Page 9«..891011..2030..»

Archive for the ‘Cardiac Stem Cells’ Category

Over $8M in 2020 Stem Cell Funding Awards Continue to Fuel Marylands Leading Cell Therapy Industry – BioBuzz

The Maryland Stem Cell Research Commission (The Commission) recently announced over $7M in Maryland Stem Cell Fund (MSCF) grant awards for its second round of 2020 MSCF fund recipients. The MSCF, which is a program of the Maryland Technology Development Corporation (TEDCO), has awarded $157M in funding to BioHealth Capital Region (BHCR) companies seeking to accelerate stem cell research, therapies and commercialization of products since 2007.

The $7M in new funding follows MSCFs announcement in September 2019 of over $1.3M in grants for the first cohort of 2020 recipients, bringing the total 2020 MSCF award tally to approximately $8.3M for the year. The financial awards are delivered across a wide range of areas, including clinical, commercialization, validation, launch, discovery, and post-doctoral fellowships. The first cohort of funding included three commercialization and two validation awards; the second, larger recipient pool included one clinical, one commercialization, one validation, four launches, 11 discovery, and five post-doctoral awards.

Notable BHCR MSCF recipients included:

Dr. Luis Garza of Johns Hopkins University (JHU) received a clinical grant to support clinical trials for his autologous volar fibroblast injection into the stump site of amputees. The trials are exploring ways to make the skin where a prosthetic limb meets the stump site tougher and less irritable to the wearer. Skin irritation is a major issue for those with prosthetic limbs and is often a cause for individuals to stop wearing their prosthesis.

Vita Therapeutics, a company that spun out of JHU, was awarded a 300K MSCF grant to support the commercialization of the companys satellite stem cell therapy for limb-girdle Muscular Dystrophy. According to the National Organization for Rare Disorders (NORD), Limb-girdle muscular dystrophies (LGMD) are a group of rare progressive genetic disorders that are characterized by wasting (atrophy) and weakness of the voluntary muscles of the hip and shoulder areas (limb-girdle area). Vita Therapeutics is led by CEO Douglass Falk, who is a JHU alum.

Jamie Niland, VP of Baltimore, Marylands Neoprogen Inc. received part of $892,080K in funding that was part of MSCFs first 2020 grant round. Jamie is the son of Bill Niland, Neoprogens current CEO and the former leader of Baltimore, Maryland life science community anchor Harpoon Medical, which was acquired by Edwards Scientific in 2017. The award was for Neoprogens neonatal cardiac stem cells for the heart tissue regeneration program.

Dr. Brian Pollok of Rockville, Marylands Propagenix, Inc., was also the recipient of a commercialization award for his Apical Surface-Outward (ASO) airway organoids, which is a potential novel cell system for drug discovery and personalized medicine. Propagenix develops innovative new technologies that address unmet needs in epithelial cell biologyfor applications in life science research as well as in precision diagnostics, and next-generation therapeutics such as immune-oncology, tissue engineering, and regenerative medicine, according to the companys website.

In addition, Dr. Ines Silva, R&D Manager of REPROCELL, USA received an MSCF commercialization grant for its work on building a commercial neural cell bank from patient-derived induced pluripotent stem cells. REPROCELL was founded in Japan in 2003 and acquired BioServe in Beltsville, Maryland in 2014.

Dr. Sashank Reddy, the founder of JHU startup LifeSprout and Medical Director, Johns Hopkins Technology Ventures Johns Hopkins University, received a portion of the $1,334,462 distributed for launch grants in 2020. The grant will go to support the launch of regenerative cell therapies for soft tissue restoration. LifeSprout recently closed a $28.5M seed round.

Past MSCF grant recipients include Frederick, Marylands RoosterBio, Inc. and Theradaptive, Inc., and Baltimore, Marylands Gemstone Biotherapeutics and Domicell, Inc., among others.

TEDCOs MSRF program continues to lend its deep support and ample funding to build and grow Marylands burgeoning and exciting regenerative medicine industry. Well be keeping a close eye on these companies as they grow and make future contributions to the thriving BHCR biocluster.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

Here is the original post:
Over $8M in 2020 Stem Cell Funding Awards Continue to Fuel Marylands Leading Cell Therapy Industry - BioBuzz

Insight on the Growth of Autologous Stem Cell Based Therapies Market Growth with Challenges, Standardization, Competitive Market Share and Top Players…

The Autologous Stem Cell Based Therapies Market globally is a standout amongst the most emergent and astoundingly approved sectors. This worldwide market has been developing at a higher pace with the development of imaginative frameworks and a developing end-client tendency.

Autologous Stem Cell Based Therapies market reports deliver insight and expert analysis into key consumer trends and behaviour in marketplace, in addition to an overview of the market data and key brands. Autologous Stem Cell Based Therapies market reports provides all data with easily digestible information to guide every businessmans future innovation and move business forward.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Market Report @ https://www.researchmoz.com/enquiry.php?type=S&repid=2278181&source=atm

The worldwide Autologous Stem Cell Based Therapies market is an enlarging field for top market players,

The key players covered in this studyRegeneusMesoblastPluristem Therapeutics IncU.S. STEM CELL, INC.Brainstorm Cell TherapeuticsTigenixMed cell Europe

Market segment by Type, the product can be split intoEmbryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells

Market segment by Application, split intoNeurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases

Market segment by Regions/Countries, this report coversUnited StatesEuropeChinaJapanSoutheast AsiaIndiaCentral & South America

The study objectives of this report are:To analyze global Autologous Stem Cell Based Therapies status, future forecast, growth opportunity, key market and key players.To present the Autologous Stem Cell Based Therapies development in United States, Europe and China.To strategically profile the key players and comprehensively analyze their development plan and strategies.To define, describe and forecast the market by product type, market and key regions.

In this study, the years considered to estimate the market size of Autologous Stem Cell Based Therapies are as follows:History Year: 2014-2018Base Year: 2018Estimated Year: 2019Forecast Year 2019 to 2025For the data information by region, company, type and application, 2018 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.researchmoz.com/enquiry.php?type=E&repid=2278181&source=atm

This Autologous Stem Cell Based Therapies report begins with a basic overview of the market. The analysis highlights the opportunity and Autologous Stem Cell Based Therapies industry trends that are impacted the market that is global. Players around various regions and analysis of each industry dimensions are covered under this report. The analysis also contains a crucial Autologous Stem Cell Based Therapies insight regarding the things which are driving and affecting the earnings of the market. The Autologous Stem Cell Based Therapies report comprises sections together side landscape which clarifies actions such as venture and acquisitions and mergers.

The Report offers SWOT examination and venture return investigation, and other aspects such as the principle locale, economic situations with benefit, generation, request, limit, supply, and market development rate and figure.

Quantifiable data:-

Geographically, this report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity in these key regions, covering North America, Europe, China, Japan, Southeast Asia, India

You can Buy This Report from Here @ https://www.researchmoz.com/checkout?rep_id=2278181&licType=S&source=atm

Research objectives and Reason to procure this report:-

Finally, the global Autologous Stem Cell Based Therapies market provides a total research decision and also sector feasibility of investment in new projects will be assessed. Autologous Stem Cell Based Therapies industry is a source of means and guidance for organizations and individuals interested in their market earnings.

See the original post here:
Insight on the Growth of Autologous Stem Cell Based Therapies Market Growth with Challenges, Standardization, Competitive Market Share and Top Players...

Trending: Autologous Stem Cell Based Therapies 2020: Global Size, Supply-Demand, Product Type and End User Analysis To 2026 – Weekly Wall

LOS ANGELES, United States: QY Research has recently published a report, titled Global Autologous Stem Cell Based Therapies Market Size, Status and Forecast 2020-2026. The market research report is a brilliant, complete, and much-needed resource for companies, stakeholders, and investors interested in the global Autologous Stem Cell Based Therapies market. It informs readers about key trends and opportunities in the global Autologous Stem Cell Based Therapies market along with critical market dynamics expected to impact the global market growth. It offers a range of market analysis studies, including production and consumption, sales, industry value chain, competitive landscape, regional growth, and price. On the whole, it comes out as an intelligent resource that companies can use to gain a competitive advantage in the global Autologous Stem Cell Based Therapies market.

Key companies operating in the global Autologous Stem Cell Based Therapies market include , Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, Autologous Stem Cell Based Therapies

Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :

https://www.qyresearch.com/sample-form/form/1889061/global-autologous-stem-cell-based-therapies-market

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Autologous Stem Cell Based Therapies market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Global Autologous Stem Cell Based Therapies Market Segment By Type:

, Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells Autologous Stem Cell Based Therapies

Global Autologous Stem Cell Based Therapies Market Segment By Application:

, Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases

Competitive Landscape

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the global Autologous Stem Cell Based Therapies market.

Key companies operating in the global Autologous Stem Cell Based Therapies market include , Regeneus, Mesoblast, Pluristem Therapeutics Inc, US STEM CELL, INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe, Autologous Stem Cell Based Therapies

Key questions answered in the report:

For Discount, Customization in the Report: https://www.qyresearch.com/customize-request/form/1889061/global-autologous-stem-cell-based-therapies-market

TOC

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered: Ranking by Autologous Stem Cell Based Therapies Revenue1.4 Market by Type1.4.1 Global Autologous Stem Cell Based Therapies Market Size Growth Rate by Type: 2020 VS 20261.4.2 Embryonic Stem Cell1.4.3 Resident Cardiac Stem Cells1.4.4 Umbilical Cord Blood Stem Cells1.5 Market by Application1.5.1 Global Autologous Stem Cell Based Therapies Market Share by Application: 2020 VS 20261.5.2 Neurodegenerative Disorders1.5.3 Autoimmune Diseases1.5.4 Cardiovascular Diseases1.6 Study Objectives1.7 Years Considered 2 Global Growth Trends2.1 Global Autologous Stem Cell Based Therapies Market Perspective (2015-2026)2.2 Global Autologous Stem Cell Based Therapies Growth Trends by Regions2.2.1 Autologous Stem Cell Based Therapies Market Size by Regions: 2015 VS 2020 VS 20262.2.2 Autologous Stem Cell Based Therapies Historic Market Share by Regions (2015-2020)2.2.3 Autologous Stem Cell Based Therapies Forecasted Market Size by Regions (2021-2026)2.3 Industry Trends and Growth Strategy2.3.1 Market Top Trends2.3.2 Market Drivers2.3.3 Market Challenges2.3.4 Porters Five Forces Analysis2.3.5 Autologous Stem Cell Based Therapies Market Growth Strategy2.3.6 Primary Interviews with Key Autologous Stem Cell Based Therapies Players (Opinion Leaders) 3 Competition Landscape by Key Players3.1 Global Top Autologous Stem Cell Based Therapies Players by Market Size3.1.1 Global Top Autologous Stem Cell Based Therapies Players by Revenue (2015-2020)3.1.2 Global Autologous Stem Cell Based Therapies Revenue Market Share by Players (2015-2020)3.1.3 Global Autologous Stem Cell Based Therapies Market Share by Company Type (Tier 1, Tier 2 and Tier 3)3.2 Global Autologous Stem Cell Based Therapies Market Concentration Ratio3.2.1 Global Autologous Stem Cell Based Therapies Market Concentration Ratio (CR5 and HHI)3.2.2 Global Top 10 and Top 5 Companies by Autologous Stem Cell Based Therapies Revenue in 20193.3 Autologous Stem Cell Based Therapies Key Players Head office and Area Served3.4 Key Players Autologous Stem Cell Based Therapies Product Solution and Service3.5 Date of Enter into Autologous Stem Cell Based Therapies Market3.6 Mergers & Acquisitions, Expansion Plans 4 Market Size by Type (2015-2026)4.1 Global Autologous Stem Cell Based Therapies Historic Market Size by Type (2015-2020)4.2 Global Autologous Stem Cell Based Therapies Forecasted Market Size by Type (2021-2026) 5 Market Size by Application (2015-2026)5.1 Global Autologous Stem Cell Based Therapies Market Size by Application (2015-2020)5.2 Global Autologous Stem Cell Based Therapies Forecasted Market Size by Application (2021-2026) 6 North America6.1 North America Autologous Stem Cell Based Therapies Market Size (2015-2020)6.2 Autologous Stem Cell Based Therapies Key Players in North America (2019-2020)6.3 North America Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)6.4 North America Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 7 Europe7.1 Europe Autologous Stem Cell Based Therapies Market Size (2015-2020)7.2 Autologous Stem Cell Based Therapies Key Players in Europe (2019-2020)7.3 Europe Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)7.4 Europe Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 8 China8.1 China Autologous Stem Cell Based Therapies Market Size (2015-2020)8.2 Autologous Stem Cell Based Therapies Key Players in China (2019-2020)8.3 China Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)8.4 China Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 9 Japan9.1 Japan Autologous Stem Cell Based Therapies Market Size (2015-2020)9.2 Autologous Stem Cell Based Therapies Key Players in Japan (2019-2020)9.3 Japan Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)9.4 Japan Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 10 Southeast Asia10.1 Southeast Asia Autologous Stem Cell Based Therapies Market Size (2015-2020)10.2 Autologous Stem Cell Based Therapies Key Players in Southeast Asia (2019-2020)10.3 Southeast Asia Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)10.4 Southeast Asia Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 11 India11.1 India Autologous Stem Cell Based Therapies Market Size (2015-2020)11.2 Autologous Stem Cell Based Therapies Key Players in India (2019-2020)11.3 India Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)11.4 India Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 12 Central & South America12.1 Central & South America Autologous Stem Cell Based Therapies Market Size (2015-2020)12.2 Autologous Stem Cell Based Therapies Key Players in Central & South America (2019-2020)12.3 Central & South America Autologous Stem Cell Based Therapies Market Size by Type (2015-2020)12.4 Central & South America Autologous Stem Cell Based Therapies Market Size by Application (2015-2020) 13 Key Players Profiles13.1 Regeneus13.1.1 Regeneus Company Details13.1.2 Regeneus Business Overview13.1.3 Regeneus Autologous Stem Cell Based Therapies Introduction13.1.4 Regeneus Revenue in Autologous Stem Cell Based Therapies Business (2015-2020))13.1.5 Regeneus Recent Development13.2 Mesoblast13.2.1 Mesoblast Company Details13.2.2 Mesoblast Business Overview13.2.3 Mesoblast Autologous Stem Cell Based Therapies Introduction13.2.4 Mesoblast Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.2.5 Mesoblast Recent Development13.3 Pluristem Therapeutics Inc13.3.1 Pluristem Therapeutics Inc Company Details13.3.2 Pluristem Therapeutics Inc Business Overview13.3.3 Pluristem Therapeutics Inc Autologous Stem Cell Based Therapies Introduction13.3.4 Pluristem Therapeutics Inc Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.3.5 Pluristem Therapeutics Inc Recent Development13.4 US STEM CELL, INC.13.4.1 US STEM CELL, INC. Company Details13.4.2 US STEM CELL, INC. Business Overview13.4.3 US STEM CELL, INC. Autologous Stem Cell Based Therapies Introduction13.4.4 US STEM CELL, INC. Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.4.5 US STEM CELL, INC. Recent Development13.5 Brainstorm Cell Therapeutics13.5.1 Brainstorm Cell Therapeutics Company Details13.5.2 Brainstorm Cell Therapeutics Business Overview13.5.3 Brainstorm Cell Therapeutics Autologous Stem Cell Based Therapies Introduction13.5.4 Brainstorm Cell Therapeutics Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.5.5 Brainstorm Cell Therapeutics Recent Development13.6 Tigenix13.6.1 Tigenix Company Details13.6.2 Tigenix Business Overview13.6.3 Tigenix Autologous Stem Cell Based Therapies Introduction13.6.4 Tigenix Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.6.5 Tigenix Recent Development13.7 Med cell Europe13.7.1 Med cell Europe Company Details13.7.2 Med cell Europe Business Overview13.7.3 Med cell Europe Autologous Stem Cell Based Therapies Introduction13.7.4 Med cell Europe Revenue in Autologous Stem Cell Based Therapies Business (2015-2020)13.7.5 Med cell Europe Recent Development 14 Analysts Viewpoints/Conclusions 15 Appendix15.1 Research Methodology15.1.1 Methodology/Research Approach15.1.2 Data Source15.2 Disclaimer15.3 Author Details

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Read more here:
Trending: Autologous Stem Cell Based Therapies 2020: Global Size, Supply-Demand, Product Type and End User Analysis To 2026 - Weekly Wall

Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease – Science Advances

Abstract

Cardiovascular disorders are still the primary cause of mortality worldwide. Although intramyocardial injection can effectively deliver agents to the myocardium, this approach is limited because of its restriction to needle-mediated injection and the minor retention of agents in the myocardium. Here, we engineered phase-transition microneedles (MNs) coated with adeno-associated virus (AAV) and achieved homogeneous distribution of AAV delivery. Bioluminescence imaging revealed the successful delivery and transfection of AAV-luciferase. AAVgreen fluorescent proteintransfected cardiomyocytes were homogeneously distributed on postoperative day 28. AAVvascular endothelial growth factor (VEGF)loaded MNs improved heart function by enhancing VEGF expression, promoting functional angiogenesis, and activating the Akt signaling pathway. The results indicated the superiority of MNs over direct muscle injection. Consequently, MNs might emerge as a promising tool with great versatility for delivering various agents to treat ischemic myocardial disease.

The American Heart Association has stated that cardiovascular disease (CVD) is the primary cause of mortality worldwide, leading to more than 17.3 million deaths per year; the number of deaths is estimated to exceed 23.6 million by 2030 (1). Thus, all potential treatment strategies to preserve left ventricle (LV) function by limiting infarct expansion and alleviating adverse remodeling are currently being investigated (2). To date, various injectable agents, including biomaterials, cells, genes, and proteins (37), have been studied and shown to have various advantages. Direct intramyocardial delivery of agents through myocardial transfection in the ischemic regions where vascular delivery procedures were excluded and the systemic administration of vectors might pose potential hazards following the procedures of myocardial revascularization was suitable (8). However, the effects of intramyocardially delivered therapeutics are restricted to the site of injection (911). Another major drawback is the minor myocardial retention of injected agents. Previous reports have demonstrated that few injected cells are retained in injured hearts, which is one of the principal reasons for the failure of cell therapy for myocardial repair (12, 13). On the other hand, all body tissues can be exposed to drugs if they accidently enter the left ventricular cavity, which can reduce therapeutic efficacy and contribute to unexpected results. Therefore, the current limitations associated with this strategy must be mitigated. Cardiac gene transfer has been considered to be a promising therapeutic tool in the field of cardiology (14, 15). Adeno-associated virus (AAV)9, a serotype with high cardiac tropism, persistent transgene expression, and low pathogenicity, has also been applied for cardiac gene therapy (16). Transgenic expression of AAVs starts from 5 to 7 days after administration, and remarkably elevated viral transfection efficiency is achieved at weeks 2 to 3. Delivered vectors continue to express their transgenes for 6 to 12 months in vivo (17, 18). AAV-mediated gene expression in vivo declines with time due to promoter shutoff and loss of AAV-transduced cells and AAV particles (19).

Microneedles (MNs) are an array of small needles, up to 1 mm in length, that provide secure channels for the passage of therapeutic substances (2, 20), especially macromolecules, without causing skin injury or pain; these macromolecules include nucleic acids in the form of genes (21), vaccines (22), and proteins (2325). The precise and efficient transfusion and homogeneous distribution of therapeutic agents delivered via MNs make MN-mediated delivery a promising new administration method for ischemic heart disease (IHD) treatment. In this study, we fabricated phase-transition MNs (PTMs) and studied their properties as well as their safety and practicality for experimental application. A schematic illustrating the overall study design using AAV-harboring MNs (MN-AAV) is shown in Fig. 1A. Figure 1B represents our practice for the application of MNs to deliver therapeutic agents via endoscopy assisted microthoracotomy surgery. A series of endoscopic images demonstrate the in vivo application of MNs to deliver therapeutic agents to the rat heart as shown in Fig. 1C. MNs loaded with fluorescent fluorescein isothiocyanate (FITC)labeled AAV (MN-FITC-AAV) and AAV containing the luciferase coding sequence (MN-AAV-LUC) enabled successful therapeutic agent delivery and gene transfection of target heart regions. AAVgreen fluorescent protein (GFP)loaded MNs (MN-AAV-GFP) enabled fine distribution of AAV particles, presenting an advantage over direct injection (DI), after which positive cells were limited in location to the injection site in vivo. Thus, MN-AAV, which allow agents to be burst-released, can achieve even distributions of agents at the target myocardium rather than confining the agents to the site of administration. Heart performance and histological examinations showed that MNs loaded with AAV vectorencoding vascular endothelial growth factor gene (MN-AAV-VEGF) could improve cardiac function, reduce scar size, ameliorate adverse remodeling, and elevate myocardial perfusion in a rat model of myocardial infarction (MI). MN-mediated gene therapy showed distinct superiority over DI and may therefore provide an alternative, minimally invasive therapeutic option for heart diseases.

(A) Ischemic hearts were administered MN-AAV with the assistance of a customized apparatus. The MNs swelled following application; consequently, the therapeutic agents were burst-released into precise regions to ameliorate cardiac dysfunction through angiogenic effects. (B) Diagram of our practice for the application of the MNs to rat heart via endoscopy assisted microthoracotomy surgery. (C) A series of endoscopic images demonstrating the application of MNs for delivery of therapeutic agents to a rat heart. Scale bars, 600 m. Photo credits: Hongpeng Shi, Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.

