem cells--either human embryonic stem cells or induced pluripotent stem cells derived from skin biopsies--in the presence of certain growth factors and other molecules.

Next, the investigators used the lab-grown oligodentrocyte progenitor cells to treat rats that had been exposed to brain irradiation. When the cells were injected into certain regions of the brain, brain repair was evident, and rats regained the cognitive and motor skills that they had lost due to radiation exposure. The treatment also appeared to be safe: none of the animals developed tumors or inappropriate cell types in the brain.

"Being able to repair radiation damage could imply two important things: improving the quality of life of survivors and potentially expanding the therapeutic window of radiation," said Dr. Tabar. "This will have to be proven further, but if we can repair the brain effectively, we could be bolder with our radiation dosing, within limits." This could be especially important in children, for whom physicians deliberately deliver lower radiation doses.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Read this article:
Human stem cells repair damage caused by radiation therapy for brain cancer in rats

Skin cell gun sprays stem cells for fast recovery from …

Spray-on skin that could help you heal your skin within several days after a serious burn seems as something we used to see in science fiction, but that technology has been developed worldwide for over 5 years. Compared to other currently available skin regeneration or replacement methods, this method shortens the time needed for generation of replacement skin, time needed for rehabilitation, and it is more affordable.

WARNING: The video below contains some graphic images of burns and injuries that are not suitable for everyone. We dont suggest watching if you have a weak stomach.

Spray-on skin was pioneered in Australia by Dr Fiona Wood AM, who patented her invention of spray on skin for burns victims. She was leading a committed team in the fight to save 28 Bali bombing patients suffering from between 2 and 92 percent body burns, deadly infections and delayed shock. Unlike previous techniques of skin culturing which require 21 days to produce enough cells to cover major burns, her method reduced the period to only 5 days.

The research has also been developed a couple of years ago in UK and by the US military which funds various researches related to regeneration and faster healing. They funded a research at University of Pittsburghs McGowan Institute for Regenerative Medicine where researchers developed a prototype gun that creates spray-on skin developed by military scientists.

Instead growing sheets of skin for a period which can last over a month, this approach uses stem cells which are harvested from a small patch of healthy skin from the victim or a donor. Afterwards, it is put into a solution and sprayed back on to the affected area. According to Dr Jrg Gerlach from the University of Pittsburghs McGowan Institute for Regenerative Medicine, the whole process takes only 90 minutes and the burns can heal within four days. It eliminates a major flaw of existing burns treatment, the time taken to grow new layers of skin in the lab, during which time patients can die from infection.

After creating the liquid, it is loaded into a sterile syringe in the skin cell gun and sprayed on the patients burned area. After being sprayed, the patients wound is covered with a special dressing that provides glucose, sugar, amino acids, antibiotics and electrolytes to the treated area, in order to provide nutrition and clean the wound until the stem cells establish their conversion.

The prototype skin cell gun has already been used to help several patients. So, what is the reason we arent seeing this technology used worldwide? Since there is no information about pricing related to this particular technology, Ill use a comparison to a similar method used a couple of years ago by UK researchers where costs were about $9,000 a day. Due to advance in this technology, and the increasing number of competitors in this field, we do believe this treatment should be more affordable today. In any case, if you compare it to the average hospital stay of a burn victim which lasts for two to three weeks and costs which can reach over $3,000 per day, this method proves less expensive.

UPDATE: We wanted to provide our readers with answers and satisfy our curiosity, and DrJrg Gerlach provided us additional information.

The patient shown was treated with a preliminary prototype and we expect to have our final prototype ready in a few months. The technology is not yet FDA approved, so no device can be purchased. The skin gun price will probably be in the range of $9,000, Gerlach said for RobAid.

He added that they are in the phase-I work and have to go through phase-II and II clinical studies, and he estimates theyll need around 4 years. They are developing an electronically processor controlled pneumatic device in a collaboration with a small prototyping company in Berlin, Germany, that does not injure the cells during spraying and bases on medical disposables.