The fabrication process of the MN patches is shown schematically in fig. S1. The prototype MN-AAV patch was 6 mm in diameter and contained 44.75 1.28 needle tips with base widths of 334 22.88 m, spacing of 465.3 39.51 m, and heights of 850 3.25 m as shown in the scanning electron microscopy (SEM) image (Fig. 2A). The representative stress-strain curves are shown in Fig. 2B (left). Uniaxial tensile tests showed that the MNs had a Youngs modulus of 13.13 1.34 MPa, while the MN-AAV had a Youngs modulus of 12.28 0.80 MPa. The Youngs modulus of the MN group was higher than that of the MN-AAV group; however, this difference was not significant (P > 0.05) (Fig. 2B). Both the MN and MN-AAV had higher moduli than the native myocardium (modulus, several tens of kilopascal), indicating that the stiffness of the MNs with or without AAV loading was sufficient to penetrate the soft myocardium.

(A) SEM images of MNs. (B) Representative stress-strain curves between the group of MNs with AAV (MN-AAV) or MNs without AAV. The histograms represent the comparison test of the two groups. n = 4 patches in each group. (C) Transitions between the dried and swollen states of the MNs. The histograms show the fold changes in MN volume between the dried and swollen stages (n = 8 MN tips, randomly selected from three patches). Photo credits: Hongpeng Shi, Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. (D) Release kinetics of MN-AAV. (E) Fluorescent images (scale bars, 500 m) and magnified images (scale bars, 250 m) indicating MNs surface-coated with FITC-AAV (green) particles and MNs without loading of FITC-AAV. (F) The three-dimensional (3D) construction images of MN-FITC-AAV. All data are reported as the means SD. NS, not significant.

The swelling capacity of the MN bodies was monitored, and volume expansion was measured and calculated using a previously published method. The mean base diameter of the swollen MN bodies among three patches was 670.5 81.63 m, 678.9 89.17 m, and 683.4 67.31 m. The mean height of the swollen MN bodies was 1704 56.75 m, 1701 73 m, and 1705 66.63 m. Measurements of total recorded MN tips in height and base diameter were 1704 64.89 m and 677.6 78.93 m, respectively, which were significantly greater than those of the MN bodies in the initial state. The transitions between the dried and swollen states of MNs are shown in Fig. 2C. Swelling led to an 8.3-fold variation, indicating that the MN tips exhibited a high swelling ratio.

Quantification of AAV release into supernatant collected after incubation at predetermined time points indicated a burst release model. A schematic of the experimental procedures performed to collect the released AAV fluid is provided in fig. S2. As shown in Fig. 2D, burst release led to increased initial AAV delivery, as follows: 90.93% of the virus was released in a 2-s period, while 92.42% of the virus was released in a 5-s period, and slower release followed the initial rapid release. Almost complete release was achieved by 24 hours. The titers of elution fluid released from MN-AAV (n = 3) were determined by real-time polymerase chain reaction (PCR), which indicated that 4.93 1010 vector genomes (vg) of AAV were loaded in each MN array. We also loaded greater amounts of AAV (the quantity of loaded AAV achieved 1011 vg) with three gradient quantities (1, 1.5, and 2; n = 4 patches in each group). The amounts of loaded AAV were calculated to be 3.14 1011 vg, 5.04 1011 vg, and 6.03 1011 vg, respectively; the fold differences of these groups were 1-, 1.69-, and 2.02-folds, respectively. Consequently, we could control the quantity of loaded vectors in each MN array by varying the amount of AAV solutions added. Furthermore, MNs exhibited outstanding drug-loading capacity.

To confirm AAV binding, we performed a critical examination of virus labeling with FITC dyes. As expected, compared with the control MNs without FITC-AAV, the AAV-loaded MNs revealed a strong fluorescence signal on the surface of the MN bodies (Fig. 2E, left and middle). Conversely, a specific fluorescence signal was absent in the control MN group (Fig. 2E, right). Ortho view (fig. S3) of a confocal laser scanning micrograph of z-stack images visualizes the MN tip as transverse section (x-y) and lateral section (x-z and y-z) views. The three-dimensional (3D) images generated by confocal microscopy confirmed that FITC-labeled AAV was successfully coated on the surface of the MN bodies (Fig. 2F). The fluorescence intensity of the fluorescent images acquired by confocal microscopy at the middle of MN bodies (400 m from the base) was measured and compared among 11 randomly selected MNs in one patch. The average optical was measured using Image-Pro Plus software to evaluate the fluorescence intensity. The fluorescence intensity was 0.1127 0.0233 with a little variation among the MNs. In addition, the intensity analysis at the middle of MN bodies among three MN patches (8 or 11 MNs were randomly selected from each patch) was measured and compared. No differences were observed among three patches (0.1127 0.0233 versus 0.1156 0.0254 versus 0.1084 0.0279, all P > 0.05 in the multigroup comparisons) (fig. S4A).

A schematic of the cell culture procedures is provided in Fig. 3A. The released vectors were tested for their infectious capacity and transgene expression in human embryonic kidney (HEK) 293 cells by flow cytometry and fluorescence microscopy. After a 3-day incubation, the distribution of GFP-positive cells was determined using fluorescence microscopy (Fig. 3B). Flow cytometry analysis revealed that 5.14% of the cells were transduced by the supernatant released from MN-AAV2-GFP (Fig. 3C). A comparison analysis of the GFP-positive cells indicated that the percentage of positive cells was significantly different between the MN-AAV2-GFP and normal control (NC) groups (P = 0.0045). We evaluated the efficiency of AAV9 transduction into HEK 293 cells between virus-containing MNs subjected to a freeze-thaw process (MN-AAV-FT) and those not subjected to a freeze-thaw process (MN-AAV-NFT). There was no difference between the MN-AAV-FT and MN-AAV-NFT groups (the relative percentage of the transduction efficiency was 97.2% versus 100%) (fig. S5).

(A) Schematic of the cell culture experimental procedures performed to investigate the cell infectivity of released AAV. (B) Representative fluorescent images of GFP-positive cells in the MN-AAV-GFP group captured under a confocal microscope. Scale bars, 100 m. DAPI, 4,6-diamidino-2-phenylindole. (C) Qualification and comparison of GFP-positive cells between normal 293 cells and AAV-GFP transfected cells as detected by flow cytometry. SSC-A, side-scatter area; FSC-A, forward-scatter area. (D) Representative images of crystal violetstained migratory human umbilical vein endothelial cells (HUVECs) on the porous membranes of Transwell inserts among the three groups and histograms of the numbers of migrated cells. Five random fields were selected for the statistical analysis. All data are reported as the means SD. **P < 0.01 and ****P < 0.0001.

The angiogenic effect of AAV-VEGF was evaluated in vitro. Endothelial cell migration is of great importance in neovessel formation; therefore, the influence of the AAV-VEGFtransfected H9C2 cell culture supernatant on human umbilical vein endothelial cell (HUVEC) migration was assessed. The assay indirectly proved that the H9C2 cells infected by MN-AAV-VEGF released vectors could secrete VEGF into the culture supernatant, which strongly stimulated HUVEC migration [179.8 6.76 per high-power field (HPF) in the H9C2-VEGF group] compared to that observed in the AAV-GFPinfected H9C2 cells (79.2 8.53 per HPF in the H9C2-GFP group, P < 0.0001) and the NC H9C2 group (80.8 9.34 per HPF, P < 0.0001; Fig. 3D).

Figure 4A briefly illustrates the procedures used to demonstrate successful AAV delivery and gene transfection mediated by MN-AAV in vivo. The precise region of the rat heart that received the methylene blueloaded MNs was imaged and dissected. A customized vacuum apparatus was used for the implantation of MN patch (Fig. 1A and movies S1, S2, and S3). As shown in Fig. 4B and movies S3 and S4, the epicardium with puncture spots and the myocardium were stained by the released dyes. Similarly, MN- FITC-AAV were used to further confirm the successful insertion of the MNs. Fluorescent images of the horizontal and vertical sections of the LV wall indicated the penetration of the MNs, which resulted in an even distribution of agents (Fig. 4C, middle) compared to the distribution in the DI group (Fig. 4C, left). The fluorescence intensity in horizontal sections of rat hearts (Fig. 4C, middle) after MN-FITC-AAV administration (n = 3 animals; 15 puncture points were analyzed in each fluorescent image) was measured, and no significant differences were observed (0.1324 0.0172 versus 0.1289 0.0207 versus 0.1337 0.0212, all P > 0.05 in the multigroup comparisons), confirming the uniformity of AAV loading (fig. S4B). In the transverse plane of the LV following MN-FITC-AAV application (Fig. 4C, right), the penetration depth of MNs into the LV wall was approximately 1000 m.

(A) Schematic illustrating the study design, involving the MN application in this section. (B) Confirmed insertion of methylene blueloaded MNs into the myocardium. The black arrow denotes an area of methylene bluestained myocardium. Photo credits: Hongpeng Shi, Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. (C) Representative fluorescent and hematoxylin and eosin (HE) images of LV walls that received DI of FITC-AAV and MN-FITC-AAV. The LV wall was cryosectioned horizontally (n = 3 animals per group; scale bars, 500 m) or transversely (scale bars, 400 m) for the MN-FITC-AAVtreated hearts. The dashed line denotes the shape of MN-FITC-AAV following application. (D) Representative echocardiographic images and left ventricular function parameters between the MN and NC groups. The data are presented as the means SD; n = 3 animals per group. (E) Representative images of bioluminescence (n = 5 animals per group) and Western blot (WB) assay results (n = 3 animals per group) 4 weeks following MN application. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. (F) Representative fluorescence micrographs showing the spatial distribution of GFP-positive cells (green) in the MN-AAV-GFP and DI-AAV-GFP groups at day 28. Cardiomyocytes were identified by anti-cTnT (cardiac troponin T) antibodies (red); nuclei were stained with DAPI (blue). n = 5 animals per group. Scale bars, 200 m. Separated and merged distribution data of fluorescent signals between the MN-AAV-GFP and DI-AAV-GFP groups are presented. All data are reported as the means SD.

Inflammatory staining was performed on sections from hearts subjected to MN-AAV and DI-AAV treatments to reveal signs of tissue inflammation. Normal rats were used as controls. We quantified CD68-positive inflammatory cell infiltration and found that the tissue densities of CD68-positive cells were indistinguishable among the three groups (P > 0.05) (fig. S6). In addition, we examined the heart performance of rats that underwent MN administration, which also confirmed the safety of the MN patch. The echocardiographic results indicated that MN application did not induce any functional impairment. Ejection fraction (EF), fractional shortening (FS), left ventricular systolic inner diameter (LVIDs), and left ventricular diastolic inner diameter (LVIDd) values were recorded and compared to those of normal rats (all P > 0.05) (Fig. 4D).

To trace the expression of luciferase delivered by MN-AAV-LUC in living animals 4 weeks after MN-AAV administration, we applied a noninvasive small animal bioluminescence imaging system with high sensitivity. As shown in Fig. 4E (top), the AAV-LUC vectors transfected the target myocardium, resulting in high levels of luciferase expression in the heart, while no bioluminescence signals were detected in NC rats. In addition, proteins were extracted from the MN-AAV-LUC and NC groups, and an antifirefly luciferase antibody was used to detect the expression in Western blot (WB) assays (Fig. 4E, bottom), which indicated successful AAV delivery into and transfection of the myocardium.

To characterize the distribution of gene expression mediated by MN patches or DI, we analyzed rats that were subjected to gene delivery with AAV vectors encoding a GFP reporter gene. GFP-positive cells were detected in the anterior wall of the LV. The distribution of gene expression following the MN application was marked by an almost even distribution (Fig. 4F, top). In contrast, in the DI group, as described in previously published studies, the transfected cardiomyocytes were mainly confined to the site of the injection (Fig. 4F, middle). The distribution of fluorescent signals at five randomly selected horizontal lines in the fluorescent images was measured by ImageJ software (ImageJ 1.47v, National Institutes of Health). The results were plotted and fitted with OriginPro 8.5 software (OriginLab Corp., Northampton, MA, USA). The fluorescent signals were scattered evenly in the MN-AAV-GFP group, while in the DI-AAV-GFP group, the signals were confined to a specific region (Fig. 4F, bottom). The merged images of the two groups vividly demonstrated the variation in the distributions. No GFP-positive cells were found in the organs of lungs, kidneys, liver, or skeletal muscles, as shown in fig. S7. As indicated by representative in vivo images, no luciferase signals were observed in the defined organs, as shown in Fig. 4E (top).

To assess variations in cardiac function, we measured EF, FS, LVIDs, and LVIDd by echocardiography 2 days after left anterior descending coronary artery (LAD) ligation (baseline data) and 4 weeks after MN application (end point data). The study design for the AAV-VEGF treatment via MNs is illustrated in Fig. 5A. The parameters of the four groups (the MI, MI + MN, MI + DI-VEGF, and MI + MN-VEGF groups) measured at baseline did not differ significantly, indicating equivalent heart performance (fig. S8). Twenty-eight days after MN application, the rats with MI that received MN-VEGF had the greatest EF and FS values and the smallest LVIDs and LVIDd values (Fig. 5B and fig. S9A). EF was improved in the MN-AAV-VEGF group compared with the DI-AAV-VEGF (36.10 5.25% versus 30.29 2.10%, P = 0.042), MI (36.10 5.25% versus 24.28 4.34%, P = 0.0003), and MI + MN (36.10 5.25% versus 24.03 5.87%, P = 0.0002) groups. The MI + MN-VEGF group showed greater FS (18.28 2.97%) than the DI-AAV-VEGF group (15.04 1.05%, P = 0.0034), the MI + MN group (11.76 3.05%, P = 0.0002), and the MI group (11.93 2.27%, P = 0.0002). LVIDd and LVIDs in the MN-AAV-VEGF group were significantly lower than those in the MI group (LVIDd, 9.12 1.09 mm versus 10.55 0.69 mm, P = 0.0179; LVIDs, 7.59 1.01 mm versus 9.33 0.81 mm, P = 0.0048). The absolute changes in heart function (EF and FS) are shown in Fig. 5B. The MI and MI + MN groups showed significantly worse cardiac function in terms of the two parameters than the DI-AAV-VEGF and MI + MN-VEGF groups (EF, 18.77 2.36% in the MI group versus 6.07 4.63% in the MI + MN-VEGF group, P < 0.0001; FS, 9.97 1.25% in the MI group versus 3.14 2.48% in the MI + MN-VEGF group, P < 0.0001). Compared with the DI-AAV-VEGF, MI, and MI + MN groups, the MN-AAV-VEGF group showed a lack of significant change in cardiac function. Thus, MN-mediated VEGF expression improved cardiac function.

(A) Schematic illustrating the study design involving MN-AAV-VEGF application and improvement of injured heart function. (B) Representative echocardiographic images of the experimental groups 4 weeks following MN application. Left ventricular function parameters (EF, FS, LVIDs, and LVIDd) and absolute changes in heart function (EF and FS) were also measured and compared among the three groups. n = 6 animals per group. (C) Representative Massons trichromestained myocardial sections 4 weeks after MN-AAV-VEGF application. The scar areas and infarct sizes were quantified on the basis of Massons trichromestained images. Scale bars, 1 mm. (D) Identification of collagens via picrosirius red staining among the three groups. Scale bars, 1 mm. Representative polarized light images of the picrosirius redstained sections were subjected to polarized light microscopy. Scale bars, 100 m. Histograms showing the comparisons of collagen content and the type I/type III collagen ratios among the three groups. Right: Representative fluorescence micrographs identifying type I collagen (green) and type III collagen (red); the nuclei were stained with DAPI (blue). n = 3 animals per group. Scale bars, 500 m. All data are reported as the means SD. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

The infarction size and scar area were measured according to our previously described methods (26). Massons trichrome staining and magnified images revealed the morphology and fibrosis of heart tissues (Fig. 5C and fig. S9B). Compared to those in the MI and MI + MN groups (10.04 0.94 mm2 and 9.92 1.54 mm2, respectively), the scar areas (Fig. 5C, bottom) in the MI + MN-VEGF group (7.02 0.85 mm2) and the MI + DI-VEGF group (8.47 0.82 mm2) were effectively controlled by MN-VEGF application (fig. S9B). There were significant differences between the MI + MN-VEGF group and the control group (MI + MN-VEGF versus MI, P = 0.0004; MI + MN-VEGF versus MI + MN, P = 0.0006; MI + MN-VEGF versus MI + DI-VEGF, P = 0.049). In addition, the infarct size (Fig. 5C, bottom) was not different between the MI (71.27 8.37%) and MI + MN (68.86 3.25%) groups (P = 0.6187). The infarct size was reduced in the AAV-VEGFtreated groups (56.48 5.64% in the MI + DI-VEGF group and 46.17 10.68% in the MI + MN-VEGF group) (P < 0.0001 in the MI + MN-VEGF group compared with the MI group, P = 0.0002 in the MI + MN-VEGF group compared with the MI + MN group, and P = 0.00458 in the MI + MN-VEGF group compared with the MI + DI-VEGF group).

Picrosirius red staining combined with polarization microscopy was used to examine collagen fibers and to quantitatively determine their levels and types in scars in the four groups (Fig. 5D, left, and fig. S9C). Type I collagen was identified by yellow or red staining, and type III collagen was indicated by green staining under polarized light. The total collagen content in the infarcted region was similar among the groups, indicating no difference in collagen deposition (61.42 10.24% in the MI group, 58.97 11.83% in the MI + MN group, 60.16 3.86% in the MI + DI-VEGF group, and 58.97 11.83% in MI + MN-VEGF group, all P > 0.05). Moreover, the ratio of type I to type III collagen (type I/type III) was increased in the MI and MI + MN groups (3.63 3.79% versus 2.99 4.64%, P > 0.05). However, the ratio in the MI + MN-VEGF group (1.11 1.24%) was lower than those in the MI and MI + MN groups (P < 0.05). The ratio in the MI + DI-VEGF group (1.89 1.44%) was slightly higher than that in the MI + MN-VEGF group; however, this difference was not statistically significant (P = 0.2254). In addition, costaining of sections with type I (green) and type III (red) collagen antibodies was used for visualization of the collagen types (Fig. 5D, right, and fig. S9C).

To investigate the angiogenic and arteriogenic effects of MN-VEGF in the border zone and infarction region, we used antibodies against von Willebrand factor (vWF) and -smooth muscle actin (SMA) to stain endothelial cells and vascular smooth muscle cells, respectively. Tubular structures stained by fluorescent antibodies were identified as vessels. The capillary density was estimated on the basis of the vWF-positive vessels per HPF, and the arterial density was evaluated on the basis of SMA-positive vessels per HPF using the data collected at 4 weeks. The mature index was quantified as the ratio of SMA-positive vessels to the total number of vessels (27). As illustrated in Fig. 6B and fig. S9D, in the infarction region, the capillary density in the MI group was identical to that in the MI + MN group (8.33 1.51 per HPF versus 8.33 1.97 per HPF, P > 0.05). However, the value in the MI + MN-VEGF group (39.67 11.15 per HPF) significantly differed from that in the MI (P < 0.0001), MI + MN (P < 0.0001), and MI + DI-VEGF (25.83 5.19 per HPF, P = 0.0011) groups. Regarding the capillary density in the border zone, no difference was found between the MI and MI + MN groups (14.17 1.72 per HPF in the MI group and 14.17 2.40 per HPF in the MI + MN group, P > 0.05). The capillary density in the MI + MN-VEGF group was 72.67 13.46 per HPF (P < 0.0001 compared to those in the MI and MI + MN groups and P = 0.0002 compared to that in the MI + DI-VEGF group). The arterial density was compared as shown in Fig. 6B and fig. S9D. Compared to the MI + MN-VEGF group (38.83 9.77 per HPF, all P < 0.0001), the MI and MI + MN groups (3.83 1.72 per HPF in the MI group and 3.67 1.03 per HPF in the MI + MN group, P > 0.05) showed decreases of 90% in the infarction region. In addition, the arterial density of the MI + MN-VEGF group was significantly higher than that of the MI + DI-VEGF group (24.50 4.85 per HPF, P = 0.0012). In the border region, the arterial density was 6.67 2.50 per HPF in the MI group and 7.17 2.23 per HPF in the MI + MN group (P > 0.05). In the MI + MN-VEGF group, the arterial density was 66.83 12.86 per HPF (P < 0.0001 compared to those in the MI and MI + MN groups and P = 0.0025 compared to that the MI + DI-VEGF group). As shown in Fig. 6B and fig. S9D, the mature index in the infarction region was 36.55 11.60% in the MI group and 37.40 10.53% in the MI + MN group, with no difference between the two groups. In the MI + MN-VEGF group, the value was 86.3 1.67%, which was better than that in the MI (P < 0.0001), MI + MN (P < 0.0001), and MI + DI-VEGF (83.88 5.41%, P > 0.05) groups. No significant difference in the mature index was observed between the MI + MN-VEGF (85.20 4.46%) and MI + DI-VEGF (84.53 6.24%, P > 0.05) groups. The mature index in the MI + MN-VEGF group was markedly greater than that in the MI (39.97 13.85%) and MI + MN (41.73 9.23%) groups (all P < 0.0001). No significant differences in serum VEGF levels were detected at various time points between the MN-VEGF and MI groups (all P > 0.05) (Fig. 6C). The samples were measured in duplicate.

(A) Representative immunofluorescent images of vWF (green) and SMA (red) in the tissues of the infarction and border region showing increased vessel density in the MN-AAV-VEGF group compared with those in the other two groups. n = 3 animals per group. Scale bars, 50 m. Vessels are indicated by white triangles. (B) Quantification of capillary density, arterial density, and the mature index among the three groups in the infarction and border regions. (C) VEGF levels were detected by enzyme-linked immunosorbent assay (ELISA) in serum from the MI + MN-VEGF and MI groups. n = 3 animals per group. (D) Representative WB results for VEGF, VEGF receptor (VEGFR), phosphoinositide 3-kinase (PI3K), Akt, phosphorylated Akt (p-Akt), and caspase-9 in heart homogenates from the MI + MN-VEGF and MI groups. n = 3 animals per group. The bar graphs show the quantified protein levels. All data are reported as the means SD. *P < 0.05 and ****P < 0.0001.

The binding of VEGF to VEGF receptor 2 (VEGFR2) leads to the activation of diverse intracellular extracellular signaling pathways. WB analysis (Fig. 6D) showed that VEGF and VEGFR2, the high-affinity receptor of VEGF, were significantly up-regulated (all P < 0.05). The Akt and phosporylated Akt protein levels in AAV-treated hearts were significantly higher than those in non-AAVtreated MI hearts (all P < 0.05). The protein level of phosphoinositide 3-kinase (PI3K) in the MI + MN-VEGF group was increased, although the difference was not significant (P > 0.05). The level of the proapoptotic protein caspase 9 was significantly decreased in the MI + MN-VEGF group (P < 0.05).

CVD is the primary cause of mortality worldwide (28). Intramyocardial injection of therapeutic agents is a treatment strategy for patients suffering from this disease (29). Although local injection is a commonly used administration method to deliver agents to the myocardium, the effects are inevitably restricted to the injection site (911), which is attributed to the localized high concentrations of the agents. In addition, unlike in other organs, the injected agents can be extruded from the myocardium due to continuous dynamic muscle contraction. As reported in the published literature, a primary obstacle to cell therapy is the extremely low rate of myocardial retention after intramyocardial injection (13). It has been reported that almost 5 to 15% of intramyocardially injected cells are retained within the myocardium (30, 31); thus, only a fraction of injected cells contribute to therapeutic benefit. Development of new types of instruments and technologies to overcome this disadvantage is desperately needed. Figure S10 represents our vision for the clinical translation of MNs, in which MNs will be used to deliver therapeutic agents via a small thoracic incision to decrease the risk of infection induced by open-heart surgical procedures. Different from traditional approach of gene delivery, we developed an MN-AAV to deliver target gene into the myocardium. Coronary artery revascularization [percutaneous coronary intervention (PCI) or coronary-artery bypass grafting (CABG)] is an established therapeutic intervention. However, myocardial revascularization for ischemic regions with small coronary arteries remains a challenge in clinical practice. Gene therapy to improve vascular perfusion of those ischemic regions might be a promising alternative choice, especially for patients with IHD who are not candidates for PCI or CABG. In addition, because of the poor gene transfer efficiency in the myocardium and the inability of the therapy to target ischemic myocardium, the transduction efficiency was reduced. Thus, delivering MNs via less invasive surgeries repeatedly might improve the efficiency of gene transfection.

Angiogenic gene therapy for IHD is a promising option for the treatment of MI (32, 33). VEGF is important for the development and differentiation of the vascular network, with favorable preclinical evidence showing that it notably increases perfusion, improves tissue metabolism, improves cardiac function, and provides cardiac protection. However, intracoronary administration of VEGF protein has not yielded much clinical success (34). The principal limitation of administration of this protein is the short half-life of exogenous proteins in target tissue, which reduces the therapeutic benefit (35). To prolong the effects of angiogenic cytokines, recombinant plasmid DNA and viral vectors can be used, which allow for the consistent replication of the VEGF gene and maintain long-lasting protein expression in transfected cells. A series of studies have demonstrated improvement in rodent and large-animal (dog, sheep, and pig) models of ischemia and infarction following gene therapy with VEGF (3638). Similar results were obtained in our study. MN-AAV-VEGF ameliorated cardiac dysfunction in a rat model of MI. Therefore, the application of proangiogenic substances may be a new treatment option for patients with IHD. However, the results have not been very promising except for safety; follow-up conducted for over 10 years has indicated that there are no significant transgene or vector-related side effects (39).

On the other hand, previously published research has reported that high levels of circulating VEGF in acute MI can induce acute cor pulmonale, resulting in increased mortality (40). Unregulated and continuous expression of VEGF has been reported to lead to angioma formation at the site of injection (33, 41). However, in the future, cardiomyocyte-targeted viruses and improved gene transfection efficiency may enable the delivery of AAV vectors at low starting doses through repeated administration to control the expression of angiogenic factors. Furthermore, the side effects caused by VEGF overexpression might be ameliorated by regulation of gene expression, such as through gene switching, and other therapeutic approaches, such as antiangiogenic therapy using anti-VEGF antibodies. The management of angiogenic factor expression in both serum and target regions is important for enhancing the local therapeutic efficiency of this method and decreasing possible adverse effects (32). Consequently, careful application-specific consideration is warranted when selecting a processing strategy that minimizes unwanted responses.

To overcome difficult obstacles associated with the DI mode of agent administration, we fabricated MN-AAV to deliver the VEGF gene to rat hearts, which led to optimal distribution and local therapeutic efficiency. In addition, the coated vectors instantly penetrated into the myocardium, thus improving the retention of the delivered drugs, which indicated a better therapeutic effect in the MI + MN-VEGFtreated group than in the MI + DI-VEGF group. No significant differences in VEGF levels were detected at various time points between the MI + MN-VEGF and MI groups (Fig. 6C), similar to the results of experiments using large-animal models (32). In addition, no GFP or luciferase expression was detected in other organs (fig. S7 and Fig. 4E).

Versatile MN patches were fabricated according to our previously reported method (20) and were eventually machined into the desired sizes to achieve various characteristics, including sufficient strength to penetrate the target myocardium (Fig. 4B), water-swelling capacity (Fig. 2C), high drug-loading capacity, drug-loading uniformity (fig. S4), and therapeutic burst release kinetics (Fig. 2D). The phase transition capability allows efficient drug diffusion from a drug reservoir through a polymeric matrix with predictable accuracy (42). Researchers have long sought to control and overcome the burst release of agents during the application of MNs (43). However, this shortcoming was effectively used to deliver agents to the myocardium in this study. The intrinsic properties of the MNs and the modified AAV harboring approach resulted in a unique kinetic profile characterized by enhanced AAV delivery with predictable accuracy and early burst release kinetics. Extended release behavior in vitro was detected and confirmed by the AAV tilter assay (Fig. 2D). Combined with in vivo studies (Figs. 5 and 6), AAV-VEGFloaded MN can effectively ameliorate cardiac functions, reduce the scar size, and elevate myocardial perfusion in rat MI model, which suggested that MN-mediated gene delivery to targeted heart regions. Considering that we developed an MN-AAV to deliver gene vectors to repair injured myocardium and the isolated rat heart will suffer various pathophysiologic alterations after being removed from the living body, it is hard to simulate the complicated situations in the body by using Franz diffusion cells. Consequently, the release experiment by using Franz diffusion cell involved heart tissue is not conducted in our study. In addition, researchers have reported that the drug release results obtained using phosphate-buffered saline (PBS) and Franz diffusion cell were comparable (4446), indicating that these two experiments may be equivalent in representing the release profile of MNs. Regarding AAV loading, specific fluorescence imaging was absent in the control MNs, conversely, the surfaces of the` MN-FITC-AAV revealed a strong fluorescence signals (Fig. 2E), and the fluorescence intensity of MNs was identical among different patches, indicating the uniformity of drug loading in the MNs. In addition, the 3D images constructed by confocal microscopy confirmed that FITC-AAV was successfully and uniformly coated onto the surfaces of the MN bodies (Fig. 2F).

Hematoxylin and eosin (HE) staining of sections from hearts subjected to MN treatment revealed no signs of tissue necrosis, as shown in the representative sections. Although the wound area was relatively larger, the pinhole produced by each MN was quite small, and the tissue around each pinhole was not damaged (Fig. 4C). These results demonstrated that the wounds on the hearts might be acceptable and might self-heal after a period of time. Whether application in the hearts of large animals will result in any damage needs to be further studied. The inflammatory staining of the heart sections and the unaffected performance of the hearts treated with the MNs further confirmed the safe application of MNs (Fig. 4D and fig. S6). Previous research has suggested that MNs serve as channels connecting the patch and the host myocardium. For example, MN-loaded cardiac stem/stromal cells can secrete paracrine elements to treat injured hearts with good biocompatibility in rats (2). The spatial distribution of gene transfer mediated by MNs was also evaluated in this study. GFP-positive cells were detected and well distributed in the anterior wall of the LV after MN treatment (Fig. 4F, top). In contrast, in the DI group (Fig. 4F, middle), as described in previously published studies, the transfected cardiomyocytes were confined to the site of the injection (9, 10). MNs mediated gene delivery to the myocardium with a fine distribution and strong targeting precision. Analysis of MN-FITC-AAV and methylene bluestained MNs further confirmed the successful delivery of the released dyes and AAV particles into the myocardium with a homogeneous distribution (Fig. 4, B and C, and movies S3 and S4). The composite image of the in vivo imaging results also confirmed the targeted delivery of and transfection with the AAV-LUC vectors (Fig. 4E).

Given the safety and good distribution of MNs, we investigated the practicability of MN-mediated delivery of therapeutic agents, namely, AAV-VEGF, to the myocardium to treat injured hearts. First, the angiogenic effect of AAV-VEGF was tested in vitro. The HUVEC migration assay indicated that the culture medium of VEGF-transfected H9C2 cells had a powerful influence on the migration of HUVECs (Fig. 3D). The stimulation is an important step in neovessel formation (47). Then, MN-VEGF was used to treat the injured hearts. The echocardiographic results revealed significantly higher EF and FS values and significantly lower LVIDs and LVIDd values in the MN-VEGF group than in the DI-VEGF group and the other two control groups (Fig. 5B and fig. S9A), indicating functional improvement. No significant differences were observed in cardiac function between the MI and MI + MN groups. Significant decreases in the scar area and infarct size were observed in the MI + MN-VEGFtreated group, which showed outcomes superior to those in the three control groups (Fig. 5C). The increased expression of type I and type III collagen in infarcted zones has been suggested to protect hearts from remodeling and dilation (48). Although the differences among the four groups in total collagen content were not statistically significant, the ratio of type I to type III collagen was greater in the control groups than in the MI + MN-VEGFtreated group (Fig. 5D and fig. S9C), showing that the application of MN-VEGF modified the composition of collagen in the infarct scars (predominantly favoring type III collagen). Type III collagen confers elasticity and increases compliance (48), which might lead to the improvement of heart function.

Several studies have reported that VEGF expression improves cardiac function through the induction of angiogenesis (32, 49). Similar results were obtained in our study. As illustrated in Fig. 6A, compared with those in the control groups, the capillary and arterial densities in the scar tissue and border region were significantly increased in the MI + MN-VEGF group, which exhibited an elevated mature index. As previously reported, various signaling pathways, including the PI3K/Akt kinase pathway, were activated by the binding of VEGF to VEGFR, which can preserve cardiac performance (50). Consistent with the results from WB analysis of heart homogenates, the levels of many prosurvival proteins and a few proapoptotic proteins significantly differed in MI + MN-VEGFtreated hearts compared to MI hearts at 4 weeks after MN-VEGF application, indicating that signal transduction pathways were activated by the overexpression of VEGF (Fig. 6D).

This study has several limitations. First, the therapeutic effects of MN-VEGF were evaluated for 4 weeks in this study. In the future, longer time points should be used to determine the roles of MN-VEGF in regulating cardiac function. Second, to further broaden the clinical application of MNs, in vivo studies with large-animal models incorporating MN administration via minimally invasive surgery should be investigated.

In summary, we developed an AAV-loaded MN patch and showed that transepicardial permeation resulted in a homogeneous distribution of agents against direct local intramyocardial injection (after which the agents were confined to the site of injection). Our present study supports the practicality, safety, and versatility of MNs for delivery of therapeutic agents via minimally invasive surgery. This is a proof of concept study supporting translation to clinical applications.

The MNs were prepared according to our previously described method (20). These MNs are made of polyvinyl alcohol (PVA) and are not degradable. They will swell and dissolve after 6 months. The PVA can form microcrystalline domains as cross-linking junctions to produce a PTM patch. The PTM achieves highly efficient delivery of drugs and carriers without depositing the needle tip materials into the body. Briefly, patches were prepared with an air-permeable but water-impermeable mold. A vacuum was applied to the back to suck the aqueous PVA solutions into the holes within the mold. Then, a freeze-thaw process was conducted to form microcrystalline domains to enhance the mechanical strength of the MNs. Drying and punching processes were used after detaching the MNs from the molds (fig. S1). The mechanical properties of the MNs with or without AAV loading were assessed by a universal testing machine (MTS Echo, Exceed 40, USA) equipped with Test Suite TW software and a 100-N loading cell (51). In the compression assay, every patch was compressed to a strain of 20% at a rate of 10 mm/min with an initial load of 0.01 N. The compressive modulus was automatic calculated according to the GB/T 1041-2008/B/0 standard in the machine program. The differential strain (2 1) was 0.0025. A series of modulus was calculated at each point with strain of 0 to 20% and then was linearly fitted to obtain compressive modulus (n = 4 patches in each group). For testing and comparison of the swelling capability of the MNs, MN patches were immersed in PBS and incubated at 37C for at least 1 day until completely swelled; then, the MNs were photographed and measured. At least three measurements were taken, and mean values were reported. The fold change in the tip volume, which was based on the presumption of a conical shape, was calculated to reveal the phase-transition capability of MNs (52).

MN patches of the desired size (6 mm in diameter) were obtained with a punch. The patches were pierced through enlarged Parafilm (Parafilm M laboratory film) membranes (53). AAV9 vectors with cytomegalovirus (CMV) promoters containing the gene sequence for VEGF165 (AAV-VEGF) or GFP (AAV-GFP) alone were constructed by Shanghai GeneChem Co. Ltd. (Shanghai, China). An AAV9 vector with a CMV promoter containing the gene sequence for LUC (AAV-LUC) and an AAV2 vector with a CMV promoter containing the gene sequence for GFP (AAV2-GFP, which was used to assess the efficiency of transgene expression in vitro) were constructed by Hanbio (Shanghai, China). The AAV-containing solutions (~5 1010 vg) were dispensed to the patches and absorbed by the MN bodies. After completely drying in a customized low-temperature dryer, the film was peeled. The MN-AAV was used in in vitro and in vivo studies.

AAV was labeled with FITC (Thermo Fisher Scientific) according to a labeling protocol and a published paper (54). A Slide-A-Lyzer dialysis cassette (Slide-A-Lyzer Dialysis Cassette Kit, Invitrogen; 3.5K molecular weight cutoff, 3 ml) was applied to separate the unconjugated dyes. The yield of FITC conjugate was coated and immobilized onto the surfaces of the MNs with the aid of the intrinsic absorption capacity conferred by the phase-transition characterization.

MN patches were affixed to the inner caps of 1.5-ml Eppendorf microcentrifuge tubes filled with PBS. The tubes were inverted and incubated in a thermostatic shaker (37C with shaking at 100 rpm). The elution fluid was centrifuged to draw the solution from the cap to the base of the tube at 300g and collected at 2 s, 5 s, 10 s, 60 s, 100 s, 2 min, 6 min, and 1 day. Equal quantities of AAV were also detected as NCs. A scheme of these procedures is provided in fig. S2. In the published literature, real-time PCR has been applied to determine AAV titers (55). A real-time PCR assay of serial dilutions of plasmid vector standards and collected samples was performed in a Roche LC96 machine. The samples were preincubated at 95C for 3 min and then subjected to 40 cycles of 94C for 30 s (denaturation), 62C for 30 s (annealing), and 72C for 30 sec (amplification). The data were recorded as cycle threshold (Ct) values. Ct values are linearly correlated with the copy numbers of the templates in the exponential phase (55). The formula of the standard curve between the Ct value and the viral genome copy number was acquired from the standard samples. The titers of the released vectors in the samples were calculated according to the formula. The cumulative percentages of released vectors at different time intervals were calculated by dividing the values of the AAV quantity in the control group. The detection of each sample was performed in triplicate. In addition, the assay was repeated three independent experiments, and the mean values of each time point were used for graph plotting (Fig. 2D).

HEK 293 cells were cultured in Dulbeccos modified Eagles medium (Gibco, 11965092) supplemented with 10% fetal bovine serum (Gibco, 10270-106) and 1 penicillin-streptomycin (Gibco, 15070-063). Subconfluent 293 cells were seeded on the bottoms of the wells (Transwell culture inserts, pore size of 8 m; Corning, 3422). Virus-containing MNs (n = 3, each MN patch contained ~5 1010 vg AAV2-GFP) were placed on the filter inserts and incubated in medium for 1 hour (Fig. 3A). The percentages of 293 cells transfected by the released AAV2-GFP vectors were determined by flow cytometry of 10,000 cells (Beckman Coulter). In addition, mounted 293 cells grown on cleaned coverslips in cell culture dishes were imaged using fluorescence microscopy. We evaluated the transduction efficiency of MN-AAV before and after the freeze-thaw process. Subconfluent 293 cells were seeded on the bottoms of the wells. Virus-containing MNs (subjected and not subjected to the freeze-thaw process; n = 5 in each group) were placed on the filter inserts. After a 3-day incubation, the percentages of GFP-positive cells were determined by flow cytometry.

The culture supernatants of H9C2-VEGF cells transfected with released AAV-VEGF vectors and control groups (NC H9C2 cells and AAV-GFP transfected H9C2 cells) were collected. For migration assays, HUVECs (1 105 cells) in 200 l of culture medium without serum were added to Transwell inserts (Transwell culture inserts, pore size of 8 m; Corning, 3422), and 800 l of culture supernatant from each of the three groups was added to the lower Transwell chamber. The HUVECs were cultivated in a cell culture incubator for 20 hours. The cells were then fixed in methanol and stained with crystal violet solution (0.5%) at room temperature for 30 min. Cotton swabs were used to remove nonmigrated cells. The experiment was performed in triplicate. The transmigrated cells were photographed (200 magnification) with a Nikon Digital Sight DS-U2 (Nikon, Tokyo, Japan) camera attached to an Olympus BX50 microscope (Olympus Optical Co. Ltd., Tokyo, Japan). The total migrated HUVECs were quantified in five randomly selected HPFs. The HUVECs were purchased from the Shanghai Institutes for Biological Sciences of the Chinese Academy of Sciences. The H9C2 cells were purchased from the American Type Culture Collection (CRL1446, cardiac myoblasts from rats).

Sprague-Dawley rats (male, 200 to 250 g) were obtained from the Shanghai Laboratory Animal Center. All procedures used in the study conformed to the Guide for the Care and Use of Laboratory Animals and were under the supervision of the Shanghai Jiao Tong University Institutional Animal Care and Use Committee. The Sprague-Dawley rats were anesthetized through intraperitoneal injection of pentobarbital sodium (30 mg/kg) and intubated with cannulas connected to a rodent ventilator. We previously applied MN patches to the skin by pressing with a thumb (at a force of 2.0 to 2.5 kg) (20). However, exertion of this heavy pressure to fix MNs on rat hearts while they are beating at 500 beats/min is difficult. Thus, a customized apparatus that operates via a principle similar to that of off-pump coronary aortic bypass grafting stabilizers (which provide stability during coronary revascularization surgery in patients suffering from CVD) was used for MN implantation (Fig. 1, A and C, and movies S1 and S3). The customized apparatus was a cylindrical conducting cavity with a backing plate. The inner and outer diameters were 9.2 and 10.3 mm, respectively. The inside cavity was 2.2 mm in height. An orifice (2.7 mm in diameter) was located in the center of the backing plate and was attached with a suction tube to a suction source. The MNs were attached to the backing plate with adhesive tape. There was a small gap (1.0 mm) between the hard backing of the MNs and the backing plate to ensure the patency of the cavity. When suction was provided, the targeted myocardial region entered the cavity of the customized apparatus. Consequently, MNs were passively and completely inserted into the soft myocardium. After stopping the supply of suction, the MNs detached from the backing plate and were maintained on the surface of the epicardium for 6 min. The negative pressure was ~8 kPa (~60 mmHg) at the time of MN application. The suction intensity (~400 mmHg) applied to immobilize beating hearts during coronary artery bypass surgery is clinically safe and does not cause myocardial damage (56). In the DI group, 50 l (~5 1010 vg) of AAV-GFP and AAV-VEGF, the same quantity of virus as that used in the MN-AAV group was injected into the left anterior wall in three equal aliquots using a 27-gauge needle via three injections into the predesignated area (57). The success of LAD ligation, which was used to induce the MI model, was confirmed by regional cyanosis of the anterior LV and an increase in the ST segment in the electrocardiogram (26). MN and MN-VEGF were implanted following MI. Echocardiographic measurements were taken for the four groups (the MI, MI + MN, MI + MN-VEGF, and MI + DI-VEGF groups) 2 days and 4 weeks after surgery. Isoflurane anesthesia was used to perform standard transthoracic echocardiography using an ultrasound imaging system (Vevo 2100 Imaging System, Visual Sonics, Toronto, ON, Canada). To assess cardiac function, echocardiographic data, including EF, FS, LVIDs, and LVIDd values, were collected and analyzed.

Methylene blue and FITC-AAVloaded MNs were used to confirm the insertion of the MNs following application to target heart regions in vivo. For analysis of MN insertion, the delivery of methylene blue and FITC-AAV to precise regions of the heart was assessed by observing and quantifying the puncture spots in the epicardium and heart sections. MN-AAV-LUC were applied to the left anterior wall in normal rats and detected by an in vivo fluorescence imaging system after 4 weeks. The luciferase activity in the region of interest was analyzed after intraperitoneal injection of the XenoLight d-Luciferin - K+ Salt bioluminescent substrate and detection with an in vivo bioluminescence imaging system (IVIS Spectrum, PerkinElmer, Waltham, MA, USA) 10 min after the injection of substrate.