Read more:
Skin cell gun sprays stem cells for fast recovery from ...

UCLA Researchers Receive Prestigious CIRM Tools and Technologies Award

Contact Information

Available for logged-in reporters only

Newswise Two scientists from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have received a California Institute of Regenerative Medicine (CIRM) Tools and Technology Award that will forward revolutionary stem cell medicine. The UCLA researchers were among only 20 scientists nationwide to receive the Tools and Technologies Award, the most of any institution represented.

Recipients receiving awards for their respective projects included Dr. James Dunn, professor of bioengineering and surgery, for his research investigating skin-derived precursor stem cells for the treatment of enteric neuromuscular dysfunction, and Dr. Hanna Mikkola, associate professor of molecular, cell and developmental biology, for her work creating a suite of engineered human pluripotent stem cell lines to facilitate the generation of patient specific hematopoietic stem cells.

UCLA Broad Stem Cell Research Center Director Owen Witte said, We are very grateful for CIRMs support of these potentially groundbreaking projects intended to overcome significant bottlenecks in driving stem cell therapies to the clinic.

The CIRM Tools and Technologies initiative is designed specifically to support research that can address regenerative medicines unique translational challenges. The award seeks to facilitate the creation, design and testing of broadly applicable novel tools and technologies for addressing translational bottlenecks to stem cell therapies.

Dr. James Dunn: Unlocking the Secrets of Neuromuscular Dysfunction

Dr. Dunns cutting-edge work focuses on assessing the therapeutic potential of skin-derived stem cells to treat neuromuscular gastrointestinal diseases. CIRM reviewers noted that, if successfully completed, the project would likely have a major impact upon the field. His lab will develop a model of intestinal neuromuscular dysfunction that is amenable to stem cell transplantation.

Dunns novel approach to treat these patients will use stem cells reprogrammed from the patients own skin (induced pluripotent stem cells) to generate the neural system to correct the intestinal dysfunction. Dunn and his team hope the research will result in a clinical trial using patient specific induced pluripotent stem cells and provide a critical step toward an improved therapeutic approach and to treat intestinal neuromuscular dysfunction.

Dr. Dunns research was additionally supported by the National Institutes and Sun West Company.

See more here:
UCLA Researchers Receive Prestigious CIRM Tools and Technologies Award

Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

The Hormel Institute has announced Rebecca Morris, leader of the Stem Cells and Cancer research section, has received a one-year, $100,000 grant from the Minnesota Chemoprevention Consortium to study bone marrow-derived cells as potential new targets for preventing skin cancer.

The consortium includes the University of Minnesota's Hormel Institute, Mayo Clinic, the U of M's Masonic Cancer Center and Hormel Foods Consortium. The consortium goes by the moniker "MC^2."

An online service is needed to view this article in its entirety. You need an online service to view this article in its entirety.

Need an account? Create one now.

kAmQ%96 |r/a C6D62C49 C6=2E6D E@ 2?@E96C AC@;64E =65 3J sC] |@CC:D E92E 92D 366? ECJ:?8 E@ 56E6C>:?6 H96E96C 3@?6 >2CC@H56C:G65 46==D A=2J 2 C@=6 😕 3C62DE 42?46Cj E92E H@C< 92D 366? 7F?565 3J 5@?2E:@?D C2:D65 E9C@F89 pFDE:?VD 2??F2= V!2:?E E96 %@H? !:?6= x?DE:EFE6 AC6DD C6=62D6]k^Am

kAmw@C>6= x?DE:EFE6 H2D 7@F?565 😕 `hca 3J y2J r] w@C>6= 2D A2CE @7 E96 & @7 | 8C25F2E6 D49@@=]k^Am

kAmxE 92D 364@>6 2 =625:?8 42?46CAC6G6?E:@?[ @C 496>@AC6G6?E:@?[ C6D62C49 724:=:EJ[ H:E9 >F=E:A=6 6IA2?D:@? 2E :ED pFDE:? =@42E:@?[ g_` `eE9 pG6] }t] #6D62C49 DEF5:6D 92G6 AC@5F465 52E2 762EFC65 😕 >2;@C D4:6?E:7:4 ;@FC?2=D[ DF49 2D r2?46C !C6G6?E:@? #6D62C49[ r6== #6A@CED[ tq:@|65:4:?6[ ~?4@D4:6?46 2?5 }2EFC6]k^Am