We compared the myocardial tissue density of CD68a pan-macrophage marker-positive macrophages among the MN-AAV, DI-AAV, and NC groups 7 days after the AAV vectors were delivered to the myocardium. In addition, cardiac function was measured in the rats that received the MNs, and normal rats were used as controls.

LV walls transfected with AAV-GFP and other rat organs, including the kidneys, lungs, liver, and skeletal muscles, were harvested at the end of the functional experiments, embedded, and frozen in Tissue-Tek optimum cutting temperature compound. Then, the walls were cryosectioned horizontally at an 8-m thickness, and 4% paraformaldehyde was applied to fix the heart samples for 3 days at 4C. The fixed tissues were embedded in paraffin and sectioned at a thickness of 4 m. The sections were placed onto slides and used for picrosirius red, HE, Massons trichrome, and immunofluorescence staining. WB assays were performed with standard WB techniques, as previously described (58), and the antigen-antibody reactions were visualized by enhanced chemiluminescence (Thermo Fisher Scientific, Rockford, IL, USA). The antibodies used in the current study are shown in table S1. Quantification was performed by densitometry. Independent experiments were repeated in triplicate. The tissue sections were stained with primary antibodies and then incubated with fluorescent secondary antibodies. The fluorescent images were acquired under a Zeiss LSM 700 confocal microscope or a fluorescence microscope.

For analysis of variations in serum VEGF, blood samples were collected from the MI and MI + MN-VEGF groups 0, 1, 2, 3, and 4 weeks after LAD ligation. The levels of serum VEGF were detected with an enzyme-linked immunosorbent assay (ELISA) kit for human VEGF (R&D Systems) according to a standard protocol and the manufacturers specifications. The samples were measured in duplicate.

Statistical analysis was performed using IBM SPSS software version 23.0. The data are presented as the means SD. The P values were calculated using one-way analysis of variance (ANOVA) with post hoc least significant difference multiple comparison tests to compare four groups or Students t test to compare two groups. The criterion of statistical significance was set at P < 0.05 (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: Funding: This work was supported by grants from the National Natural Science Foundation of China (81671832, 81571826, and 81690262), the Natural Science Foundation of Shanghai (18ZR1401900), the Shanghai Municipal Education CommissionGaofeng Clinical Medicine Grant Support (826158), and the Shanghai Municipal Key Clinical Specialty Construction Project. Author contributions: H.S. and T.X. contributed equally to this work. H.S., T.X., T.J., F.W., X.Y., and Q.Z. designed the research. H.S., T.X., C.J., S.H., Q.Y., and Y.Y. performed the cellular and animal experiments, analyzed the data, and drafted the paper. D.L. and Z.Y. performed the test of mechanical properties. Q.Z., X.Y., F.W., and T.J. directed and supervised the study. All authors contributed to the scientific discussions, data interpretation, and the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

See the original post here:
Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease - Science Advances

Scientists Find This Relatively Harmless Virus Can Attack and Damage Human Heart – International Business Times, Singapore Edition

The world is increasingly becoming aware of the various kinds of damages that the SARS-CoV-2 can cause. However, researchers from Virginia Tech have found that the relatively harmless Adenovirus can cause heart conditions, which can be as life-threatening as the one induced by COVID-19.

According to the first-of-its-kind study, adenovirus can hamper the electrical signaling pathways between cells in the heart and also impair the ability of the cell to make new communication channels. The scientists exposed heart cells to the virus and learned of the potent effects it had on them.

"This is the first time we're putting this human virus on human heart cells to see what it does in the context of infected heart muscle cells. That's the real power of this," James Smyth, lead author of the study, said.

Adenoviruses belong to a class of common viruses that cause infections in the lining of the lungs, eyes, nervous system, and urinary tract. They often give rise to coughs, fever, pink eye, and sore throats, among others. While it generally affects children, all are prone to it.

The communication between heart muscles takes place through channels called gap junctions. They are formed by proteins known as connexins. Creating a bridge between two cells, gap junctions leads to the sharing of electrical signals that aid in the rhythmic contraction of the heart muscle cells. However, gap junctions can also alert neighboring cells about viral attacks.

Through the study, the researchers intended to demonstrate that the virus hijacks gap junctions, and when it does, it can decrease the production of connexin43(a component of a gap function). This in turn interrupts the electrical system that enables regular functioning of the heart, leading to arrhythmias (irregular heartbeat), and in extreme cases, cardiac death.

The researchers designed a diagnostic technique that employed pluripotent stem cell derived-cardiomyocytes, which are skin cells that have been made to convert to heart cells. The adenovirus was then applied to the cardiomyocytes and the resulting interactions were observed.

As expected, the virus hijacked the gap junctions in order to facilitate its own replication. However, the scientists also observed something that they had not anticipated. It was noted that two distinct processes were being carried out by the virus and that it inflicted dual damage to the cell's capacity to communicate with their neighbors. "Firstly, it was rapidly closing existing channels, and secondly it was shutting down the cells' ability to make new ones," explained Patrick Calhoun, co-author of the study.

Another aspect that caught the eye of the authors was the manner in which the virus prevented the creation of connexin43 and the formation of gap junctions. A protein pathway that is conventionally associated with the making of fresh connexin, was instead made to suppress its production by the virus. "We might learn something very new about the molecular biology there that's causing that switch," Smyth said

Smyth admits that the research is bound by the limitations of extending the results to a living heart while the experiment was conducted in vitro. However, highlighting the potential value of the findings, he asserted, "Fundamental studies provide the footing for the translational research that discovers therapeutics and diagnostic methods that improve people's health."

Going beyond the sheer understanding of viral infection, the research, Calhoun emphasized, can generate new therapeutic interventions for diseased hearts. "We're essentially learning from adenovirus to find the most efficient ways to stop, rather than cause, arrhythmias," he stressed.

See original here:
Scientists Find This Relatively Harmless Virus Can Attack and Damage Human Heart - International Business Times, Singapore Edition

Biomedicals big year: Grants fund research on skin, heart cells, cancer and more – Binghamton University

By Chris Kocher

June 18, 2020

The Thomas J. Watson School of Engineering and Applied Sciences Department of Biomedical Engineering has earned nearly $4 million in grants from 201820 (as of March 2020). Associate Professor Sha Jin alone received three grants totaling $1.2 million for her diabetes research. Funding agencies include the National Institutes of Health, the National Science Foundation and the National Institute of Standards and Technology.

Guy German

ASSOCIATE PROFESSOR

RESEARCH TOPIC: HUMAN SKIN

THE GOAL: Understanding how different factors can cause the mechanical properties of our skin to change. The human body has many barriers, and skin is arguably the most important, protecting us from the external environment. When skin becomes broken or ruptured, that barrier is lost. It can be caused by surgical incisions, penetrating trauma, diseases that cause lesions and chapping from cold environments. German explores how bacteria can degrade integrity; the effects of chronological- and photo-aging; and how to create bio-inspired materials that control crack propagation and the movement of fluids on their surfaces.

Tracy Hookway

ASSISTANT PROFESSOR

RESEARCH TOPIC: HEART CELLS

THE GOAL: Turning stem cells into functioning cardiac cells.

The human heart does not have the ability to repair itself after heart attacks or similar cardiac events. By merging the fields of stem-cell biology, tissue engineering and cardiovascular physiology, Hookway is trying to make models of cardiovascular tissue in a Petri dish that are more similar to what is in our bodies. One challenge is that the heart is not one cell type; in fact, it is multiple types of cells working together to achieve function.

Sha Jin

ASSOCIATE PROFESSOR

RESEARCH TOPIC: DIABETES

THE GOAL: Generating pancreatic tissue from stem cells.

One experimental treatment for diabetes currently in clinical trials through the U.S. Food and Drug Administration is islet transplantation, but there are fewer donors than needed. Human-induced pluripotent stem cells cells that can self-renew by dividing could offer a renewable source for islets, but they remain a challenge because of limited knowledge about how islets form. Jins lab has been working to direct stem cells to differentiate and mature into pancreatic islet organoids using a variety of approaches; when successful, these islets would be transplanted into humans.

Ahyeon Koh

ASSISTANT PROFESSOR

RESEARCH TOPIC: HUMAN SWEAT

THE GOAL: Utilizing sweat to generate electricity for flexible biosensors and to monitor stress levels.

Kohs research aims to give us real-time information about how our bodies are functioning, such as for glucose monitoring, wound care and post-surgery cardiac health. She is currently working with other Binghamton professors on two microfluidic systems that can collect and use the sweat that our body produces. One of them will have sweat-eating bacteria that will power biosensors, and the other will monitor stress levels by measuring the amounts of the steroid hormone cortisol that are secreted.

Gretchen Mahler

ASSOCIATE PROFESSOR

RESEARCH TOPIC: ORGAN-ON-A-CHIP

THE GOAL: Creating 3D microfluidic cell-culture chips that simulate the mechanics and physiological response of organs and tissues.

Mahlers current research which has applications for cardiovascular disease and cancer focuses on how disruptions in a tissues mechanical or chemical environment can lead to disease initiation and progression. She currently is working with three other professors two from Watson, one from Harpur College of Arts and Sciences on a National Science Foundation-funded study of calcific aortic valve disease, and she also is interested in how food additives alter gastrointestinal health.

Kaiming Ye

PROFESSOR AND DEPARTMENT CHAIR

RESEARCH TOPIC: CANCER VACCINE

THE GOAL: Developing a vaccine that will slow or halt the growth of future tumors.Yes research is targeting the protein CD47, which is part of the membrane that covers human cells. It also sends a dont eat me signal to a bodys immune system normally a good thing, but a problem when cells become cancerous. In a 2019 study using mice treated with their experimental vaccine, Ye and his co-investigators found a two-fold reduction in tumor growth rates and five-fold reduction in size in the tumors that did form.

Follow this link:
Biomedicals big year: Grants fund research on skin, heart cells, cancer and more - Binghamton University

Global Autologous Stem Cell Based Therapies Market 2020 Growth, Industry Trends, Sales Revenue, Size by Regional Forecast to 2025 – 3rd Watch News

A recent market intelligence study titled Global Autologous Stem Cell Based Therapies Market 2020 by Company, Type and Application, Forecast to 2025 integrated from various professional and trusted sources include a detailed examination of this vertical that is anticipated to accrue substantial proceeds during the predicted timeline from 2020 to 2025. The report provides valuable insights concerning the market size, share, and growth rate of the global Autologous Stem Cell Based Therapies market. The report delivers creditable perceptions with respect to industry size, revenue approximations, sales volume, and more. The research gives knowledge about market players, segments, revenue, profit, restrain, share, size, etc.

The report experts have analyzed various companies to understand the products and/services relevant to the global Autologous Stem Cell Based Therapies market. The report includes information such as gross revenue, production and consumption, average product price, and market shares of key players. The fundamental opinions regarding the market landscape, emerging and high-growth sections of the market, high-growth regions, and market drivers, restraints, and also market chances have collectively included in the report. Many of the circumstances have been taken into consideration to get the best at high-quality data and particular knowledge of the market in upcoming years (forecast) from 2020 to 2025.

DOWNLOAD FREE SAMPLE REPORT: https://www.marketsandresearch.biz/sample-request/67562

NOTE: Our analysts monitoring the situation across the globe explains that the market will generate remunerative prospects for producers post COVID-19 crisis. The report aims to provide an additional illustration of the latest scenario, economic slowdown, and COVID-19 impact on the overall industry.

The report offers a comprehensive understanding of market dynamics across key regions, namely North America (United States, Canada and Mexico), Europe (Germany, France, United Kingdom, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina), Middle East & Africa (Saudi Arabia, UAE, Egypt and South Africa).

Product-wise the global market is segmented by spread (regional footprint), and consumption. And, the products include: Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells

Basis, separate end-use segments, the market study delves into demand trends for each. The major end-use segments that the market study includes are: Neurodegenerative Disorders, Autoimmune Diseases, Cardiovascular Diseases

Market segment by manufacturers, this report covers: Regeneus, US STEM CELL, INC., Mesoblast, Med cell Europe, Pluristem Therapeutics Inc, Tigenix, Brainstorm Cell Therapeutics

The noted growth rate and proceeds acquired by each region throughout the forecast timeline are also discussed in the report. The study on global Autologous Stem Cell Based Therapies market foresees over the predicted timeline and constitutes additional particulars concerning the market dynamics like the factors influencing industry landscape, challenges, and probable growth opportunities existing in this vertical are presented in the report.

ACCESS FULL REPORT: https://www.marketsandresearch.biz/report/67562/global-autologous-stem-cell-based-therapies-market-2020-by-company-type-and-application-forecast-to-2025

Key Questions Answered In The Report:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

About Us

Marketsandresearch.biz is a leading global Market Research agency providing expert research solutions, trusted by the best. We understand the importance of knowing what global consumers watch and buy, further using the same to document our distinguished research reports. Marketsandresearch.biz has worldwide presence to facilitate real market intelligence using latest methodology, best-in-class research techniques and cost-effective measures for worlds leading research professionals and agencies. We study consumers in more than 100 countries to give you the most complete view of trends and habits worldwide. Marketsandresearch.biz is a leading provider of Full-Service Research, Global Project Management, Market Research Operations and Online Panel Services.

Contact UsMark StoneHead of Business DevelopmentPhone: +1-201-465-4211Email: [emailprotected]Web: http://www.marketsandresearch.biz

OTHER RELATED REPORTS:

Global Glasses-Free 3D Displays Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Global Ultrapure Water Equipment Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Global Cyanate Ester Resin Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Global Modular Substation Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Global Narcolepsy Drug Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Global Dental Fitting Market 2020 Industry Analysis, Key Players Data, Growth Factors, Share, Opportunities and Forecast to 2025

Visit link:
Global Autologous Stem Cell Based Therapies Market 2020 Growth, Industry Trends, Sales Revenue, Size by Regional Forecast to 2025 - 3rd Watch News

FDA Approves Second Biomarker-Based Indication for Merck’s KEYTRUDA (pembrolizumab), Regardless of Tumor Type – BioSpace

KENILWORTH, N.J.--(BUSINESS WIRE)-- Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the U.S. Food and Drug Administration (FDA) has approved KEYTRUDA, Mercks anti-PD-1 therapy, as monotherapy for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Immune-mediated adverse reactions, which may be severe or fatal, can occur with KEYTRUDA, including pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, severe skin reactions, solid organ transplant rejection, and complications of allogeneic hematopoietic stem cell transplantation (HSCT). Based on the severity of the adverse reaction, KEYTRUDA should be withheld or discontinued and corticosteroids administered if appropriate. KEYTRUDA can also cause severe or life-threatening infusion-related reactions. Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. For more information, see Selected Important Safety Information below.

For the second time, KEYTRUDA monotherapy is now approved based on a biomarker rather than the location in the body where the tumor originated, said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. TMB-H, defined as 10 mutations per megabase or more, can help identify patients most likely to benefit from KEYTRUDA. Were pleased that our collaborative efforts to advance biomarker research have resulted in our ability to provide a new treatment option that addresses a high unmet medical need for these patients with cancer.

As physicians, we are always looking to find new options for patients, especially in the second-line or higher treatment setting, said Roy S. Herbst, M.D., Ph.D., ensign professor of medicine (medical oncology) and professor of pharmacology, Yale School of Medicine; chief of medical oncology, Yale Cancer Center and Smilow Cancer Hospital; and associate cancer center director for translational research, Yale Cancer Center. Its great to see the use of innovative biomarkers and immunotherapy come together with this approval and encouraging that we now have an option for patients with TMB-H tumors across cancer types, including rare cancers.

The FDA also approved FoundationOne CDx test as the companion diagnostic to identify patients with solid tumors that are TMB-H (10 mutations/ megabase) who may benefit from immunotherapy treatment with KEYTRUDA monotherapy.

These approvals stem from years of research into how TMB levels may influence a patients response to immunotherapy, said Brian Alexander, M.D., M.P.H., chief medical officer, Foundation Medicine. Its critical that healthcare professionals have access to a validated genomic test to measure TMB in clinical tumor assessments and pinpoint those who are more likely to respond. Were proud to be collaborating with Merck to help match appropriate patients to this important treatment.

Data Supporting the Approval

The accelerated approval was based on data from a prospectively-planned retrospective analysis of 10 cohorts (A through J) of patients with various previously treated unresectable or metastatic solid tumors with TMB-H, who were enrolled in KEYNOTE-158 (NCT02628067), a multicenter, non-randomized, open-label trial evaluating KEYTRUDA (200 mg every three weeks). The trial excluded patients who previously received an anti-PD-1 or other immune-modulating monoclonal antibody, or who had an autoimmune disease, or a medical condition that required immunosuppression. TMB status was assessed using the FoundationOne CDx assay and pre-specified cutpoints of 10 and 13 mut/Mb, and testing was blinded with respect to clinical outcomes. Tumor response was assessed every nine weeks for the first 12 months and every 12 weeks thereafter. The major efficacy outcome measures were objective response rate (ORR) and duration of response (DOR) in the patients who received at least one dose of KEYTRUDA as assessed by blinded independent central review (BICR) according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, modified to follow a maximum of 10 target lesions and a maximum of five target lesions per organ.

In KEYNOTE-158, 1,050 patients were included in the efficacy analysis population. TMB was analyzed in the subset of 790 patients with sufficient tissue for testing based on protocol-specified testing requirements. Of the 790 patients, 102 (13%) had tumors identified as TMB-H, defined as TMB 10 mut/Mb. The study population characteristics of these 102 patients were: median age of 61 years (range, 27 to 80); 34% age 65 or older; 34% male; 81% White; and 41% Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) of 0 and 58% ECOG PS of 1. Fifty-six percent of patients had at least two prior lines of therapy.

In the 102 patients whose tumors were TMB-H, KEYTRUDA demonstrated an ORR of 29% (95% CI, 21-39), with a complete response rate of 4% and a partial response rate of 25%. After a median follow-up time of 11.1 months, the median DOR had not been reached (range, 2.2+ to 34.8+ months). Among the 30 responding patients, 57% had ongoing responses of 12 months or longer, and 50% had ongoing responses of 24 months or longer.

In a pre-specified analysis of patients with TMB 13 mut/Mb (n=70), KEYTRUDA demonstrated an ORR of 37% (95% CI, 26-50), with a complete response rate of 3% and a partial response rate of 34%. After a median follow-up time of 11.1 months, the median DOR had not been reached (range, 2.2+ to 34.8+ months). Among the 26 responding patients, 58% had ongoing responses of 12 months or longer, and 50% had ongoing responses of 24 months or longer. In an exploratory analysis in 32 patients whose cancer had TMB 10 mut/Mb and <13 mut/Mb, the ORR was 13% (95% CI, 4-29), including two complete responses and two partial responses.

The median duration of exposure to KEYTRUDA was 4.9 months (range, 0.03 to 35.2 months). The most common adverse reactions for KEYTRUDA (reported in 20% of patients) were fatigue, musculoskeletal pain, decreased appetite, pruritus, diarrhea, nausea, rash, pyrexia, cough, dyspnea, constipation, pain and abdominal pain.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

See more here:
FDA Approves Second Biomarker-Based Indication for Merck's KEYTRUDA (pembrolizumab), Regardless of Tumor Type - BioSpace

Exosome Therapeutic Market 2020 Global Industry Growth, Size, Demand, Trends, Insights | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE…

The Exosome Therapeutic Market study analyzes the market status, market share, growth rate, future trends, market drivers, opportunities, challenges, risks, entry barriers, sales channels, distributors & Porters Five Forces Analysis. This market report performs geographical analysis for the major areas such as North America, China, Europe, Southeast Asia, Japan, and India, with respect to the production, price, revenue and market share for top manufacturers. Moreover, businesses can gain insights into profit growth and sustainability program with this report. The Exosome Therapeutic Market report also consists detailed profiles of markets major manufacturers and importers who are dominating the market.

Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

The major players covered in the Exosome Therapeutic Market report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.

Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp

About Data Bridge Market Research :

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us :

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:[emailprotected]

Here is the original post:
Exosome Therapeutic Market 2020 Global Industry Growth, Size, Demand, Trends, Insights | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE...

Stem Cell Therapy Market Grows on Back of Growing Awareness Regarding Regenerative Treatment Methods – BioSpace

Lately, there has been rising awareness among people regarding the therapeutic potential of stem cells for disease management. This is one of the key factors contributing to growth of the global stem cell therapy market.

Further, identification of new stem cell lines, research and development of genome based cell analysis techniques, and investment inflow for processing and banking of stem cell are some of the significant factors augmenting expansion rate of the global stem cell therapy market.

Meanwhile, limitations associated with traditional organ transplantation such as immunosuppression risk, infection risk, and low acceptance rate of organ by body are few features leading to adoption of stem cell therapy. Moreover, high dependency on organ donors for organ transplantation is paving opportunities for growth of the stem cell therapy.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

Moreover, expanding pipeline and development of drugs for new applications are driving growth of the global stem cells market. Growing research activities focused on augmenting the application array of stem cell will also widen the horizon of stem cell market. Researchers are consistently trying to develop novel methods for creating human stem cell in order to comply with the rising demand for stem cell production to be used for disease management.

Development of Advanced Treatment Method Augmenting Market Growth

Lately, various new studies, development of novel therapies, and research projects have come into light in the global stem cell therapy market. Some of these treatment have been by approved by regulatory bodies, while others are still in pipeline for approval of the treatment.

In March 2017, Belgian based biotech firm TiGenix has announced that its latest development- cardiac cell therapy AlloCSC-01 has reached in its phase I/II successfully. It has shown positive results. Meanwhile, the U.S. FDA has also approved the treatment method. If this therapy is well-accepted among the patients, then approximately 1.9 million AMI patients could be treated using the therapy.

Likewise, another significant development that has been witnessed is development novel stem cell based technology for treatment of multiple sclerosis (MS) and similar concerns associated with nervous system. The treatment is developed by Israel-based Kadimastem Ltd. Also, the Latest development has been granted a patent by reputed regulatory body.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=1787&ltype=S

Some of the prominent companies operating in the global stem cell therapy landscape are Anterogen Co. Ltd., RTI Surgical, Osiris Therapeutics Inc., Holostem Terapie Avanzate S.r.l., JCR Pharmaceuticals Co. Ltd., MEDIPOST Co. Ltd., Pharmicell Co. Ltd., and NuVasive Inc.

Some of these firms are following various growth strategies such as mergers and acquisitions, strategic alliances, and collaborations, and product development in order to strengthen their foothold in the global market for stem cell therapy.

Dermatology Segment Holds Prominence in Stem Cell Therapy Market

Stem cell therapy, primarily is a regenerative medicine. It encourages the reparative response of damaged, dysfunctional, or diseases tissue with the help of stem cells and associated derivatives. The treatment method is replacing the conventional transplant methods.

Stem cell therapy method has wide array of application in the field of nervous system treatment, dermatology, bone marrow transplant, multiple sclerosis, osteoarthritis, hearing loss treatment, cerebral palsy, and heart failure. The method aids patients fight leukemia and similar blood related diseases.

Among all, dermatology segment is leading in the global stem cell therapy market. The segment is substantially contributing to growth of the market. Stem cell therapy reduces the after effects of general treatment for burns such as adhesion, infections, and scars among others.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

Meanwhile, rising number of patient suffering from diabetes and increase in trauma surgery cases are anticipated to accelerate the adoption of stem cell therapy in the dermatology segment.

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:TMR Research,3739 Balboa St # 1097,San Francisco, CA 94121United StatesTel: +1-415-520-1050Visit Site: https://www.tmrresearch.com/

See more here:
Stem Cell Therapy Market Grows on Back of Growing Awareness Regarding Regenerative Treatment Methods - BioSpace

Stem Cell Therapy Market to Incur Rapid Extension During 2025 – Owned

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Continued here:
Stem Cell Therapy Market to Incur Rapid Extension During 2025 - Owned

GLOBAL HUMAN EMBRYONIC STEM CELL MARKET Analysis 2020 With COVID 19 Impact Analysis| Leading Players, Industry Updates, Future Growth, Business…

With a full devotion and dedication this superior GLOBAL HUMAN EMBRYONIC STEM CELL MARKET report is presented to the clients that extend their reach to success. Market parameters covered in this advertising report can be listed as market definition, currency and pricing, market segmentation, market overview, premium insights, key insights and company profile of the key market players. Each parameter included in this GLOBAL HUMAN EMBRYONIC STEM CELL MARKET business research report is again explored deeply for the better and actionable market insights. Geographical scope of the products is also carried out comprehensively for the major global areas which helps define strategies for the product distribution in those areas.

TheGlobal Human Embryonic Stem Cell Marketstudy with 100+ market data Tables, Pie Chat, Graphs & Figures is now released by Data Bridge Market Research. The report presents a complete assessment of the Market covering future trend, current growth factors, attentive opinions, facts, and industry validated market data forecast till 2026. Delivering the key insights pertaining to this industry, the report provides an in-depth analysis of the latest trends, present and future business scenario, market size and share ofMajor Players such as Arizona Board of Regents, STEMCELL Technologies Inc, Cellular Engineering Technologies, CellGenix GmbH, PromoCell GmbH, Lonza, Kite Pharma, Takeda Pharmaceutical Company Limited, BrainStorm Cell Limited., CELGENE CORPORATION, Osiris Therapeutics,Inc, U.S. Stem Cell, Inc and amny More

Global human embryonic stem cell market estimated to register a healthy CAGR of 10.5% in the forecast period of 2019 to 2026. The imminent market report contains data for historic year 2017, the base year of calculation is 2018 and the forecast period is 2019 to 2026. The growth of the market can be attributed to the increase in tissue engineering process.

Avail 20% Discount on Buying This Report: Get a Free Sample Copy of the Report @ (Use Corporate email ID to Get Higher Priority) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-human-embryonic-stem-cell-market

Market Dynamics:

Set of qualitative information that includes PESTEL Analysis, PORTER Five Forces Model, Value Chain Analysis and Macro Economic factors, Regulatory Framework along with Industry Background and Overview.

Global Human Embryonic Stem Cell Market By Type (Totipotent Stem Cells, Pluripotent Stem Cells, Unipotent Stem Cells), Application (Regenerative Medicine, Stem Cell Biology Research, Tissue Engineering, Toxicology Testing), End User (Research, Clinical Trials, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026

Global Human Embryonic Stem Cell Research Methodology

Data Bridge Market Research presents a detailed picture of the market by way of study, synthesis, and summation of data from multiple sources.The data thus presented is comprehensive, reliable, and the result of extensive research, both primary and secondary. The analysts have presented the various facets of the market with a particular focus on identifying the key industry influencers.

Major Drivers and Restraints of the Human Embryonic Stem Cell Industry

Complete report is available (TOC) @https://www.databridgemarketresearch.com/toc/?dbmr=global-human-embryonic-stem-cell-market

The titled segments and sub-section of the market are illuminated below:

By Type

By Application

By End User

Top Players in the Market are:

Some of the major companies functioning in global human embryonic stem cell market are Arizona Board of Regents, STEMCELL Technologies Inc, Cellular Engineering Technologies, CellGenix GmbH, PromoCell GmbH, Lonza, Kite Pharma, Takeda Pharmaceutical Company Limited, BrainStorm Cell Limited., CELGENE CORPORATION, Osiris Therapeutics,Inc, U.S. Stem Cell, Inc, Waisman Biomanufacturing, Caladrius, Pfizer Inc., Thermo Fisher Scientific, Merck KGaA, Novo Nordisk A/S, Johnson & Johnson Services, Inc and SA Biosciences Corporation among others.

How will the report help new companies to plan their investments in the Human Embryonic Stem Cell market?

The Human Embryonic Stem Cell market research report classifies the competitive spectrum of this industry in elaborate detail. The study claims that the competitive reach spans the companies of.

The report also mentions about the details such as the overall remuneration, product sales figures, pricing trends, gross margins, etc.

Information about the sales & distribution area alongside the details of the company, such as company overview, buyer portfolio, product specifications, etc., are provided in the study.

Any query? Enquire Here For Discount Or Report Customization: @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-human-embryonic-stem-cell-market

Some of the Major Highlights of TOC covers:

Chapter 1: Methodology & Scope

Definition and forecast parameters

Methodology and forecast parameters

Data Sources

Chapter 2: Executive Summary

Business trends

Regional trends

Product trends

End-use trends

Chapter 3: Human Embryonic Stem Cell Industry Insights

Industry segmentation

Industry landscape

Vendor matrix

Technological and innovation landscape

Chapter 4: Human Embryonic Stem Cell Market, By Region

Chapter 5: Company Profile

Business Overview

Financial Data

Product Landscape

Strategic Outlook

SWOT Analysis

Thanks for reading this article, you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

[emailprotected]

View original post here:
GLOBAL HUMAN EMBRYONIC STEM CELL MARKET Analysis 2020 With COVID 19 Impact Analysis| Leading Players, Industry Updates, Future Growth, Business...

Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 – The Canton Independent Sentinel

Cardiac rhythm management refers to a process of monitoring functioning of the heart through devices. Cardiac rhythm management devices are used to provide therapeutic solutions to patients suffering from cardiac disorders such as cardiac arrhythmias, heart failure, and cardiac arrests. Cardiac disorders lead to irregular heartbeat. Technological advancements and rise in the number of deaths due to increasing incidences of heart diseases and increasing aging population are some of the major factors driving the cardiac rhythm management market. Heart disease is one of the primary causes of death in the U. S. Excess of alcohol consumption; smoking, high cholesterol levels, and obesity are some of the major causes of heart diseases. Cardiac rhythm management is conducted through two major devices: implantable cardiac rhythm devices and pacemakers. Implantable cardiac rhythm devices treat patients with an improper heartbeat. Based on the device, the cardiac rhythm management market can be segmented into defibrillators, pacemakers, cardiac resynchronization therapy devices, implantable defibrillators, and external defibrillators. Pacemakers are used to treat patients with a slow heartbeat. Based on the end user, the cardiac rhythm management market can be segmented into hospitals, home/ambulatory, and others.

North America has the largest market for cardiac rhythm management due to improved healthcare infrastructure, government initiatives, rise in incidences of cardiac disorders, growing number of deaths due to cardiovascular diseases,and increasing healthcare expenditure in the region. The North America market for cardiac rhythm management is followed by Europe. Asia is expected to witness high growth rate in the cardiac rhythm management market in the next few years due to increasing incidences of cardiovascular diseases, growing disposable income, rise in awareness regarding heart disorders and relevant treatments, and improving healthcare infrastructure in the region.

For detailed insights on enhancing your product footprint, request for a Sample here @https://www.persistencemarketresearch.com/samples/3868

Increasing the prevalence of cardiovascular diseases, technological advancements, rise in life expectancy, increasing awareness regarding cardiac disorders, and government initiatives are some of the major factors that are expected to drive the market for cardiac rhythm management. In addition, factors such as a rise in disposable income, increasing aging population, and high cost associated with heart disease treatment are expected to drive the market for cardiac rhythm management. However, economic downturn, reimbursement issues, the importance of biologics and stem cells, and inappropriate use of the devices are some of the factors restraining the growth of the global cardiac rhythm management market.

Growing population and economies in the developing countries such as India and China are expected to drive the growth of the cardiac rhythm management market in Asia. In addition,factors such as innovations along with technological advancements such as miniaturization, introduction of MRI pacemakers, biocompatible materials and durable batteries, and continuous rise in aging population and increasing cardiovascular diseases such as arrhythmias, stroke, and high blood pressure are expected to create new opportunities for the global cardiac rhythm management market. An increasing number of mergers and acquisitions, rise in the number of collaborations and partnerships, and new product launches are some of the latest trends in the global cardiac rhythm management market.

To receive extensive list of important regions, ask for TOC here @https://www.persistencemarketresearch.com/toc/3868

Some of the major companies operating in the global cardiac rhythm management market areMedtronic, Abbott Laboratories, Boston Scientific, St. Jude Medical, Altera, and Sorin.Other companies with significant presence in the global cardiac rhythm management market include

Read more:
Cardiac Rhythm Management Market to Witness Rapid Increase in Consumption During 2015 2021 - The Canton Independent Sentinel

Harvard and the Brigham call for 31 retractions of cardiac …

Harvard Medical School and Brigham and Womens Hospital have recommended that 31 papers from a former lab director be retracted from medical journals.

The papers from the lab of Dr. Piero Anversa, who studied cardiac stem cells, included falsified and/or fabricated data, according to a statement to Retraction Watch and STAT from the two institutions.

Last year, the hospital agreed to a $10 million settlement with the U.S. government over allegations Anversa and two colleagues work had been used to fraudulently obtain federal funding. Anversa and Dr. Annarosa Leri who have had at least one paper already retracted, and one subject to an expression of concern had at one point sued Harvard and the Brigham unsuccessfully for alerting journals to problems in their work back in 2014. Anversas lab closed in 2015; Anversa, Leri, and their colleagueDr. Jan Kajstura no longer work at the hospital.

advertisement

While the Brighamsettled with the U.S. Department of Justice, the U.S. Office of Research Integrity, which oversees research misconduct investigations involving National Institutes of Health funding, has not made a finding in the case. The university and the hospital have not said which journals the 31 papers appeared in, but the journal Circulation retracted a paper by Anversa and colleagues in 2014, and The Lancet issued an expression of concern about another in the same year.

It is not clear how, or whether, the call for retractions by Harvard and the Brigham is related to the Brighams settlement with the government.

advertisement

Following a review of research conducted in the former lab of Piero Anversa, we determined that 31 publications included falsified and/or fabricated data, and we have notified all relevant journals, Harvard and the Brigham told STAT and Retraction Watch.

Anversa has previously corrected eight of his papers, many for failures to disclose conflicts of interest. He practically invented the field of cardiac stem cell therapy when he first reported that cardiac cells were capable of regeneration, Cardiobrief and MedPage Today wrote about him last year.

Anversas work was based on the idea that the heart contains stem cells that could regenerate cardiac muscle. He and his colleagues claimed that they had identified such cells, known as c-kit cells. When various research teams tried to reproduce the results, however, they failed. Still, some scientists have tried to inject c-kit cells into damaged hearts, with mixed results at best.

For 10 years, he ran everything, said Jeffery Molkentin, a researcher at Cincinnati Childrens whose lab was among the first to question the basis of Anversas results in a 2014 paper in Nature. It really is a relief that this has been corrected. I think this is good for everybody.

For the most part, the field has already worked this in, Molkentin told STAT and Retraction Watch. Its like when Wall Street has worked in the next two interest rate hikes.

There are no stem cells in the heart. Quit trying to publish those results.

Jeffery Molkentin, Cincinnati Children's

Still, he said, a small number of researchers continue to publish findings that agree with Anversas. Maybe these 31 retractions will keep pushing the pendulum a little further to the right and these people will slowly start to back off even more, he said.

Its just discouraging when you see these papers keep popping up, Molkentin said. There are no stem cells in the heart. Quit trying to publish those results.

Anversa published at least 55 papers that listed Harvard as an affiliation. In 2014, a former research fellow described an atmosphere of fear and information control in his lab.

Anversa, who according to publications was most recently affiliated with the Cardiocentro Ticino and University of Zurich, could not be reached for comment. An email to his address at Cardiocentro Ticino bounced back. A number of Anversas co-authors either did not immediately respond to a request for comment, or declined.

We are committed to upholding the highest ethical standards and to rigorously maintaining the integrity of our research, Harvard and the Brigham said. Any concerns brought to our attention are reviewed in accordance with institutional policies and applicable regulations.

Anversa was born in Parma, Italy, in 1940 and received his medical degree from the University of Parma in 1965. He gained prominence as a stem-cell researcher at New York Medical College in Valhalla, N.Y., where he worked before moving to Harvard Medical School and the Brigham in 2007. Anversa became a full professor in 2010.

Throughout his career, Anversa has received several commendations, including a research achievement award from the American Heart Association, which in 2004 also named him a distinguished scientist.

Although journals often act on retraction recommendations by universities, they do not always do so, and it sometimes takes a while. Journals retract roughly 1,400 scholarly papers each year, out of some 3 million total publications.Anversas total would put him in the top 20 list of scientists with the most retractions in the world. The 10 scientists worldwide with the most retracted papers have at least 39, and in one case Japanese anesthesiologist Yoshitaka Fujii 183 such articles.

So what do the calls for retraction mean for cardiology?

What seems obvious to me is a need for transparency, Yale cardiologist Dr. Harlan Krumholz told STAT and Retraction Watch. The scientific community needs to know what was found, why papers were retracted, and what is recommended with regard to his work going forward. Also, what has happened to work that was based on his work. Without this knowledge it is hard to know what it means.

Some of Anversas work has already been retracted or corrected.

Suzanne Grant, a spokeswoman for the American Heart Association/American Stroke Association, said that one 2012 paper published in the journal Circulation and co-authored by Anversa was retracted in 2014. The AHA has corrected a number of other Anversa papers, mostly by adding additional disclosures.

Grant said the AHA was evaluating Harvards findings and would again take appropriate action if needed.

Harvard also flagged two Anversa papers one from 2001 and the other from 2011 to the New England Journal of Medicine, and the publication is separately investigating images published in a 2002 paper, spokeswoman Jennifer Zeis said.

Seil Collins, a spokesman for the Lancet journals, said the publication group was investigating the 2011 paper that had already been tagged with an expression of concern after receiving new information from Harvard.

This story is a collaboration between STAT andRetraction Watch. It has been updated with information from some journals. Reporter Andrew Joseph contributed.

See original here:
Harvard and the Brigham call for 31 retractions of cardiac ...

Subcutaneous Formulation of DARZALEX(Daratumumab) Combination Resulted in Deep and Rapid Haematologic Responses and Improved Clinical Outcomes in the…

ANDROMEDA study investigated the first and only subcutaneous anti-CD38 monoclonal antibody in treatment of rare multi-system disease with a high unmet medical need for which there are currently no approved therapies

The Janssen Pharmaceutical Companies of Johnson & Johnson announced today results from the first randomised Phase 3 study investigating the subcutaneous (SC) formulation of DARZALEX (daratumumab) in the treatment of patients with newly diagnosed light chain (AL) amyloidosis, a rare and potentially fatal disease.1,2 The data demonstrated daratumumab SC in combination with cyclophosphamide, bortezomib, and dexamethasone (D-CyBorD) resulted in a significantly higher haematologic complete response rate (CR), 53 percent vs. 18 percent (P<0.0001), compared to CyBorD.3 Additionally, treatment with D-CyBorD delayed the time to major organ deterioration (MOD), haematologic progression or death (MOD-PFS), and enhanced event-free survival (MOD-EFS) based on MOD-PFS criteria with the time to initiation of next therapy.3 The combination showed a safety profile consistent with daratumumab SC or CyBorD alone.3

The results are being highlighted during a press briefing at the 25th European Hematology Association (EHA) Annual Congress today and will be presented during the late-breaking oral session on Sunday, June 14 at 03:00 p.m. CEST (Abstract LB2604).3

AL amyloidosis is a rare and potentially fatal multi-system disorder that occurs when the bone marrow produces abnormal pieces of antibodies called light chains, which clump together to form an amyloid.1 This amyloid is deposited in tissues and vital organs and interferes with normal organ function.1,2 As the disease progresses, many patients experience gradual deterioration to multiple organs, including the heart, kidneys, liver, nervous system and digestive tract.2 Prognosis is dependent on multiple factors including the pattern and number of organs involved and the treatment regimen.4,5 Patients with AL amyloidosis have a poor prognosis with an estimated median survival ranging from six months to three years depending on the patient population and data used.4 There are currently no therapy options approved by regulatory bodies such as the European Medicines Agency (EMA) or U.S. Food and Drug Administration (FDA) to treat this devastating disease.6,7

"Due to widely varying symptoms of AL amyloidosis, which can be mistaken for more common conditions, patients are often faced with a delayed diagnosis of several years. These delays to diagnosis and treatment impact on emotional wellbeing, and lead to poorer outcomes for patients," said Giovanni Palladini, M.D., Ph.D., acting director of the Amyloidosis Research and Treatment Center at the University Hospital San Matteo in Pavia, Italy and study investigator*. "Current therapies focus on slowing the production of amyloid protein and managing symptoms, but there is no approved treatment for AL amyloidosis. The results of the ANDROMEDA study have demonstrated the potential of daratumumab for newly diagnosed patients with AL amyloidosis, which could fulfil a great unmet need and alleviate the burden of organ damage for these patients."

Results from the ANDROMEDA study showed that the primary endpoint, haematologic CR rate, was 53 percent for D-CyBorD and 18 percent for CyBorD (Odds Ratio=5.1; 95 percent confidence interval [CI], 3.2-8.2; P<0.0001).3 In addition, patients receiving D-CyBorD achieved higher rates of overall haematologic response (92 percent vs. 77 percent) and very good partial response or better (VGPR; 79 percent vs. 49 percent) than patients receiving CyBorD.3 Among the 195 patients who responded to treatment in the D-CyBorD arm, median time to VGPR/CR was 17/60 days compared to the 193 patients in the CyBorD arm whose median time to VGPR was 25/85 days.3

The six-month organ response rate nearly doubled for patients treated with D-CyBorD versus CyBorD, for both cardiac (42 percent vs. 22 percent; P=0.0029) and renal (54 percent vs. 27 percent; P<0.0001) responses.3 Additionally, MOD-PFS (Hazard Ratio=0.58; 95 percent CI, 0.36-0.93, P=0.0224) and MOD-EFS (Hazard Ratio=0.40; 95 percent CI, 0.28-0.57, P<0.0001) favoured the D-CyBorD arm, demonstrating substantially delayed major organ deterioration, haematologic progression, or death, as well as improved event-free survival.3 In addition, the D-CyBorD arm, which is delivered subcutaneously, helps to limit intravenous fluid overload, an important treatment factor in the setting of cardiac compromised patients.3

"Through the daratumumab development programme, Janssen has deep expertise in diseases where CD38 is highly expressed. Daratumumabs mode-of-action gives us an opportunity to treat the underlying cause of AL amyloidosis and potentially bring a new therapy option to patients living with this rare disease," said Patrick Laroche, M.D., Haematology Therapy Area Lead, Europe, Middle East and Africa (EMEA), Janssen-Cilag. "Since launch daratumumab has treated over 130,000 patients worldwide and has become the foundation of multiple myeloma treatment, and we will continue to investigate its potential in diseases in which CD38 is expressed."