kAm%96 AC@;64ED F?56CE2<6? 3J |@CC:D 2C6 4@?D:56C65 3J w@C>6= x?DE:EFE6 2D 2 DE6A E@H2C5 2AA=J:?8 7@C 255:E:@?2= >2;@C 7656C2= C6D62C49 8C2?5D[ E96 AC6DD C6=62D6 D2JD] k6>my677 w2?D6=k^6>mk^Am

Read more:
Heard on the Street: Hormel Institute staffer gets $100,000 for cancer research

Stemologica Review – Let Your Beauty Came Out With Stemologica – Video


Stemologica Review - Let Your Beauty Came Out With Stemologica
Click the link below to get a risk free trial; http://skincarebeautyshop.com/go/have-your-stemologica-free-trial/ Read the Terms and Condition before you ord...

By: Yvan B.

Read the original:
Stemologica Review - Let Your Beauty Came Out With Stemologica - Video

Trial to test stem cells in MS patients

WATCH: A new trial will use a patients own stem cells in an attempt to reduce the damage done to an MS patients nervous system. Reid Fiest has the details.

TORONTO Two Canadian research centres are gearing up for a clinical trial to determine if a type of stem cell can help alleviate the symptoms of multiple sclerosis.

Researchers at the Ottawa Hospital and Winnipegs Health Sciences Centre will each recruit 20 MS patients for the trial that will test whether mesenchymal stem cells can reduce inflammation and even help repair damage already caused by the disease.

MS is thought to be an autoimmune disease that creates inflammation in the central nervous system, resulting in injury to myelin, the protective sheath that covers nerves. This damage can create a host of symptoms, leading to varying degrees of physical disability and cognitive impairment.

Mesenchymal stem cells, which are found in bone marrow, fat, skin tissue and umbilical cord blood, have the ability to modify the immune system and reduce inflammation, said neurologist Dr. Mark Freedman of the Ottawa Hospital Research Institute, who is leading the clinical trial.

Freedman said researchers want to determine if these stem cells can demonstrate anti-inflammatory properties in patients with MS.

But thats not why were doing it, he said of the study, called MESCAMS (MEsenchymal Stem cell therapy for CAnadian MS patients). We have lots of drugs that can control inflammation in multiple sclerosis thats what all the new medicines do.

The ultimate hope is that we will be able to exploit some of their other very important biological properties, which is to promote repair.

The two research centres are ready to begin enrolling patients for the trial, which has specific acceptance criteria. While most of those accepted will likely have the relapsing-remitting form of the disease, Freedman said some people with more severe primary- or secondary-progressive MS may also be eligible if they fit the criteria.

The study protocol can be accessed at http://www.clinicaltrials.gov/show/NCT02239393. It will later be posted on the website of the MS Society of Canada, which along with the Multiple Sclerosis Scientific Research Foundation has provided a $4.2-million grant for the study.

See more here:
Trial to test stem cells in MS patients

Stem cell-grown hair could help those with hair loss

For the first time, researchers have been able to use pluripotent stem cells to generate cells that can grow new hair.

Hair growing on hairless mice thanks to induced pluripotent stem cells. Sanford-Burnham Medical Research Institute

It's been theorised for years, but now human stem cells have resulted in hair growth for the very first time.

"We have developed a method using human pluripotent stem cells to create new cells capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another," said Alexey Terskikh, Ph.D., associate professor in the Development, Aging and Regeneration Program at Sanford-Burnham.

"Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn't limited by the availability of existing hair follicles."

The process started with human pluripotent embryonic stem cells -- that is, stem cells that are capable of developing into any other cell -- which were then developed into neural crest cells. These are cells that can develop into a variety of cells on the head, including brain cells, cartilage, bone and muscle cells.