The most common Grade 3/4 treatment emergent adverse events occurring in more than 5 percent of patients for the D-CyBorD arm compared to the CyBorD arm, included lymphopenia (13 percent vs. 10 percent), pneumonia (8 percent vs. 4 percent), diarrhoea (6 percent vs. 4 percent), cardiac failure (6 percent vs. 5 percent), neutropenia (5 percent vs. 3 percent), syncope (5 percent vs. 6 percent) and peripheral oedema (3 percent vs. 6 percent).3 The study showed daratumumab SC had a low rate of administration-related reactions (ARR).3 Systemic ARRs in the D-CyBorD arm occurred in 14 patients (7 percent), all were Grade 1-2 and most occurred during the initial administration. A total of 56 deaths occurred (D-CyBorD, n=27; CyBorD, n=29).3

#ENDS#

In Europe, daratumumab is indicated:8

About the ANDROMEDA Study3,9

ANDROMEDA (NCT03201965) is an ongoing Phase 3, randomised, open-label study investigating the safety and efficacy of daratumumab SC in combination with cyclophosphamide, bortezomib and dexamethasone (CyBorD), compared to CyBorD alone, in the treatment of patients with newly diagnosed light chain (AL) amyloidosis.3,9 The study included 388 patients with newly diagnosed AL amyloidosis with measurable haematologic disease and one or more organs affected. The primary endpoint was overall complete haematologic response rate (intent-to-treat / ITT). Secondary endpoints included major organ deterioration, progression-free survival, event free survival, organ response rate, overall survival, and time to haematologic response, among others.3,9

About AL Amyloidosis

Light chain (AL) amyloidosis is a rare and potentially fatal haematologic disorder that can affect the function of multiple organs.1,2 The disease occurs when bone marrow produces abnormal pieces of antibodies called light chains, which clump together to form a substance called amyloid. These clumps of amyloid are deposited in tissues and vital organs and interfere with normal organ function, eventually causing organ deterioration.1,2 It is the most common type of amyloidosis. AL amyloidosis frequently affects the heart, kidneys, digestive tract, liver and nervous system and is potentially fatal if left untreated.1,2 Diagnosis is often delayed and prognosis is poor due to advanced, multi-organ, particularly cardiac, involvement.1,2 Approximately 30,000 to 45,000 patients in the United States and the European Union have AL amyloidosis.10

About daratumumab and daratumumab SC

Daratumumab is a first-in-class biologic targeting CD38, a surface protein that is highly expressed across multiple myeloma (MM) cells, regardless of disease stage.8,11 Daratumumab is believed to induce tumour cell death through multiple immune-mediated mechanisms of action, including complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), as well as through apoptosis, in which a series of molecular steps in a cell lead to its death.11 A subset of myeloid derived suppressor cells (CD38+ MDSCs), CD38+ regulatory T cells (Tregs) and CD38+ B cells (Bregs) are decreased by daratumumab-mediated cell lysis.11

In Europe, daratumumab has been approved in five indications, three of which are in the frontline setting, including newly diagnosed MM patients who are transplant eligible and ineligible.8 In June 2020, daratumumab SC (daratumumab and hyaluronidase human-fihj) was approved the European Commission as the only subcutaneous CD38-directed antibody approved to treat patients with multiple myeloma.12 Daratumumab SC is co-formulated with recombinant human hyaluronidase PH20 (rHuPH20), Halozyme's ENHANZE drug delivery technology.12

Since launch, it is estimated that 130,000 patients have been treated with daratumumab worldwide.13

Daratumumab is being evaluated in a comprehensive clinical development programme across a range of treatment settings in MM, such as in frontline and relapsed settings.14,15,16,17,18,19,20,21 Additional studies are ongoing or planned to assess daratumumab SCs potential in other malignant and pre-malignant haematologic diseases in which CD38 is expressed, such as smouldering myeloma and in AL amyloidosis.22,23 For more information, please see https://www.clinicaltrials.gov/.

For further information on daratumumab, please see the Summary of Product Characteristics at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex.

In August 2012, Janssen Biotech, Inc. and Genmab A/S entered a worldwide agreement, which granted Janssen an exclusive licence to develop, manufacture and commercialise daratumumab.24

About the Janssen Pharmaceutical Companies of Johnson & Johnson

At Janssen, were creating a future where disease is a thing of the past. Were the Pharmaceutical Companies of Johnson & Johnson, working tirelessly to make that future a reality for patients everywhere by fighting sickness with science, improving access with ingenuity, and healing hopelessness with heart. We focus on areas of medicine where we can make the biggest difference: Cardiovascular & Metabolism, Immunology, Infectious Diseases & Vaccines, Neuroscience, Oncology, and Pulmonary Hypertension.

Learn more at http://www.janssen.com/emea. Follow us at http://www.twitter.com/janssenEMEA for our latest news. Janssen-Cilag, Janssen Pharmaceutica NV, and Janssen Biotech, Inc. are part of the Janssen Pharmaceutical Companies of Johnson & Johnson.

###

Cautions Concerning Forward-Looking Statements

This press release contains "forward-looking statements" as defined in the Private Securities Litigation Reform Act of 1995 regarding the benefits of daratumumab for the treatment of patients with multiple myeloma. The reader is cautioned not to rely on these forward-looking statements. These statements are based on current expectations of future events. If underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialise, actual results could vary materially from the expectations and projections of Janssen Pharmaceutical Companies and/or Johnson & Johnson. Risks and uncertainties include, but are not limited to: challenges and uncertainties inherent in product research and development, including the uncertainty of clinical success and of obtaining regulatory approvals; uncertainty of commercial success; manufacturing difficulties and delays; competition, including technological advances, new products and patents attained by competitors; challenges to patents; product efficacy or safety concerns resulting in product recalls or regulatory action; changes in behaviour and spending patterns of purchasers of health care products and services; changes to applicable laws and regulations, including global health care reforms; and trends toward health care cost containment. A further list and descriptions of these risks, uncertainties and other factors can be found in Johnson & Johnson's Annual Report on Form 10-K for the fiscal year ended December 29, 2019, including in the sections captioned "Cautionary Note Regarding Forward-Looking Statements" and "Item 1A. Risk Factors," and in the companys most recently filed Quarterly Report on Form 10-Q, and the companys subsequent filings with the Securities and Exchange Commission. Copies of these filings are available online at http://www.sec.gov, http://www.jnj.com or on request from Johnson & Johnson. None of the Janssen Pharmaceutical Companies nor Johnson & Johnson undertakes to update any forward-looking statement as a result of new information or future events or developments.

ENHANZE is a registered trademark of Halozyme.* Professor Giovanni Palladini has an ongoing contractual relationship with Janssen Pharmaceutica N.V.

###

References

1 Desport E, Bridoux F, Sirac C, Delbes S, Bender S, Fernandez B, Quellard N, Lacombe C, Goujon JM, Lavergne D, Abraham J. Al amyloidosis. Orphanet journal of rare diseases. 2012 Dec;7(1):54.2 Merlini G, Comenzo RL, Seldin DC, Wechalekar A, Gertz MA. Immunoglobulin light chain amyloidosis. Expert review of hematology. 2014 Feb 1;7(1):143-56.3 Kastritis, E. et al. Subcutaneous Daratumumab + Cyclophosphamide, Bortezomib, and Dexamethasone (CyBorD) in Patients with Newly Diagnosed Light Chain (AL) Amyloidosis: Primary Results from the Phase 3 ANDROMEDA Study [LBA]. To be presented at European Hematology Association 2020 Annual Congress.4 McCausland KL, White MK, Guthrie SD, Quock T, Finkel M, Lousada I, Bayliss MS. Light chain (AL) amyloidosis: the journey to diagnosis. The Patient-Patient-Centered Outcomes Research. 2018 Apr 1;11(2):207-16.5 Quock TP, Yan T, Chang E, Guthrie S, Broder MS. Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood advances. 2018 May 22;2(10):1046-53.6 European Medicines Agency. EU/3/19/2222 AL Amyloidosis. Available at: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3192222 Last accessed: June 2020.7 Leng S, Bhutani D, Lentzsch S. Amyloid Therapy and Targets. Clinical Lymphoma, Myeloma and Leukemia. 2019 Sep 1;19:S49-52.8 European Medicines Agency. DARZALEX summary of product characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/darzalex-epar-product-information_en.pdf Last accessed: June 2020.9 ClinicalTrials.gov. A Study to Evaluate the Efficacy and Safety of Daratumumab in Combination With Cyclophosphamide, Bortezomib and Dexamethasone (CyBorD) Compared to CyBorD Alone in Newly Diagnosed Systemic Amyloid Light-chain (AL) Amyloidosis. NCT03201965. Available at: https://clinicaltrials.gov/ct2/show/NCT03201965 Last accessed: June 2020.10 Lousada I, Comenzo RL, Landau H, Guthrie S, Merlini G. Light chain amyloidosis: patient experience survey from the Amyloidosis Research Consortium. Advances in therapy. 2015 Oct 1;32(10):920-8.11 Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9:51.12 Janssen EMEA. European Commission Grants Marketing Authorisation for DARZALEX(daratumumab) Subcutaneous Formulation for all Currently Approved Daratumumab Intravenous Formulation Indications. Press Release June 04, 2020. Available at: https://www.janssen.com/emea/sites/www_janssen_com_emea/files/european_commission_grants_marketing_authorisation_for_darzalexrvdaratumumab_subcutaneous_formulation_for_all_currently_approved_daratumumab_intravenous_formulation_indications.pdf Last accessed: June 2020.13 [Data on file]. DARZALEX: New Patient Starts Launch to Date. RF-12414814 ClinicalTrials.gov. A study to evaluate daratumumab in transplant eligible participants with previously untreated multiple myeloma (Cassiopeia). NCT02541383. Available at: https://clinicaltrials.gov/ct2/show/NCT02541383 Last accessed: June 202015ClinicalTrials.gov. A study comparing daratumumab, lenalidomide, and dexamethasone with lenalidomide and dexamethasone in relapsed or refractory multiple myeloma. NCT02076009. Available at: https://clinicaltrials.gov/ct2/show/NCT02076009 Last accessed: June 2020.16 ClinicalTrials.gov. Addition of daratumumab to combination of bortezomib and dexamethasone in participants with relapsed or refractory multiple myeloma. NCT02136134. Available at: https://clinicaltrials.gov/ct2/show/NCT02136134 Last accessed: June 2020.17 ClinicalTrials.gov. A study of combination of daratumumab and Velcade (bortezomib) melphalan-prednisone (DVMP) compared to Velcade melphalan-prednisone (VMP) in participants with previously untreated multiple myeloma. NCT02195479. Available at: https://clinicaltrials.gov/ct2/show/NCT02195479 Last accessed: June 2020.18ClinicalTrials.gov. Study comparing daratumumab, lenalidomide, and dexamethasone with lenalidomide and dexamethasone in participants with previously untreated multiple myeloma. NCT02252172. Available at: https://clinicaltrials.gov/ct2/show/NCT02252172 Last accessed: June 2020.19 ClinicalTrials.gov. A study of Velcade (bortezomib) melphalan-prednisone (VMP) compared to daratumumab in combination with VMP (D-VMP), in participants with previously untreated multiple myeloma who are ineligible for high-dose therapy (Asia Pacific region). NCT03217812. Available at: https://clinicaltrials.gov/ct2/show/NCT03217812 Last accessed: June 2020.20ClinicalTrials.gov. Comparison of pomalidomide and dexamethasone with or without daratumumab in subjects with relapsed or refractory multiple myeloma previously treated with lenalidomide and a proteasome inhibitor daratumumab/pomalidomide/dexamethasone vs pomalidomide/dexamethasone (EMN14). NCT03180736. Available at: https://clinicaltrials.gov/ct2/show/NCT03180736 Last accessed: June 2020.21ClinicalTrials.gov. Study of carfilzomib, daratumumab and dexamethasone for patients with relapsed and/or refractory multiple myeloma (CANDOR). NCT03158688. Available at: https://clinicaltrials.gov/ct2/show/NCT03158688 Last accessed: June 2020.22 ClinicalTrials.gov. A Study of Subcutaneous Daratumumab Versus Active Monitoring in Participants With High-Risk Smoldering Multiple Myeloma. NCT03301220. Available at: https://clinicaltrials.gov/ct2/show/NCT03301220 Last accessed: June 2020.23ClinicalTrials.gov. A Study of Daratumumab Monotherapy in Previously Untreated Patients With Stage 3B Light Chain (AL) Amyloidosis. NCT04131309. Available at: https://clinicaltrials.gov/ct2/show/NCT04131309 Last accessed: June 2020.24 Johnson & Johnson. Janssen Biotech announces global license and development agreement for investigational anti-cancer agent daratumumab. Press release August 30, 2012. Available at: https://www.jnj.com/media-center/press-releases/janssen-biotech-announces-global-license-and-development-agreement-for-investigational-anti-cancer-agent-daratumumab Last accessed: June 2020.

CP-161762June 2020

View source version on businesswire.com: https://www.businesswire.com/news/home/20200612005615/en/

Contacts

Media contact: Noah ReymondMobile: +31 621 38 5718Email: NReymond@ITS.JNJ.com

Investor Relations: Christopher DelOreficeOffice: +1 732-524-2955

Jennifer McIntyreOffice: +1 732-524-3922

Read the original:
Subcutaneous Formulation of DARZALEX(Daratumumab) Combination Resulted in Deep and Rapid Haematologic Responses and Improved Clinical Outcomes in the...

Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies…

89% of evaluable patients (17/19) with transfusion-dependent -thalassemia who do not have a 0/0 genotype achieved transfusion independence with 11.9 g/dL median weighted average total hemoglobin (Hb) level in HGB-207

Data from exploratory analyses of HGB-207 show improved markers of blood cell production and bone marrow function in patients who achieved transfusion independence

85% of patients (11/13) with a 0/0 genotype or IVS-I-110 mutation in HGB-212 have been transfusion-free for at least 7 months

CAMBRIDGE, Mass. bluebird bio, Inc. (Nasdaq: BLUE) today announced that new data from ongoing Phase 3 studies of betibeglogene autotemcel (beti-cel; formerly LentiGlobin for -thalassemia gene therapy) show pediatric, adolescent and adult patients with a range of genotypes of transfusion-dependent -thalassemia (TDT) achieve and maintain transfusion independence with hemoglobin (Hb) levels that are near-normal (10.5 g/dL). These data are being presented at the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

With more than a decade of clinical experience evaluating gene therapy in patients with transfusion dependent -thalassemia across a wide range of ages and genotypes, we have built the most comprehensive understanding of treatment outcomes in the field, said David Davidson, M.D., chief medical officer, bluebird bio. Seeing patients achieve transfusion independence and maintain that positive clinical benefit over time with robust hemoglobin levels reflects our initial vision of the potential of beti-cel. The accumulating long-term data demonstrating improvements in bone marrow histology, iron balance and red cell biology support the potential of beti-cel to correct the underlying pathophysiology of transfusion-dependent -thalassemia.

A total of 60 pediatric, adolescent and adult patients across genotypes of TDT have been treated with beti-cel in the Phase 1/2 Northstar (HGB-204) and HGB-205 studies, and the Phase 3 Northstar-2 (HGB-207) and Northstar-3 (HGB-212) studies as of March 3, 2020. In studies of beti-cel, transfusion independence is defined as no longer needing red blood cell transfusions for at least 12 months while maintaining a weighted average Hb of at least 9 g/dL.

TDT is a severe genetic disease caused by mutations in the -globin gene that results in significantly reduced or absent adult hemoglobin (HbA). In order to survive, people with TDT maintain Hb levels through lifelong, chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Patients with transfusion-dependent -thalassemia do not make enough healthy red blood cells and cannot live without chronic transfusions; for patients that means a lifetime of necessary visits to a hospital or clinic and reliance on an often unreliable blood supply, which compounds the challenges of managing this disease, said presenting study author Professor John B. Porter, MA, M.D., FRCP, FRCPath, University College London Hospital, London, UK. These results showing patients free from transfusions and maintaining near-normal hemoglobin levels after treatment with beti-cel is a positive outcome for people living with transfusion-dependent -thalassemia. In addition, we now have more data that provide further evidence that most of these patients have a measurable improvement in markers of healthy red blood cell production.

Beti-cel is a one-time gene therapy designed to address the underlying genetic cause of TDT by adding functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). This means there is no need for donor HSCs from another person, as is required for allogeneic HSC transplantation (allo-HSCT). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived Hb, at levels that eliminate or significantly reduce the need for transfusions.

Northstar-2 (HGB-207) Efficacy

As of March 3, 2020, all 23 patients in HGB-207 were treated and have been followed for a median of 19.4 months. These patients ranged in age from four to 34 years, including eight pediatric (<12 years of age) and 15 adolescent/adult (>12 years of age) patients. Only 19 patients were evaluable for transfusion independence; four additional patients do not yet have sufficient follow-up to be assessed for transfusion independence.

Eighty-nine percent of evaluable patients (17/19) achieved transfusion independence, with median weighted average total Hb levels of 11.9 g/dL (min-max: 9.4 12.9 g/dL) over a median of 19.4 months of follow-up to date (min-max: 12.3 31.4 months). These 17 patients previously required a median of 17.5 transfusions per year (min-max: 11.5 37 transfusions per year).

Improved iron levels, as measured by serum ferritin and hepcidin levels (proteins involved in iron storage and homeostasis), were observed and trends toward improved iron management were seen. Over half of patients stopped chelation therapy, which is needed to reduce excess iron caused by chronic blood transfusions. Seven out of 23 patients began using phlebotomy for iron reduction.

Analysis of Healthy Red Blood Cell Production

In exploratory analyses, biomarkers of ineffective erythropoiesis (red blood cell production) were evaluated in patients who achieved transfusion independence in HGB-207.

The myeloid to erythroid (M:E) ratio in bone marrow from patients who achieved transfusion independence increased from a median of 1:3 (n=17) at baseline to 1:1.2 (n=16) at Month 12. Improvement of the M:E ratio, the ratio of white blood cell and red blood cell precursors in the bone marrow, suggests an improvement in mature red blood cell production. Images illustrating the bone marrow cellularity at baseline, Month 12 and Month 24 are available in the EHA25 presentation (abstract #S296): Improvement in erythropoiesis in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) in the Phase 3 HGB-207 study.

Additionally, biomarkers of erythropoiesis continue to demonstrate a trend toward normalization in patients who achieved transfusion independence, including improved levels over time of erythropoietin, a hormone involved in red blood cell production; reticulocytes, immature red blood cells; and soluble transferrin receptor, a protein measured to help evaluate iron status. The continued normalization of red blood cell production over time among some patients who achieved transfusion independence supports the disease-modifying potential of beti-cel in patients with TDT.

Northstar-3 (HGB-212) Efficacy

As of March 3, 2020, 15 patients (genotypes: 9 0/0, 3 0/ +IVS1-110, 3 homozygous IVS-1-110 mutation) were treated and had a median follow-up of 14.4 months (min-max: 1.124.0 months). Median age at enrollment was 15 (min-max: 4 33 years).

Six of eight evaluable patients achieved transfusion independence, with median weighted average total Hb levels of 11.5 g/dL (min-max: 9.5 13.5 g/dL), and continued to maintain transfusion independence for a median duration of 13.6 months (min-max: 12.2 21.2 months) as of the data cutoff.

Eighty-five percent of patients (11/13) with at least seven months of follow-up had not received a transfusion in more than seven months at time of data cutoff. These 11 patients previously required a median of 18.5 transfusions per year (min-max: 11.0 39.5 transfusions per year). In these patients, gene therapy-derived HbAT87Q supported total Hb levels ranging from 8.814.0 g/dL at last visit.

Betibeglogene autotemcel Safety

Non-serious adverse events (AEs) observed during the HGB-207 and HGB-212 trials that were considered related or possibly related to beti-cel were tachycardia, abdominal pain, pain in extremities, leukopenia, neutropenia and thrombocytopenia. One serious event of thrombocytopenia was considered possibly related to beti-cel.

In HGB-207, serious events post-infusion in two patients included three events of veno-occlusive liver disease and two events of thrombocytopenia. In HGB-212, serious events post-infusion in two patients included two events of pyrexia.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

In both Phase 3 studies, there have been no deaths, no graft failure, no cases of vector-mediated replication competent lentivirus or clonal dominance, no leukemia and no lymphoma.

The presentations are now available on demand on the EHA25 website:

About betibeglogene autotemcel

The European Commission granted conditional marketing authorization (CMA) for betibeglogene autotemcel (beti-cel; formerly LentiGlobin gene therapy for -thalassemia), marketed as ZYNTEGLO gene therapy, for patients 12 years and older with transfusion-dependent -thalassemia (TDT) who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available. On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for ZYNTEGLO, supported by data from 32 patients treated with ZYNTEGLO, including three patients with up to five years of follow-up.

TDT is a severe genetic disease caused by mutations in the -globin gene that result in reduced or significantly reduced hemoglobin (Hb). In order to survive, people with TDT maintain Hb levels through lifelong chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Beti-cel adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived hemoglobin, at levels that may eliminate or significantly reduce the need for transfusions.

Non-serious adverse events (AEs) observed during clinical studies that were attributed to beti-cel included abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnea, pain in extremity and non-cardiac chest pain. Two serious adverse events (SAE) of thrombocytopenia was considered possibly related to beti-cel.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

The CMA for beti-cel is valid in the 27 member states of the EU as well as UK, Iceland, Liechtenstein and Norway. For details, please see the Summary of Product Characteristics (SmPC).

The U.S. Food and Drug Administration (FDA) granted beti-cel orphan drug designation and Breakthrough Therapy designation for the treatment of transfusion-dependent -thalassemia. Beti-cel is not approved in the U.S.

Beti-cel continues to be evaluated in the ongoing Phase 3 Northstar-2 and Northstar-3 studies. For more information about the ongoing clinical studies, visit http://www.northstarclinicalstudies.com or clinicaltrials.gov and use identifier NCT02906202 for Northstar-2 (HGB-207) and NCT03207009 for Northstar-3 (HGB-212).

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel or LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, LentiGlobin, and bluebird bio are trademarks of bluebird bio, Inc.

bluebird bio Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: the risk that the COVID-19 pandemic and resulting impact on our operations and healthcare systems will affect the execution of our development plans or the conduct of our clinical studies; the risk that the efficacy and safety results observed in the patients treated in our prior and ongoing clinical trials of beti-cel may not persist; and the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated with additional patients in our ongoing or planned clinical trials or in the commercial context; the risk that the FDA will require additional information regarding beti-cel, resulting in a delay to our anticipated timelines for regulatory submissions, including submission of our BLA. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200612005084/en/

Contacts

Media: Catherine Falcetti, 339-499-9436 cfalcetti@bluebirdbio.com

Investors: Ingrid Goldberg, 410-960-5022 igoldberg@bluebirdbio.com

Elizabeth Pingpank, 617-914-8736 epingpank@bluebirdbio.com

#distro

Originally posted here:
Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies...