From the neural crest cell point, the team coaxed the cells to grow into dermal papillae cells, the cells that nourish the skin and regulate follicle growth and formation. When transplanted -- in the case of this study, into hairless mice -- these cells flourish.

Another part of the study examined whether the same result could be achieved using dermal papillae cells taken from the scalps of adult humans. Outside the body, living in culture, these cells are not suitable for hair transplants, since they lost their ability to induce follicle formation. The number of hairs their produced was insignificant.

"In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties," said Terskikh. "We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice."

The researchers say that their research represents the first step towards a cell-based treatment for hair loss, which affects 40 million men and 21 million women in the United States.

See the original post:
Stem cell-grown hair could help those with hair loss

Schoolgirl comment points to antibiotics as new cancer treatments

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics - including one used to treat acne (doxycycline) - on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs - saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

"This is a perfect example of why it is so important to continue to invest in scientific research. Sometimes there are answers to some of the biggest questions right in front of us but without ongoing commitment to the search for these answers, we'd never find them."

See original here:
Schoolgirl comment points to antibiotics as new cancer treatments

Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

A way to eradicate cancer stem cells, using the side-effects of commonly used antibiotics, has been discovered by a University of Manchester researcher following a conversation with his young daughter.

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics -- including one used to treat acne (doxycycline) -- on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs -- saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

See more here:
Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

A cure for hair loss? Scientists grow hair on rats using stem cells – and they say the treatment could work on humans …

Achievementmade after coaxing stem cells to become papilla cells Dermal papilla is a special type of cell which is vital to follicle formation It could provide an unlimited source of cells for hair transplant procedures

By Ellie Zolfagharifard For Dailymail.com

Published: 14:15 EST, 27 January 2015 | Updated: 16:16 EST, 27 January 2015

27 shares

17

View comments

Finding a cure for baldness has become the holy grail for scientists the world over.

Now researchers in Orlando have come a step closer to a natural treatment after successfully growing new hair using human stem cells.

The breakthrough was achieved after coaxing stem cells to become dermal papilla cells a special type of cell which is vital to follicle formation.

Researchers in Orlando have come a step closer to a natural treatment for baldness after successfully growing new hair using human stem cells. Pictured is the hair growth on the leg of an adult rat

Read more from the original source:
A cure for hair loss? Scientists grow hair on rats using stem cells - and they say the treatment could work on humans ...

Researchers advance the science behind treating patients with corneal blindness

LOS ANGELES (Jan. 27, 2015) - Researchers in the Cedars-Sinai Board of Governors Regenerative Medicine Institute have devised a novel way to generate transplantable corneal stem cells that may eventually benefit patients suffering from life-altering forms of blindness.

Scientists used human corneal cells to generate pluripotent stem cells that have a capacity to become virtually any body cell. Then, putting these cells on natural scaffolds, researcher's facilitated differentiation of these stem cells back to corneal cells.

"Our research shows that cells derived from corneal stem cells are attractive candidates for generating corneal cells in the laboratory," said Alexander Ljubimov, PhD, director of the Eye Program at the Board of Governors Regenerative Medicine Institute and principal investigator on this research study.

This research, published in the journal Stem Cells Translational Medicine, marks an important first step toward creating a bank of corneal stem cells that may potentially benefit patients who suffer from many forms of corneal blindness. The group is now working to optimize the process with National Institutes of Health funding.

Corneal deficiencies may have genetic or inflammatory roots or be caused by injuries, like burns to the skin in occupational accidents. They result in damage or death of stem cells that renew the outermost part of the cornea. If left untreated, they often cause compromised vision or blindness.

Over 150,000 Americans and more than 3 million individuals worldwide are affected by corneal blindness.