Trending: Progenitor Cell Product Market Detailed Analysis of Current Industry Figures With Forecasts Growth by 2026 – Weekly Wall

LOS ANGELES, United States: QY Research has recently published a report, titled COVID-19 Impact on Global Progenitor Cell Product, Market Insights and Forecast to 2026.The market research report is a brilliant, and much-needed resource for companies, stakeholders, and investors interested in the global COVID-19 Impact on Progenitor Cell Product market. It informs readers about key trends and opportunities in the global COVID-19 Impact on Progenitor Cell Product market along with critical market dynamics expected to impact the global market growth. It offers a range of market analysis studies, including production and consumption, sales, industry value chain, competitive landscape, regional growth, and price. On the whole, it comes out as an intelligent resource that companies can use to gain a competitive advantage in the global COVID-19 Impact on Progenitor Cell Product market.

Key companies operating in the global COVID-19 Impact on Progenitor Cell Product market include , NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI Progenitor Cell Product

Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :

https://www.qyresearch.com/sample-form/form/1823823/covid-19-impact-on-global-progenitor-cell-product-market

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global COVID-19 Impact on Progenitor Cell Product market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Global COVID-19 Impact on Progenitor Cell Product Market Segment By Type:

, Pancreatic progenitor cells, Cardiac Progenitor Cells, Intermediate progenitor cells, Neural progenitor cells (NPCs), Endothelial progenitor cells (EPC), Others Progenitor Cell Product

Global COVID-19 Impact on Progenitor Cell Product Market Segment By Application:

, Medical care, Hospital, Laboratory

Competitive Landscape

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the global COVID-19 Impact on Progenitor Cell Product market.

Key companies operating in the global COVID-19 Impact on Progenitor Cell Product market include , NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI Progenitor Cell Product

Key questions answered in the report:

For Discount, Customization in the Report: https://www.qyresearch.com/customize-request/form/1823823/covid-19-impact-on-global-progenitor-cell-product-market

TOC

1 Study Coverage1.1 Progenitor Cell Product Product Introduction1.2 Market Segments1.3 Key Progenitor Cell Product Manufacturers Covered: Ranking by Revenue1.4 Market by Type1.4.1 Global Progenitor Cell Product Market Size Growth Rate by Type1.4.2 Pancreatic progenitor cells1.4.3 Cardiac Progenitor Cells1.4.4 Intermediate progenitor cells1.4.5 Neural progenitor cells (NPCs)1.4.6 Endothelial progenitor cells (EPC)1.4.7 Others1.5 Market by Application1.5.1 Global Progenitor Cell Product Market Size Growth Rate by Application1.5.2 Medical care1.5.3 Hospital1.5.4 Laboratory1.6 Coronavirus Disease 2019 (Covid-19): Progenitor Cell Product Industry Impact1.6.1 How the Covid-19 is Affecting the Progenitor Cell Product Industry 1.6.1.1 Progenitor Cell Product Business Impact Assessment Covid-19 1.6.1.2 Supply Chain Challenges 1.6.1.3 COVID-19s Impact On Crude Oil and Refined Products1.6.2 Market Trends and Progenitor Cell Product Potential Opportunities in the COVID-19 Landscape1.6.3 Measures / Proposal against Covid-19 1.6.3.1 Government Measures to Combat Covid-19 Impact 1.6.3.2 Proposal for Progenitor Cell Product Players to Combat Covid-19 Impact1.7 Study Objectives1.8 Years Considered 2 Executive Summary2.1 Global Progenitor Cell Product Market Size Estimates and Forecasts2.1.1 Global Progenitor Cell Product Revenue 2015-20262.1.2 Global Progenitor Cell Product Sales 2015-20262.2 Progenitor Cell Product Market Size by Region: 2020 Versus 20262.2.1 Global Progenitor Cell Product Retrospective Market Scenario in Sales by Region: 2015-20202.2.2 Global Progenitor Cell Product Retrospective Market Scenario in Revenue by Region: 2015-2020 3 Global Progenitor Cell Product Competitor Landscape by Players3.1 Progenitor Cell Product Sales by Manufacturers3.1.1 Progenitor Cell Product Sales by Manufacturers (2015-2020)3.1.2 Progenitor Cell Product Sales Market Share by Manufacturers (2015-2020)3.2 Progenitor Cell Product Revenue by Manufacturers3.2.1 Progenitor Cell Product Revenue by Manufacturers (2015-2020)3.2.2 Progenitor Cell Product Revenue Share by Manufacturers (2015-2020)3.2.3 Global Progenitor Cell Product Market Concentration Ratio (CR5 and HHI) (2015-2020)3.2.4 Global Top 10 and Top 5 Companies by Progenitor Cell Product Revenue in 20193.2.5 Global Progenitor Cell Product Market Share by Company Type (Tier 1, Tier 2 and Tier 3)3.3 Progenitor Cell Product Price by Manufacturers3.4 Progenitor Cell Product Manufacturing Base Distribution, Product Types3.4.1 Progenitor Cell Product Manufacturers Manufacturing Base Distribution, Headquarters3.4.2 Manufacturers Progenitor Cell Product Product Type3.4.3 Date of International Manufacturers Enter into Progenitor Cell Product Market3.5 Manufacturers Mergers & Acquisitions, Expansion Plans 4 Breakdown Data by Type (2015-2026)4.1 Global Progenitor Cell Product Market Size by Type (2015-2020)4.1.1 Global Progenitor Cell Product Sales by Type (2015-2020)4.1.2 Global Progenitor Cell Product Revenue by Type (2015-2020)4.1.3 Progenitor Cell Product Average Selling Price (ASP) by Type (2015-2026)4.2 Global Progenitor Cell Product Market Size Forecast by Type (2021-2026)4.2.1 Global Progenitor Cell Product Sales Forecast by Type (2021-2026)4.2.2 Global Progenitor Cell Product Revenue Forecast by Type (2021-2026)4.2.3 Progenitor Cell Product Average Selling Price (ASP) Forecast by Type (2021-2026)4.3 Global Progenitor Cell Product Market Share by Price Tier (2015-2020): Low-End, Mid-Range and High-End 5 Breakdown Data by Application (2015-2026)5.1 Global Progenitor Cell Product Market Size by Application (2015-2020)5.1.1 Global Progenitor Cell Product Sales by Application (2015-2020)5.1.2 Global Progenitor Cell Product Revenue by Application (2015-2020)5.1.3 Progenitor Cell Product Price by Application (2015-2020)5.2 Progenitor Cell Product Market Size Forecast by Application (2021-2026)5.2.1 Global Progenitor Cell Product Sales Forecast by Application (2021-2026)5.2.2 Global Progenitor Cell Product Revenue Forecast by Application (2021-2026)5.2.3 Global Progenitor Cell Product Price Forecast by Application (2021-2026) 6 North America6.1 North America Progenitor Cell Product by Country6.1.1 North America Progenitor Cell Product Sales by Country6.1.2 North America Progenitor Cell Product Revenue by Country6.1.3 U.S.6.1.4 Canada6.2 North America Progenitor Cell Product Market Facts & Figures by Type6.3 North America Progenitor Cell Product Market Facts & Figures by Application 7 Europe7.1 Europe Progenitor Cell Product by Country7.1.1 Europe Progenitor Cell Product Sales by Country7.1.2 Europe Progenitor Cell Product Revenue by Country7.1.3 Germany7.1.4 France7.1.5 U.K.7.1.6 Italy7.1.7 Russia7.2 Europe Progenitor Cell Product Market Facts & Figures by Type7.3 Europe Progenitor Cell Product Market Facts & Figures by Application 8 Asia Pacific8.1 Asia Pacific Progenitor Cell Product by Region8.1.1 Asia Pacific Progenitor Cell Product Sales by Region8.1.2 Asia Pacific Progenitor Cell Product Revenue by Region8.1.3 China8.1.4 Japan8.1.5 South Korea8.1.6 India8.1.7 Australia8.1.8 Taiwan8.1.9 Indonesia8.1.10 Thailand8.1.11 Malaysia8.1.12 Philippines8.1.13 Vietnam8.2 Asia Pacific Progenitor Cell Product Market Facts & Figures by Type8.3 Asia Pacific Progenitor Cell Product Market Facts & Figures by Application 9 Latin America9.1 Latin America Progenitor Cell Product by Country9.1.1 Latin America Progenitor Cell Product Sales by Country9.1.2 Latin America Progenitor Cell Product Revenue by Country9.1.3 Mexico9.1.4 Brazil9.1.5 Argentina9.2 Central & South America Progenitor Cell Product Market Facts & Figures by Type9.3 Central & South America Progenitor Cell Product Market Facts & Figures by Application 10 Middle East and Africa10.1 Middle East and Africa Progenitor Cell Product by Country10.1.1 Middle East and Africa Progenitor Cell Product Sales by Country10.1.2 Middle East and Africa Progenitor Cell Product Revenue by Country10.1.3 Turkey10.1.4 Saudi Arabia10.1.5 U.A.E10.2 Middle East and Africa Progenitor Cell Product Market Facts & Figures by Type10.3 Middle East and Africa Progenitor Cell Product Market Facts & Figures by Application 11 Company Profiles11.1 NeuroNova AB11.1.1 NeuroNova AB Corporation Information11.1.2 NeuroNova AB Description, Business Overview and Total Revenue11.1.3 NeuroNova AB Sales, Revenue and Gross Margin (2015-2020)11.1.4 NeuroNova AB Progenitor Cell Product Products Offered11.1.5 NeuroNova AB Recent Development11.2 StemCells11.2.1 StemCells Corporation Information11.2.2 StemCells Description, Business Overview and Total Revenue11.2.3 StemCells Sales, Revenue and Gross Margin (2015-2020)11.2.4 StemCells Progenitor Cell Product Products Offered11.2.5 StemCells Recent Development11.3 ReNeuron Limited11.3.1 ReNeuron Limited Corporation Information11.3.2 ReNeuron Limited Description, Business Overview and Total Revenue11.3.3 ReNeuron Limited Sales, Revenue and Gross Margin (2015-2020)11.3.4 ReNeuron Limited Progenitor Cell Product Products Offered11.3.5 ReNeuron Limited Recent Development11.4 Asterias Biotherapeutics11.4.1 Asterias Biotherapeutics Corporation Information11.4.2 Asterias Biotherapeutics Description, Business Overview and Total Revenue11.4.3 Asterias Biotherapeutics Sales, Revenue and Gross Margin (2015-2020)11.4.4 Asterias Biotherapeutics Progenitor Cell Product Products Offered11.4.5 Asterias Biotherapeutics Recent Development11.5 Thermo Fisher Scientific11.5.1 Thermo Fisher Scientific Corporation Information11.5.2 Thermo Fisher Scientific Description, Business Overview and Total Revenue11.5.3 Thermo Fisher Scientific Sales, Revenue and Gross Margin (2015-2020)11.5.4 Thermo Fisher Scientific Progenitor Cell Product Products Offered11.5.5 Thermo Fisher Scientific Recent Development11.6 STEMCELL Technologies11.6.1 STEMCELL Technologies Corporation Information11.6.2 STEMCELL Technologies Description, Business Overview and Total Revenue11.6.3 STEMCELL Technologies Sales, Revenue and Gross Margin (2015-2020)11.6.4 STEMCELL Technologies Progenitor Cell Product Products Offered11.6.5 STEMCELL Technologies Recent Development11.7 Axol Bio11.7.1 Axol Bio Corporation Information11.7.2 Axol Bio Description, Business Overview and Total Revenue11.7.3 Axol Bio Sales, Revenue and Gross Margin (2015-2020)11.7.4 Axol Bio Progenitor Cell Product Products Offered11.7.5 Axol Bio Recent Development11.8 R&D Systems11.8.1 R&D Systems Corporation Information11.8.2 R&D Systems Description, Business Overview and Total Revenue11.8.3 R&D Systems Sales, Revenue and Gross Margin (2015-2020)11.8.4 R&D Systems Progenitor Cell Product Products Offered11.8.5 R&D Systems Recent Development11.9 Lonza11.9.1 Lonza Corporation Information11.9.2 Lonza Description, Business Overview and Total Revenue11.9.3 Lonza Sales, Revenue and Gross Margin (2015-2020)11.9.4 Lonza Progenitor Cell Product Products Offered11.9.5 Lonza Recent Development11.10 ATCC11.10.1 ATCC Corporation Information11.10.2 ATCC Description, Business Overview and Total Revenue11.10.3 ATCC Sales, Revenue and Gross Margin (2015-2020)11.10.4 ATCC Progenitor Cell Product Products Offered11.10.5 ATCC Recent Development11.1 NeuroNova AB11.1.1 NeuroNova AB Corporation Information11.1.2 NeuroNova AB Description, Business Overview and Total Revenue11.1.3 NeuroNova AB Sales, Revenue and Gross Margin (2015-2020)11.1.4 NeuroNova AB Progenitor Cell Product Products Offered11.1.5 NeuroNova AB Recent Development11.12 CDI11.12.1 CDI Corporation Information11.12.2 CDI Description, Business Overview and Total Revenue11.12.3 CDI Sales, Revenue and Gross Margin (2015-2020)11.12.4 CDI Products Offered11.12.5 CDI Recent Development 12 Future Forecast by Regions (Countries) (2021-2026)12.1 Progenitor Cell Product Market Estimates and Projections by Region12.1.1 Global Progenitor Cell Product Sales Forecast by Regions 2021-202612.1.2 Global Progenitor Cell Product Revenue Forecast by Regions 2021-202612.2 North America Progenitor Cell Product Market Size Forecast (2021-2026)12.2.1 North America: Progenitor Cell Product Sales Forecast (2021-2026)12.2.2 North America: Progenitor Cell Product Revenue Forecast (2021-2026)12.2.3 North America: Progenitor Cell Product Market Size Forecast by Country (2021-2026)12.3 Europe Progenitor Cell Product Market Size Forecast (2021-2026)12.3.1 Europe: Progenitor Cell Product Sales Forecast (2021-2026)12.3.2 Europe: Progenitor Cell Product Revenue Forecast (2021-2026)12.3.3 Europe: Progenitor Cell Product Market Size Forecast by Country (2021-2026)12.4 Asia Pacific Progenitor Cell Product Market Size Forecast (2021-2026)12.4.1 Asia Pacific: Progenitor Cell Product Sales Forecast (2021-2026)12.4.2 Asia Pacific: Progenitor Cell Product Revenue Forecast (2021-2026)12.4.3 Asia Pacific: Progenitor Cell Product Market Size Forecast by Region (2021-2026)12.5 Latin America Progenitor Cell Product Market Size Forecast (2021-2026)12.5.1 Latin America: Progenitor Cell Product Sales Forecast (2021-2026)12.5.2 Latin America: Progenitor Cell Product Revenue Forecast (2021-2026)12.5.3 Latin America: Progenitor Cell Product Market Size Forecast by Country (2021-2026)12.6 Middle East and Africa Progenitor Cell Product Market Size Forecast (2021-2026)12.6.1 Middle East and Africa: Progenitor Cell Product Sales Forecast (2021-2026)12.6.2 Middle East and Africa: Progenitor Cell Product Revenue Forecast (2021-2026)12.6.3 Middle East and Africa: Progenitor Cell Product Market Size Forecast by Country (2021-2026) 13 Market Opportunities, Challenges, Risks and Influences Factors Analysis13.1 Market Opportunities and Drivers13.2 Market Challenges13.3 Market Risks/Restraints13.4 Porters Five Forces Analysis13.5 Primary Interviews with Key Progenitor Cell Product Players (Opinion Leaders) 14 Value Chain and Sales Channels Analysis14.1 Value Chain Analysis14.2 Progenitor Cell Product Customers14.3 Sales Channels Analysis14.3.1 Sales Channels14.3.2 Distributors 15 Research Findings and Conclusion 16 Appendix16.1 Research Methodology16.1.1 Methodology/Research Approach16.1.2 Data Source16.2 Author Details

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Visit link:
Trending: Progenitor Cell Product Market Detailed Analysis of Current Industry Figures With Forecasts Growth by 2026 - Weekly Wall

New Data Show Near Elimination of Sickle Cell Disease-Related Vaso-Occlusive Crises and Acute Chest Syndrome in Phase 1/2 Clinical Study of bluebird…

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy for adult and adolescent patients with sickle cell disease (SCD) show a near-complete reduction of serious vaso-occlusive crises (VOCs) and acute chest syndrome (ACS). These data are being presented at the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

Vaso-occlusive crises (VOCs) are the painful, life-threatening episodes that are the primary clinical manifestation of sickle cell disease. The nearly complete elimination of VOCs that we saw in this study is impressive and demonstrates the potential of LentiGlobin for SCD as a treatment for this serious disease, said David Davidson, M.D., chief medical officer, bluebird bio. These results illustrate the type of outcomes we believe are needed to provide truly meaningful improvements for people living with sickle cell disease. In addition, the improvement of laboratory measures of hemolysis and red cell physiology, with nearly pan-cellular distribution of the anti-sickling HbAT87Q, suggest LentiGlobin for SCD may substantially modify the causative pathophysiology of SCD. We are pleased to have reached a general agreement with the FDA on the clinical data required to support a submission for LentiGlobin for SCD and we plan to seek an accelerated approval. We look forward to working with the entire SCD community to bring forward a disease modifying option for patients.

SCD is a serious, progressive and debilitating genetic disease caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOCs. For adults and children living with SCD, this means painful crises and other life altering or life-threatening acute complicationssuch as ACS, stroke and infections. If patients survive the acute complications, vasculopathy and end-organ damage, resulting complications can lead to pulmonary hypertension, renal failure and early death; in the U.S. the median age of death for someone with sickle cell disease is 43 - 46 years.

As a physician treating sickle cell for over 10 years, the excruciating pain crises that my patients suffer from is one of the most challenging and frustrating aspects of this disease, said presenting study author Julie Kanter, M.D., University of Alabama at Birmingham. The promising results of this study, which show patients have an almost complete elimination of VOCs and ACS, suggest LentiGlobin for SCD has real potential to provide a significant impact for people living with sickle cell disease.

LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin, HbAT87Q, that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.

As of March 3, 2020, a total of 37 patients have been treated with LentiGlobin for SCD to-date in the HGB-205 (n=3) and HGB-206 (n=34) clinical studies. The HGB-206 total includes: Group A (n=7), B (n=2) and C (n=25).

HGB-206: Group C Updated Efficacy Results

In Group C of HGB-206, 25 patients were treated with LentiGlobin for SCD and have up to 24.8 months of follow-up (median of 12.1; min.-max.: 2.824.8 months). Results from Group C are as of March 3, 2020 and include efficacy data for 16 patients who had at least a Month 6 visit, and safety data for 18 patients, which includes two patients who were at least six months post-treatment but results from a Month 6 visit are not available.

In 16 patients with six or more months of follow-up, median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin. At last visit reported, total hemoglobin ranged from 9.6 16.2 g/dL and HbAT87Q levels ranged from 2.7 9.4 g/dL. At Month 6 the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin. Patients had a median of 60% HbS. All patients in Group C were able to stop regular blood transfusions and remain off transfusions at three months post-treatment.

There was a 99.5% mean reduction in annualized rate of VOC and ACS among the 14 patients who had at least six months of follow-up and a history of VOCs or ACS, defined as four or more VOC or ACS events in the two years prior to treatment. These 14 patients had a median of eight events in the two years prior to treatment (min.-max.: 4 28 events).

There were no reports of serious VOCs or ACS at up to 24 months post-treatment in patients with at least six months of follow-up (n=18). As previously reported, one non-serious Grade 2 VOC was observed in a patient approximately 3.5 months post-treatment with LentiGlobin for SCD.

In sickle cell disease, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells is hemolysis and this process occurs normally in the body. However, in sickle cell disease hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.

Patients treated with LentiGlobin for SCD demonstrated improvement in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 18 patients with 6 months of follow-up. The medians for reticulocyte counts (n=15), lactate dehydrogenase (LDH) levels (n=13) and total bilirubin (n=16) improved compared to screening and stabilized by Month 6. In patients with Month 24 data (n=5) these values approached the upper limit of normal by Month 24. These results suggest treatment with LentiGlobin for SCD is improving biological markers of sickle cell disease.

Assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells as well as to assess if HbAT87Q was pancellular, present throughout all of a patients red blood cells. Samples from a subset of patients in Group C were assessed. In nine patients who had at least six months of follow-up, the average proportion of red blood cells positive for HbAT87Q was greater than 70%, and on average more than 85% of red blood cells contained HbAT87Q at 18 months post-treatment, suggesting near-complete pancellularity of HbAT87Q distribution.

HGB-206: Group C Safety Results

As of March 3, 2020, the safety data from all patients in HGB-206 are generally reflective of underlying SCD and the known side effects of hematopoietic stem cell collection and myeloablative conditioning. There were no serious adverse events related to LentiGlobin for SCD, and the non-serious, related adverse events (AEs) were mild-to-moderate in intensity and self-limited.

One patient with a history of frequent pre-treatment VOE, pulmonary and systemic hypertension, venous thrombosis, obesity, sleep apnea and asthma had complete resolution of VOEs following treatment, but suffered sudden death 20 months after treatment with LentiGlobin for SCD. The patients autopsy revealed cardiac enlargement and fibrosis, and concluded the cause of death was cardiovascular, with contributions from SCD and asthma. The treating physician and an independent monitoring committee agreed this death was unlikely related to LentiGlobin for SCD gene therapy.