###

Study collaborators include Clive Svendsen, PhD, director of the Board of Governors Regenerative Medicine Institute and professor of biomedical sciences and medicine; Dhruv Sareen, PhD, director of the Induced Pluripotent Stem Cell Core and assistant professor of biomedical sciences; Mehrnoosh Saghizadeh, PhD, assistant professor of biomedical sciences; Yaron Rabinowitz, MD, director of the Division of Ophthalmology Research; and Vincent A. Funari, PhD, director of the Genomics Core and assistant professor of pediatrics.

Citation: Sareen D, Saghizadeh M, Ornelas L, et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 2014; 3(9):1002-12.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
Researchers advance the science behind treating patients with corneal blindness

Sanford-Burnham's hair-raising study

Hair growing from human dermal papillae cells, which were cultivated from pluripotent stem cells.

Cells needed to grow hair have been produced from human stem cells, according to a study led by scientists at the Sanford-Burnham Medical Research Institute in La Jolla. The first-time feat could uncork a bottleneck in developing hair-replacement therapies, the scientists say.

Called the dermal papillae, these cells regulate hair follicle formation and growth cycles. They rapidly lose their hair-generating ability after being grown outside the body, limiting their use for hair regrowth. Another cell type derived from stem cells effectively substitutes for the dermal papillae, the scientists found.

These artificial dermal papillae cells were grown from pluripotent stem cells, which can be derived either from human embryos or a patient's own skin cells. The latter, called induced pluripotent stem cells, are of the most interest, said lead researcher Alexey V. Terskikh. Patients can donate their own IPS cells, which can be grown into the replacement dermal papillae in "unlimited" quantities," he said.

Alexey V. Terskikh, Principal Investigator, Sanford-Burnham Medical Research Institute / Sanford-Burnham Medical Research Institute

Sanford-Burnham is now looking for business partners to commercialize the discovery. More information can be found at: utsandiego.com/sbhair.

The study was published last week in the journal PLOS One. Terskikh is the study's senior author. Ksenia Gnedeva is first author.

In the lab, the human embryonic stem cells were first turned into neural crest cells, which produce brain cells, cartilage, bone, pigment and muscle cells. The cells were then converted into the artificial dermal papillae cells. These human cells induced hair formation, when transplanted along with mouse skin epidermal cells into immune-deficient and nearly hairless "nude mice".

Because nude mice were created from albino ancestors, the transplanted skin cells were chosen from dark-haired mice. This let the scientists distinguish hairs grown by the mice from cells grown by the transplanted cells.

Transplanted epidermal cells alone caused "minimal" growth, the study said.

The rest is here:
Sanford-Burnham's hair-raising study

PAR Skincare named official supplier to Senior Tour

PAR Skincare, the specially formulated skincare brand designed for outdoor enthusiasts, has been named as the Official Skincare Supplier of the European Senior Tour.

PAR Skincare products are anti-aging and protect the skin from UV radiation. They are based on the latest skincare technology, Edelweiss plant stem cells, and comprise a formulation specific for outdoor enthusiasts. PAR Skincare efficacy has been proven in clinical tests.

Andy Stubbs, Managing Director of the European Senior Tour, said: We are very pleased to announce PAR Skincare as the Official Skincare Supplier of the European Senior Tour and we believe this partnership will be a superb fit over the next three years.

Our players spend a great deal of time outdoors in varying weather conditions, so it is important that they look after their skin, and they will benefit from our association with PAR Skincare.

Christoph Schfer, General Manager of PAR Skincare, Switzerland, said: The European Senior Tour is our ideal partner. Golf players need to protect and rejuvenate their skin while playing and practicing the game outdoors. Golf players who have tried our products valued them as easy to use and performing.

Originally posted here:
PAR Skincare named official supplier to Senior Tour

Skin Care Treatment with RG-Cell Stem Cell Support Serum

Experience a New Dimension in Skin Care

The RG-Cell is the latest, breakthrough, anti-aging, skin care cosmaceutical to hit the market. It features a unique proprietary blend of stem cell activators programmed to protect your skin and visibly fight aging at the cellular level.