The presentation is now available on demand on the EHA25 website:

About HGB-206

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for SCD that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=25). A refined manufacturing process that was designed to increase vector copy number (VCN) and improve engraftment potential of gene-modified stem cells was used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

LentiGlobin for Sickle Cell Disease Regulatory Status

bluebird bio reached general agreement with the U.S. Food and Drug Administration (FDA) that the clinical data package required to support a Biologics Licensing Application (BLA) submission for LentiGlobin for SCD will be based on data from a portion of patients in the HGB-206 study Group C that have already been treated. The planned submission will be based on an analysis using complete resolution of severe vaso-occlusive events (VOEs) as the primary endpoint with at least 18 months of follow-up post-treatment with LentiGlobin for SCD. Globin response will be used as a key secondary endpoint.

bluebird bio anticipates additional guidance from the FDA regarding the commercial manufacturing process, including suspension lentiviral vector. bluebird bio announced in a May 11, 2020 press release it plans to seek an accelerated approval and expects to submit the U.S. BLA for SCD in the second half of 2021.

About LentiGlobin for Sickle Cell Disease

LentiGlobin for sickle cell disease is an investigational gene therapy being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the ongoing Phase 1/2 HGB-206 study and the ongoing Phase 3 HGB-210 study.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD.

The U.S. FDA granted orphan drug designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD is investigational and has not been approved in any geography.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel for -thalassemia or LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders, including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using three gene therapy technologies: gene addition; cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash., Durham, N.C., and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.

bluebird bio Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the companys development and regulatory plans for the LentiGlobin for SCD product candidate, and the companys intentions regarding the timing for providing further updates on the development of the product candidate. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: the risk that the COVID-19 pandemic and resulting impact on our operations and healthcare systems will affect the execution of our development plans or the conduct of our clinical studies; the risk that even if LentiGlobin for SCD addresses ACS and VOC events, that it may not address progressive organ damage experienced by patients with SCD; the risk that the efficacy and safety results observed in the patients treated in our prior and ongoing clinical trials of LentiGlobin for SCD may not persist or be durable; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in when treating additional patients in our ongoing or planned clinical trials; the risk that the HGB-206 and HGB-210 clinical studies as currently contemplated may be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidate, resulting in a delay to our anticipated timelines for regulatory submissions, including our application for marketing approval. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Excerpt from:
New Data Show Near Elimination of Sickle Cell Disease-Related Vaso-Occlusive Crises and Acute Chest Syndrome in Phase 1/2 Clinical Study of bluebird...

Stem Cell Therapy Market Grows on Back of Growing Awareness Regarding Regenerative Treatment Methods – TMR Research Blog

Lately, there has been rising awareness among people regarding the therapeutic potential of stem cells for disease management. This is one of the key factors contributing to growth of the global stem cell therapy market.

Further, identification of new stem cell lines, research and development of genome based cell analysis techniques, and investment inflow for processing and banking of stem cell are some of the significant factors augmenting expansion rate of the global stem cell therapy market.

Meanwhile, limitations associated with traditional organ transplantation such as immunosuppression risk, infection risk, and low acceptance rate of organ by body are few features leading to adoption of stem cell therapy. Moreover, high dependency on organ donors for organ transplantation is paving opportunities for growth of the stem cell therapy.

Get SampleCopy of this Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

Moreover, expanding pipeline and development of drugs for new applications are driving growth of the global stem cells market. Growing research activities focused on augmenting the application array of stem cell will also widen the horizon of stem cell market. Researchers are consistently trying to develop novel methods for creating human stem cell in order to comply with the rising demand for stem cell production to be used for disease management.

Development of Advanced Treatment Method Augmenting Market Growth

Lately, various new studies, development of novel therapies, and research projects have come into light in the global stem cell therapy market. Some of these treatment have been by approved by regulatory bodies, while others are still in pipeline for approval of the treatment.

In March 2017, Belgian based biotech firm TiGenix has announced that its latest development- cardiac cell therapy AlloCSC-01 has reached in its phase I/II successfully. It has shown positive results. Meanwhile, the U.S. FDA has also approved the treatment method. If this therapy is well-accepted among the patients, then approximately 1.9 million AMI patients could be treated using the therapy.

Likewise, another significant development that has been witnessed is development novel stem cell based technology for treatment of multiple sclerosis (MS) and similar concerns associated with nervous system. The treatment is developed by Israel-based Kadimastem Ltd. Also, the Latest development has been granted a patent by reputed regulatory body.

Some of the prominent companies operating in the global stem cell therapy landscape are Anterogen Co. Ltd., RTI Surgical, Osiris Therapeutics Inc., Holostem Terapie Avanzate S.r.l., JCR Pharmaceuticals Co. Ltd., MEDIPOST Co. Ltd., Pharmicell Co. Ltd., and NuVasive Inc.

Some of these firms are following various growth strategies such as mergers and acquisitions, strategic alliances, and collaborations, and product development in order to strengthen their foothold in the global market for stem cell therapy.

Dermatology Segment Holds Prominence in Stem Cell Therapy Market

Stem cell therapy, primarily is a regenerative medicine. It encourages the reparative response of damaged, dysfunctional, or diseases tissue with the help of stem cells and associated derivatives. The treatment method is replacing the conventional transplant methods.

Check Table of Contents of this Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

Stem cell therapy method has wide array of application in the field of nervous system treatment, dermatology, bone marrow transplant, multiple sclerosis, osteoarthritis, hearing loss treatment, cerebral palsy, and heart failure. The method aids patients fight leukemia and similar blood related diseases.

Among all, dermatology segment is leading in the global stem cell therapy market. The segment is substantially contributing to growth of the market. Stem cell therapy reduces the after effects of general treatment for burns such as adhesion, infections, and scars among others.

Meanwhile, rising number of patient suffering from diabetes and increase in trauma surgery cases are anticipated to accelerate the adoption of stem cell therapy in the dermatology segment.

Like Loading...

As Head of Marketing at TMR Research, Rohit brings to the table over a decade of experience in market research and Internet marketing. His dedication, perseverance, and passion for perfection have enabled him to achieve immense success in his field. Rohit is an expert at formulating new business plans and strategies to help boost web traffic. His interests lie in writing news articles on technology,healthcare and business.View all posts by Rohit Bhisey

More:
Stem Cell Therapy Market Grows on Back of Growing Awareness Regarding Regenerative Treatment Methods - TMR Research Blog

Coronavirus threat to global Good Growth Opportunities in Canine Stem Cell Therapy Market – Cole of Duty

The Canine Stem Cell Therapy Market research report enhanced worldwide Coronavirus COVID19 impact analysis on the market size (Value, Production and Consumption), splits the breakdown (Data Status 2014-2020 and 6 Year Forecast From 2020 to 2026), by region, manufacturers, type and End User/application. This Canine Stem Cell Therapy market report covers the worldwide top manufacturers like (VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics, Medivet Biologics, Okyanos, Vetbiologics, VetMatrix, Magellan Stem Cells, ANIMAL CELL THERAPIES, Stemcellvet) which including information such as: Capacity, Production, Price, Sales, Revenue, Shipment, Gross, Gross Profit, Import, Export, Interview Record, Business Distribution etc., these data help the consumer know about the Canine Stem Cell Therapy market competitors better. It covers Regional Segment Analysis, Type, Application, Major Manufactures, Canine Stem Cell Therapy Industry Chain Analysis, Competitive Insights and Macroeconomic Analysis.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures)of Canine Stem Cell Therapy[emailprotected]https://www.researchmoz.us/enquiry.php?type=S&repid=2081893

Canine Stem Cell Therapy Market report offers comprehensive assessment of 1) Executive Summary, 2) Market Overview, 3) Key Market Trends, 4) Key Success Factors, 5) Canine Stem Cell Therapy Market Demand/Consumption (Value or Size in US$ Mn) Analysis, 6) Canine Stem Cell Therapy Market Background, 7) Canine Stem Cell Therapy industry Analysis & Forecast 20202026 by Type, Application and Region, 8) Canine Stem Cell Therapy Market Structure Analysis, 9) Competition Landscape, 10) Company Share and Company Profiles, 11) Assumptions and Acronyms and, 12) Research Methodology etc.

Scope of Canine Stem Cell Therapy Market:The non-invasive stem cell obtaining procedure, augmented possibility of accomplishing high quality cells, and lower price of therapy coupled with high success rate of positive outcomes have collectively made allogeneic stem cell therapy a preference for veterinary physicians. Moreover, allogeneic stem cell therapy is 100% safe, which further supports its demand on a global level. Pet owners are identified to prefer allogeneic stem cell therapy over autologous therapy, attributed to its relatively lower costs and comparative ease of the entire procedure.

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry.

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, shipments, revenue (Million USD), price, and market share and growth rate foreach application.

Veterinary Hospitals Veterinary Clinics Veterinary Research Institutes

On the basis of product type, this report displays the shipments, revenue (Million USD), price, and market share and growth rate of each type.

Allogeneic Stem Cells Autologous Stem cells

Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid=2081893

Geographically, the report includes the research on production, consumption, revenue, Canine Stem Cell Therapy market share and growth rate, and forecast (2020-2026) of the following regions:

Important Canine Stem Cell Therapy Market Data Available In This Report:

Strategic Recommendations, Forecast Growth Areasof the Canine Stem Cell Therapy Market.

Challengesfor the New Entrants,TrendsMarketDrivers.

Emerging Opportunities,Competitive Landscape,Revenue Shareof Main Manufacturers.

This Report Discusses the Canine Stem Cell Therapy MarketSummary; MarketScopeGives A BriefOutlineof theCanine Stem Cell Therapy Market.

Key Performing Regions (APAC, EMEA, Americas) Along With Their Major Countries Are Detailed In This Report.

Company Profiles, Product Analysis,Marketing Strategies, Emerging Market Segments and Comprehensive Analysis of Canine Stem Cell Therapy Market.

Canine Stem Cell Therapy Market ShareYear-Over-Year Growthof Key Players in Promising Regions.

What is the (North America, South America, Europe, Africa, Middle East, Asia, China, Japan)production, production value, consumption, consumption value, import and exportof Canine Stem Cell Therapy market?

To Get Discount of Canine Stem Cell Therapy Market:https://www.researchmoz.us/enquiry.php?type=D&repid=2081893

Contact:

ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]

Browse More Reports Visit @https://www.mytradeinsight.blogspot.com/

Read more:
Coronavirus threat to global Good Growth Opportunities in Canine Stem Cell Therapy Market - Cole of Duty

Global Progenitor Cell Product Market 2020 with Coronavirus (COVID-19) Effect Analysis | likewise Industry is Booming Globally with Key Players …

Progenitor Cell Product Market Global and Outlook (2016 2026)

The report published onProgenitor Cell Productis an invaluable foundation of insightful data helpful for the decision-makers to form the business strategies related to R&D investment, sales and growth, key trends, technological advancement, emerging market and more.The COVID-19 outbreak is currently going the world over, this report covers the impact of the corona-virus on leading companies in the Progenitor Cell Product sector. This research report categorizes as the key players in the Progenitor Cell Product market and also gives a comprehensive study of Covid-19 impact analysis of the market by type, application and by regions like (Americas, APAC, and EMEA).

Click Here To Access The Free Sample PDF Report (including COVID19 Impact Analysis, full TOC, Tables and Figures):https://www.syndicatemarketresearch.com/market-analysis/progenitor-cell-product-market.html#sample

The global Progenitor Cell Product market report includes key facts and figures data which helps its users to understand the current scenario of the global market along with anticipated growth. The Progenitor Cell Product market report contains quantitative data such as global sales and revenue (USD Million) market size of different categories and subcategories such as regions, CAGR, market shares, revenue insights of market players, and others. The report also gives qualitative insights into the global Progenitor Cell Product market, which gives the exact outlook of the global as well as country level Progenitor Cell Product market.

Major Companies Profiled in the Global Progenitor Cell Product Market are:NeuroNova AB, StemCells, ReNeuron Limited, Asterias Biotherapeutics, Thermo Fisher Scientific, STEMCELL Technologies, Axol Bio, R&D Systems, Lonza, ATCC, Irvine Scientific, CDI

The focus of the global Progenitor Cell Product market report is to define, categorized, identify the Progenitor Cell Product market in terms of its parameter and specifications/ segments for example by product, by types, by applications, and by end-users. This study also provides highlights on market trends, market dynamics (drivers, restraints, opportunities, challenges), which are impacting the growth of the Progenitor Cell Product market.

By Type, the Progenitor Cell Product market is segmented into:Pancreatic progenitor cells, Cardiac Progenitor Cells, Intermediate progenitor cells, Neural progenitor cells (NPCs), Endothelial progenitor cells (EPC), Others

By Application, the Progenitor Cell Product market is segmented into:Medical care, Hospital, Laboratory

For Any Query Regarding the Progenitor Cell Product Market Report? Contact Us at:https://www.syndicatemarketresearch.com/inquiry/progenitor-cell-product-market

Progenitor Cell Product Market Regional Analysis

The Regions covered in this study are North America, Europe, Middle East & Africa, Latin America, and the Asia Pacific. It analyzes these regions on the basis of major countries in it. Countries analyzed in the scope of the report are the U.S., Canada, Germany, the UK, France, Spain, Italy, China, India, Japan, South Korea, Southeast Asian countries, Australia, Brazil, Mexico, GCC countries, Egypt, South Africa, and Turkey among others.

Main Highlights and Significant aspects of the Reports:

A comprehensive look at the Progenitor Cell Product Industry Changing business trends in the global Progenitor Cell Product market Historical and forecast size of the Progenitor Cell Product market in terms of Revenue (USD Million) Detailed market bifurcation analysis at a various level such as type, application, end-user, Regions/countries Current industry growth and market trends Player positioning analysis and Competitive Landscape analysis for the Progenitor Cell Product market Key Product presents by Major players and business strategies used Niche and Potential segments (ex. types, applications, and regions/countries) predicted to revealed promising growth Key challenges encountered by operating players in the market space Analysis of major risks linked with the market operations

Browse Full Research Report [emailprotected]https://www.syndicatemarketresearch.com/market-analysis/progenitor-cell-product-market.html

Overview:This segment offers an overview of the report to provide an idea regarding the contents and nature of the research report along with a wide synopsis of the global Progenitor Cell Product Market.

Analysis of Leading Players Strategies:Market top players can utilize this analysis to increase the upper hand over their rivals in the market.

Study on Major Market Trends:This segment of the report delivers a broad analysis of the most recent and future market trends.

Forecasts of the Market:The report gives production, consumption, sales, and other market forecasts. Report Buyers will approach exact and approved evaluations of the total market size in terms of value and volume.

Analysis of Regional Growth:This report covered all major regions and countries. The regional analysis will assist market players to formulate strategies specific to target regions, tap into unexplained regional markets, and compare the growth of all regional markets.

Analysis of the Segment:This report provides a reliable and accurate forecast of the market share of important market segments. This analysis can be used by market participants for strategic development so that they can make significant growth in the Progenitor Cell Product market.

The main questions given in the report include:

1.What will be the market size and growth rate in 2026 with COVID-19 Impact Analysis?2.What are the major market trends impacting the growth of the global market with COVID-19 impact analysis?3.Who are the major players operating in the worldwide market?4.What are the important factors driving the worldwide Progenitor Cell Product market?5.What are the challenges to market growth?6.What are the opportunities and threats faced by the vendors in the international market?7.What are the trending factors affecting the market shares of the Americas, APAC, and EMEA?8.What are the major effects of the five forces analysis of the global Progenitor Cell Product market?

Note In order to provide a more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.(*If you have any special requirements, please let us know and we will offer you the report as you want.)

About Us:

Setting a strong foot in the industry with all planned and tactical approaches is surely not a cakewalk. You need loads of research, analysis, consider several factors, and above all, give your valuable time to the entire process. This is where Syndicate Market Research kicks in as a support system for our clients.

Contact Us:

Syndicate Market Research244 Fifth Avenue, Suite N202New York, 10001, United States+1 347 535 0815 |Email ID:[emailprotected]Website:www.syndicatemarketresearch.com

Read the original:
Global Progenitor Cell Product Market 2020 with Coronavirus (COVID-19) Effect Analysis | likewise Industry is Booming Globally with Key Players ...

The Country Is Reopening. Im Still on Lockdown – WIRED

For millions of Americans, though, keeping normalcy at bay for such a long time is a luxury they cant afford. People need to hold onto their jobs. Or find new ones. The streets are filling up with Americans who are responding to one national crisisthat of police brutality and systemic racismin the midst of another. And the economy is in cardiac arrest.

Just last week, to address this, the governor of my state announced an accelerated reopening. In the last weeks, there were about 1,500 new coronavirus cases in our region, an increase of 37 percent. In all these headlines, I can see cracks in the walls Ive built around my mom and my partner. How do we bubble people stay safe as the world moves ahead? In some ways people who are immunocompromised have lived their lives in preparation for all of this, Mamjunder told me.

Not long ago, in response to WIRED's Covid-19 coverage, the publication got an email from a woman named Brandy Stephens whod been diagnosed with acute lymphoblastic leukemia in 2014, when she was 26. She and her husband had a 1-year-old daughter. Her treatment put her in the hospital for 165 days, 35 of them on a ventilator. During that time a mere houseplant could have killed me, she wrote. I had multi-organ failure, my bone marrow died, I had pulmonary embolisms, a partially collapsed lung. Then, a stem cell transplant built her a new immune system. In July 2019, at the five-year mark, Stephens was finally able to be reimmunized, against the scary things that babies are immunized for.

Most of the world does not know we exist, she wrote.

I called her to ask about how she did it. I needed to know how to shepherd my mom and partner through a reopened world. I couldn't eat takeout for a year post-transplant. I carry sanitizer, gloves, masks, Lysol with me. She added, My husband is my rock. It has become second nature to have real quirks, to, say, go to family gatherings but not get close to anyone. She knows how to do this. I feel for people who never have had to isolate before, she added, I went through that struggle. (Immunocompromised people have figured out how to protest too.)

We are lucky to live in an area that has kept the overall coronavirus numbers low, yet the steady tick of reminders about potential Covid-19 resurgences haunt me. For everyone in this pandemic, its hard right now to accurately see a future beyond quarantine. Will we return to normal this year? What does normal mean? Something different for all of us, of course.

Last Friday afternoon I was working at Moms house, and I took a break. We were sitting in her living room, on her lovely blue couches. The dog tucked his head under her arm. Mom asked me what I was looking forward to.

The question jolted me. In pre-corona times, I tried to keep things on the calendar to look forward to. But over the past two months I have shut that instinct down.

Now, my mind ricocheted. Restaurants. Could I look forward to eating at our favorite pizza joint? My partners brother: He just added a new floor at the top of the house, a big glorious room with sliding glass doors that open to a porch overlooking the Pacific. He wants to have parties in that big, cheerful space. Will we be there?

Here are the things I hope to put on my calendar someday soon: dinner at our friends house. Driving with Mom for a day at our favorite beach, without worrying about crowds. Those parties at my partners brothers house, in that big, cheerful space. And if need be, flights to a different city if the new treatments we need for my partners cancer arrive, via a trial, somewhere else.

I hope I can put all of those things on the calendar, for the time we have left together.

More From WIRED on Covid-19

See the original post here:
The Country Is Reopening. Im Still on Lockdown - WIRED

Exosome Therapeutic Market 2020 Analysis, Trends, Opportunity, Size And Segment | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE…

Global Exosome Therapeutic Market report is of huge importance when it is about building business strategy by identifying the high growth and attractive market categories. This report assists to design capital investment strategies based on forecasted high potential segments. With this market report, it becomes simple and easy to develop competitive strategy based on competitive landscape. Moreover, potential business partners, acquisition targets and business buyers can be identified by using this Exosome Therapeutic Market research report. To plan for a new product launch and inventory in advance, this business report provides several useful insights.

Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

The major players covered in the Exosome Therapeutic Market report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.

Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp

About Data Bridge Market Research :

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us :

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:[emailprotected]

Read more:
Exosome Therapeutic Market 2020 Analysis, Trends, Opportunity, Size And Segment | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE...

Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United…

Global Exosome Therapeutic Market report is of huge importance when it is about building business strategy by identifying the high growth and attractive market categories. This report assists to design capital investment strategies based on forecasted high potential segments. With this market report, it becomes simple and easy to develop competitive strategy based on competitive landscape. Moreover, potential business partners, acquisition targets and business buyers can be identified by using this Exosome Therapeutic Market research report. To plan for a new product launch and inventory in advance, this business report provides several useful insights.

Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

The major players covered in the Exosome Therapeutic Market report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.

Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp

About Data Bridge Market Research :

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us :

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:[emailprotected]

Read more:
Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United...

Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend

Health care stakeholders need to invest in value-based care, innovative care delivery models, advanced digital technologies. XploreMR will help you to know declarative, procedural, contextual, and somatic information about the Canine Stem Cell Therapy Market. It also provides a critical assessment of the performance of emerging and mature markets in a new publication titled Global Market Study on Canine Stem Cell Therapy: Ongoing Clinical Trials and Focus on Advancements to Push Adoption in Veterinary Clinics.

A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry

Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.

Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) and many more Information:https://www.xploremr.com/connectus/sample/2360

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.

Parent Indicators Healthcare

Research Methodology

XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.

Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.

Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.

Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.

On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.

Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.

Get Full Access Of This Exclusive Report Right Now: https://www.xploremr.com/cart/2360/SL

Standard Report Structure

Target Audience

Market Taxonomy

The global canine stem cell therapy market has been segmented into:

Product Type:

Application:

End User:

Region:

View original post here:
Canine Stem Cell Therapy Market to Expand with Significant CAGR - WorldsTrend

Archives