Scientists have shown that reactivating your dormant stem cells is the most effective process for skin rejuvenation and regeneration. This process stimulates fibroblast production of collagen, increasing skin firmness and elasticity, while reducing the appearance of fine lines and wrinkles for a smoother, silkier, vibrant and younger looking skin.

The Mayo Clinic defines Stem cells are the body's raw materials: They are cells from which all other cells with specialized functions are generated. Under the right conditions in the body or in a laboratory, stem cells divide to form more cells, called daughter cells. These daughter cells either become new stem cells (self-renewal) or become specialized cells (differentiation) with a more specific function, such as blood cells, brain cells, skin cells or heart muscle or bone. Stem cells are unique no other cell in the body has the natural ability to generate new cell types.

They can divide (through mitosis where they split into 2 separate but identical sets with 2 separate nuclei) or differentiate into diverse and specific cell types and can self-renew to produce more stem cells. In mammals, there are two broad types of stem cells:

Many specialized cells, such as in the skin, or blood, have a lifespan of only a few days. For these tissues to function, a steady replenishment of specialized cells is indispensable.

First, they are able to differentiate into all the different cell types that make up their respective tissue a property called pluripotency.

Second, they need to renew themselves in order to be able to supply new specialized tissue cells throughout life.

Skin is an essential tissue in our bodies. It is our bodys largest organ. Our skin protects us from infection, irritation and dehydration, and allows us to feel many different things, such as pressure, stress or heat. Our skin has to be constantly renewed throughout our lives and relies on a whole host of different stem cells to keep it in good shape.

Stem cells (SCs) residing in the epidermis and hair follicle ensure the maintenance of adult skin homeostasis and hair regeneration, but they also participate in the repair of the epidermis after injuries.

Continue reading here:
Skin Care Treatment with RG-Cell Stem Cell Support Serum

Telomere extension turns back aging clock in cultured human cells, Stanford study finds

A new procedure can quickly and efficiently increase the length of human telomeres, the protective caps on the ends of chromosomes that are linked to aging and disease, according to scientists at the Stanford University School of Medicine.

Treated cells behave as if they are much younger than untreated cells, multiplying with abandon in the laboratory dish rather than stagnating or dying.

The procedure, which involves the use of a modified type of RNA, will improve the ability of researchers to generate large numbers of cells for study or drug development, the scientists say. Skin cells with telomeres lengthened by the procedure were able to divide up to 40 more times than untreated cells. The research may point to new ways to treat diseases caused by shortened telomeres.

Telomeres are the protective caps on the ends of the strands of DNA called chromosomes, which house our genomes. In young humans, telomeres are about 8,000-10,000 nucleotides long. They shorten with each cell division, however, and when they reach a critical length the cell stops dividing or dies. This internal "clock" makes it difficult to keep most cells growing in a laboratory for more than a few cell doublings.

'Turning back the internal clock'

"Now we have found a way to lengthen human telomeres by as much as 1,000 nucleotides, turning back the internal clock in these cells by the equivalent of many years of human life," said Helen Blau, PhD, professor of microbiology and immunology at Stanford and director of the university's Baxter Laboratory for Stem Cell Biology. "This greatly increases the number of cells available for studies such as drug testing or disease modeling."

A paper describing the research was published today in the FASEB Journal. Blau, who also holds the Donald E. and Delia B. Baxter Professorship, is the senior author. Postdoctoral scholar John Ramunas, PhD, of Stanford shares lead authorship with Eduard Yakubov, PhD, of the Houston Methodist Research Institute.

The researchers used modified messenger RNA to extend the telomeres. RNA carries instructions from genes in the DNA to the cell's protein-making factories. The RNA used in this experiment contained the coding sequence for TERT, the active component of a naturally occurring enzyme called telomerase. Telomerase is expressed by stem cells, including those that give rise to sperm and egg cells, to ensure that the telomeres of these cells stay in tip-top shape for the next generation. Most other types of cells, however, express very low levels of telomerase.

Transient effect an advantage

The newly developed technique has an important advantage over other potential methods: It's temporary. The modified RNA is designed to reduce the cell's immune response to the treatment and allow the TERT-encoding message to stick around a bit longer than an unmodified message would. But it dissipates and is gone within about 48 hours. After that time, the newly lengthened telomeres begin to progressively shorten again with each cell division.

See more here:
Telomere extension turns back aging clock in cultured human cells, Stanford study finds

Local Teen Selected As Semi-Finalist In Intel Science Talent Search

ELK GROVE (CBS13) Hes only 17, but hes already making big waves in the science community.

A local high school senior was selected as a semi-finalist in the 2015 Intel Science Talent Search. His research on stem cells set him apart from the rest. Out of hundreds of applicants, Ryan Fong, a senior at Sheldon High School in Elk Grove, is being recognized for his research in stem cells. Its an opportunity he says he wont soon forget.

Each of these cells is genetic material from one cell, he explains.

He doesnt come from a line of doctors or medical researchers. Fong is just a teenager interested in stem cells.

Its such a young field and it holds so much potential to redefine what we think is medically possible, he says.

Fong wasnt always intrigued by science, but a couple of years ago, at the request of a teacher, he decided to enter the Teen Biotech Challenge and happened to win an internship at the UC Davis School of Medicine.

I didnt know anything about research and I didnt know what I was getting into, but I dived in head first, said Fong.

That internship became a launching pad for Fong. He was published in a medical peer review journal called Stem Cells. And this past summer, he spent his time in Stanford among doctors and researchers working on reprogramming cells from a layer of skin so that it can match any cell type in the body.

So were taking someones cells from their skin and turning them into cells that can be found in the lungs, said Fong.

Their research on the topic won Fong a spot as a semi-finalist in the 2015 Intel Science Talent Search, and a $1,000 scholarship.

Read more from the original source:
Local Teen Selected As Semi-Finalist In Intel Science Talent Search

Twist1: Complex regulator of cell shape and function

14 hours ago

Transcription factor Twist1 is involved in many processes where cells change shape or function. Thereby, Twist1 is crucial for embryonic development, but has also been implicated in cancer progression. However, the precise contribution of Twist1 to these processes is under much debate. Scientists from the Helmholtz Zentrum Mnchen describe a new mode of action: a short-term, transient activation of Twist1 primes cells for stem cell-like properties. By contrast, prolonged, chronic Twist1 activity suppresses stem cell-like traits. These results, published in the journal Cell Reports, help to unravel seemingly contradictory observations and illuminate the complexities of transcription factor action in regeneration and tumor progression.

Team leader Christina Scheel summarizes the results: "Twist1 is a developmental master regulator that has also been implicated in cancer progression. We show that transient Twist1 activation primes certain cells for stem-cell-like properties and cellular plasticity. Said differently, induction of these traits depends on Twist1, but they are only displayed by the cells after Twist1 deactivation. By contrast, chronic Twist1 activity suppresses stem-cell-like properties and promotes a phenotype that is characterized by extreme changes in cell shape and function, effectively locking the cells into an invasive, non-proliferative phenotype. Thereby, our results provide an integrative view of seemingly contradictory results concerning the effects of Twist1 in physiological and pathological processes."

Duration of Twist1 activity decisive

Scientists from the Institute of Stem Cell Research and the Institute of Experimental Genetics at the Helmholtz Zentrum Mnchen (HMGU) examined the effects of Twist1 activation on breast epithelial cells, paying particular attention to the duration of the Twist1-signal. To their surprise, cells were permanently altered after a short dose of Twist1-activation: they proliferated under very stringent conditions usually permissive only for stem cells and were able to generate complex multicellular structures, suggesting a gain of cellular plasticity.

Twist1 may fuel regeneration

A high level of plasticity implies regenerative potential. However, when activated during tumor development, Twist1 promotes aggressive behaviour in tumor cells. With their investigations, the team was able to reveal a new aspect of how Twist1 regulates cell shape and function and, thereby, impacts regeneration, but also tumor progression.

"Our results offer important insights for further mechanistic studies of regeneration in healthy and tumour cells", explains first author Johanna Schmidt. "The precise delineation of the different modes of action by Twist1 provide the basis for future studies aiming to manipulate its activity either to promote regeneration or target advanced tumors ," adds co-author Elena Panzilius.

Explore further: New mechanism involved in skin cancer initiation, growth and progression

More information: Schmidt, J. et al. (2015), Stem-Cell-like Properties and Epithelial Plasticity Arise as Stable Traits after Transient Twist1 Activation, Cell Reports, DOI: 10.1016/j.celrep.2014.12.032

See original here:
Twist1: Complex regulator of cell shape and function

Japan scientists target 3D-printed body parts

(MENAFN - The Peninsula) Japanese scientists say they are on their way to being able to create custom-made skin, bone and joints using a 3D printer.

Several groups of researchers around the world have developed small masses of tissue for implants, but now they are looking to take the next step and make them functional.

Tsuyoshi Takato, a professor at the University of Tokyo Hospital, said his team had been working to create "a next-generation bio 3D printer", which would build up thin layers of biomaterials to form custom-made parts.

His team combines stem cells - the proto-cells that are able to develop into any body part - and proteins that trigger growth, as well as synthetic substance similar to human collagen.

Using a 3D printer, they are working on "mimicking the structure of organs" - such as the hard surface and spongy inside for bones, Takato said.

In just a few hours, the printer crafts an implant using data from a Computer Tomography (CT) scan. These implants can fit neatly into place in the body, and can quickly become assimilated by real tissue and other organs in the patient, the plastic surgeon said.

"We usually take cartilage or bone from the patient's own body (for regular implants), but these custom-made implants will mean not having to remove source material," Takato said.

The technology could also offer hope for children born with bone or cartilage problems, for whom regular synthetic implants are no good because of the rate of their body's growth. The main hurdle was the heat generated by conventional 3D printers, which damages living cells and protein.

"We haven't fully worked out how to avoid heat denaturation but we already have some models and are exploring which offers the most efficient method," he said.

The artificial protein Takato and his team use was developed by Fujifilm, which has been studying collagen used in photographic films. Since it is modelled on human collagen and does not derive from animals, it can be easily assimilated in human bodies, reducing the risk of infections such as mad-cow disease.

Read the original here:
Japan scientists target 3D-printed body parts

Stem Cells to Repair Broken Chromosomes: Medicine's Next Big Thing?

FRESNO, Calif. (KFSN) --

Our bodies contain 23 pairs of them, 46 total. But if chromosomesare damaged, they can cause birth defects, disabilities, growth problems, even death.

Case Western scientist Anthony Wynshaw-Boris is studying how to repair damaged chromosomes with the help of a recent discovery. He's taking skin cells and reprogramming them to work like embryonic stem cells, which can grow into different cell types.

"You're taking adult or a child's skin cells. You're not causing any loss of an embryo, and you're taking those skin cells to make a stem cell." Anthony Wynshaw-Boris, M.D., PhD, of Case Western Reserve University, School of Medicine told ABC30.

Scientists studied patients with a specific defective chromosome that was shaped like a ring. They took the patients' skin cells andreprogrammed them into embryonic-like cells in the lab. They found this process caused the damaged "ring" chromosomes to be replaced by normal chromosomes.

"It at least raises the possibility that ring chromosomes will be lost in stem cells," said Dr. Wynshaw-Boris.

While this research was only conducted in lab cultures on the rare ring-shaped chromosomes, scientists hope it will work in patients with common abnormalities like Down syndrome.

"What we're hoping happens is we might be able to use, modify, what we did, to rescue cell lines from any patient that has any severe chromosome defect," Dr. Wynshaw-Boris explained.

It's research that could one day repair faulty chromosomes and stop genetic diseases in their tracks.

The reprogramming technique that transforms skin cells to stem cells was so ground-breaking that a Japanese physician won the Nobel Prize in medicine in 2012 for developing it.

Read more:
Stem Cells to Repair Broken Chromosomes: Medicine's Next Big Thing?

Archives